首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Steady-state and dynamic stomatal and assimilation responses to light transients were characterized in sun- and shade-acclimated plants of Piper auritum, a pioneer tree, and Piper aequale a shade-tolerant shrub from a tropical forest at Los Tuxtlas, Veracruz, México. Despite essentially identical steady-state responses of stomatal conductance to PFD of P. aequale and P. auritum shade plants, the dynamic responses to lightflecks were markedly different and depended on the growth regime. For both species from both growth environments, the increase in stomatal conductance occurring in response to a lightfleck continued long after the lightfleck itself so that the maximum stomatal conductance was not reached until 20–40 min after the lightfleck. Closing then occurred until stomatal conductance returned to near its original value before the lightfleck. Plants that were grown under light regimes similar to those of their natural habitat (high light for P. auritum and shade for P. aequale) had large maximum excursions of stomatal conductance and slower closing than opening responses. Plants grown under the opposite conditions had smaller excursions of stomatal conductance, especially in P. auritum, and more symmetrical opening and closing. The large and hysteretic response of stomatal conductance of P. aequale shade plants to a lightfleck was shown to improve carbon gain during subsequent lightflecks by 30–200%, depending on lightfleck duration. In contrast the very small stomatal response to lightflecks in P. auritum shade plants, resulted in no significant improvement in use of subsequent lightflecks.  相似文献   

2.
Leaves of soybean plants grown in contrasting light and nutrient availability conditions were exposed to constant and to flashing light regimes with lightflecks of different frequencies, durations and photon flux density (PFD). The lightfleck characteristics were selected to be representative of the range of variation found for sunflecks in a soybean canopy. CO2 fixation rates were measured using a fast-response gas-exchange apparatus. The net CO2 fixation due to 1-s-duration lightflecks was 1·3 times higher than predicted from steady-state measurements in constant light at the lightfleck and background PFD. This lightfleck utilization efficiency (LUE) was somewhat higher at a high than at a low frequency of one second lightflecks. LUE in flashing light with very short lightflecks (0·2s) and single 1 s lightflecks was as high as 2, but decreased sharply with increasing duration of lightflecks. This decrease occurred because CO2 fixation rates during lightflecks were constrained by carbon metabolism and induction limitations, and because the contribution of post-illumination CO2 fixation to total CO2 fixation decreased with increased duration of lightflecks. LUE increased with increased PFD during the lightflecks, particularly in leaves from plants grown in high-light, high-nutrient conditions. Saturation PFDs were much higher in flashing light than in constant light. Only small differences in LUE were apparent between leaves from the three growth conditions.  相似文献   

3.
The steady-state and dynamic photosynthetic response of two poplar species (Populus tremuloides and P. fremontii) to variations in photon flux density (PFD) were observed with a field portable gas exchange system. These poplars were shown to be very shade intolerant with high light saturation (800 to 1300 mol photons m–2 s–1) and light compensation (70 to 100 mol m–2 s–1) points. Understory poplar leaves showed no physiological acclimation to understory light environments. These plants become photosynthetically induced quickly (10 min). Activation of Rubisco was the primary limitation for induction, with stomatal opening playing only a minor role. Leaves maintained high stomatal conductances and stomata were unresponsive to variations in PFD. Leaves were very efficient at utilizing rapidly fluctuating light environments similar to those naturally occurring in canopies. Post-illumination CO2 fixation contributed proportionally more to the carbon gain of leaves during short frequent lightflecks than longer less frequent ones. The benefits of a more dynamic understory light environment for the carbon economy of these species are discussed.  相似文献   

4.
Summary We studied nitrate reductase (NR) activity in six species of the genus Piper (Piperaceae) growing under a broad range of light availabilities. Field measurements were made on plants growing naturally in rainforest at the Los Tuxtlas Tropical Biological Preserve, Veracruz, Mexico at high- and lowlight extremes for each species. Foliar nitrogen on an area basis was positively related to the average daily photosynthetically active photon flux density (PFD) received by the leaf (r=0.76, p<0.01). In vivo NR activity was highly correlated with PFD (r=0.95, p<0.001) and less so with total leaf nitrogen (r=0.68, p<0.05). In vivo NR activity was always higher in high-light plants than in low-light plants within a species. Similarly, gap species such as P. auritum had much higher in vivo NR activities than shade species such as P. aequale. Soil NO 3 and NH 4 + pools and nitrogen-mineralization rates at Los Tuxtlas were similar between high- and low-light sites, indicating that the elevated NR activities in high-light plants were not the result of higher NO 3 availabilities in high-light microsites. We performed additional experiments at Stanford, California, USA on Piper plants grown at high- and low-light. Foliar NR was highly inducible by nitrate in the gap species (auritum) but not in the generalist (hispidum) or shade (aequale) species. Root NR activities were, in general, an order of magnitude lower than foliar activities. In total, these studies suggest that Piper gap species are inherently more competent to assimilate NO 3 and are better able to respond to sudden increases in NO 3 availability than are shade species.CJWDPB publication # 1097  相似文献   

5.
Photosynthetic-induction response and light-fleck utilization were investigated for the current-year seedlings of Quercus serrata, a deciduous tree found in temperate regions of Japan. The tree seedlings were grown under three light regimes: a constant low photosynthetic photon flux density (PFD) regime of 50 mol m–2 s–1, a constant high PFD regime of 500 mol m–2 s–1, and a lightfleck regime with alternated low (lasting 5 s) and high (lasting 35 s) PFD. The photosynthetic-induction response following a sudden increase of PFD from 50 to 500 mol m–2 s–1 exhibited two phases: an initial fast increase complete within 3–5 s, and a second slow increase lasting for 15–20 min. Induction times required to reach 50% and 90% of steady-state assimilation rates were significantly shorter in leaves from the constant low PFD than those from the high PFD regime. During the first 60–100 s, the ratio of observed integrated CO2 uptake to that predicted by assuming that a steady-state assimilation would be achieved instantaneously after the light increase was significantly higher for leaves from the low PFD regime than from the high PFD regime. Lightfleck utilization was examined for various durations of PFD of 500 mol m–2 s–1 on a background PFD of 50 mol m–2 s–1. Lightfleck utilization efficiency was significantly higher in low PFD leaves than in the high PFD leaves for 5-s and 10-s lightflecks, but showed no difference among different light regimes for 100-s lightflecks. The contribution of post-illumination CO2 fixation to total carbon gain decreased markedly with increasing lightfleck durations, but exhibited no significant difference among growth regimes. Photosynthetic performances of induction response and lightfleck utilization in leaves from the lightfleck regime were more similar to those in leaves from the low PFD regime. It may be the total daily PFD rather than PFD dynamics in light regimes that affects the characteristics of transient photosynthesis in Q. serrata seedlings.  相似文献   

6.
Photosynthetic responses to light variation in rainforest species   总被引:1,自引:0,他引:1  
Summary The dependence of net carbon gain during lightflecks (artificial sunflecks) on leaf induction state, lightfleck duration, lightfleck photosynthetic photon flux density (PFD), and the previous light environment were investigated in A. macrorrhiza and T. australis, two Australian rainforest species. The photosynthetic efficiency during lightflecks was also investigated by comparing observed values of carbon gain with predicted values based on steady-state CO2 assimilation rates. In both species, carbon gain and photosynthetic efficiency increased during a series of five 30-or 60-s lightflecks that followed a long period of low light; efficiency was linearly related to leaf induction state.In fully-induced leaves of both species, efficiency decreased and carbon gain increased with lightfleck duration. Low-light grown A. macrorrhiza had greater efficiency than predicted based on steady-state rates (above 100%) for lightflecks less than 40 s long, whereas leaves grown in high light had efficiencies exceeding 100% only during 5-s lightflecks. The efficiency of leaves of T. australis ranged from 58% for 40-s lightflecks to 96% for 5-s lightflecks.In low-light grown leaves of A. macrorrhiza, photosynthetic responses to lightflecks below 120 mol m-2 s-1 were not affected significantly by the previous light level. However, during lightflecks at 530 mol m-2 s-1, net carbon gain and photosynthetic efficiency of leaves previously exposed to low light levels were significantly reduced relative to those of leaves previously exposed to 120 and 530 mol m-2 s-1.These results indicate that, in shade-tolerant species, net carbon gain during sunflecks can be enhanced over values predicted from steady-state CO2 assimilation rates. The degree of enhancement, if any, will depend on sunfleck duration, previous light environment, and sunfleck PFD. In forest understory environments, the temporal pattern of light distribution may have far greater consequences for leaf carbon gain than the total integrated PFD.Supported by National Science Foundation Grant BSR 8217071 and USDA Grant 85-CRCR-1-1620  相似文献   

7.
In agroforestry systems, the effect of shade trees on coffee net photosynthesis (A n) has been the object of debates among coffee scientists. In this study, we undertook over 600 coffee A n “spot” measurements under four different artificial shade levels (100, 72, 45 and 19% of full solar irradiance) and analyzed limitations to A n by low light availability (photon flux density, PFD) and stomatal conductance (g s). These gas exchange measurements were carried out during two consecutive coffee growing seasons in a commercial plantation in the Orosi valley of Costa Rica. Levels of A n were related to PFD and g s in order to calculate envelope functions which were used to establish PFD or g s limitations to A n. Under the growing conditions of the present trial, mean leaf A n remained stable for growth irradiance (GI) as low as 45% of full sun and decreased by ~20% at 19% GI. Limitation to A n due to g s was strong in full sun and decreasing with increasing shade levels. On the other hand, limitation due to PFD remained at a similar level for all shade treatments. These different evolutions of limitations of A n by PFD and g s in response to shade explain the absence of a decrease in coffee leaf A n with a shade level up to 55%. Consequently, these results confirm that Arabica coffee is a shade-adapted plant with leaves that can maintain a high photosynthetic performance under low light availability.  相似文献   

8.
 We examined in the field the photosynthetic utilization of fluctuating light by six neotropical rainforest shrubs of the family Rubiaceae. They were growing in three different light environments: forest understory, small gaps, and clearings. Gas exchange techniques were used to analyse photosynthetic induction response, induction maintenance during low-light periods, and lightfleck (simulated sunfleck) use efficiency (LUE). Total daily photon flux density (PFD) reaching the plants during the wet season was 37 times higher in clearings than in the understory, with small gaps exhibiting intermediate values. Sunflecks were more frequent, but shorter and of lower intensity in the understory than in clearings. However, sunflecks contributed one-third of the daily PFD in the understory. Maximum rates of net photosynthesis, carboxylation capacity, electron transport, and maximum stomatal conductance were lower in understory species than in species growing in small gaps or clearings, while the reverse was true for the curvature factor of the light response of photosynthesis. No significant differences were found in the apparent quantum yield. The rise of net photosynthesis during induction after transfer from low to high light varied from a hyperbolic shape to a sigmoidal increase. Rates of photosynthetic induction exhibited a negative exponential relationship with stomatal conductance in the shade prior to the increase in PFD. Leaves of understory species showed the most rapid induction and remained induced longer once transferred to the shade than did leaves of medium- or high-light species. LUE decreased rapidly with increasing lightfleck duration and was affected by the induction state of the leaf. Fully induced leaves exhibited LUEs up to 300% for 1-s lightflecks, while LUE was below 100% for 1–80 s lightflecks in uninduced leaves. Both induced and uninduced leaves of understory species exhibited higher LUE than those of species growing in small gaps or clearings. However, most differences disappeared for lightflecks 10 s long or longer. Thus, understory species, which grew in a highly dynamic light environment, had better capacities for utilization of rapidly fluctuating light than species from habitats with higher light availability. Received: 4 January 1997 / Accepted: 28 April 1997  相似文献   

9.
Oxygen and CO2 exchange were measured concurrently in leaves of shade-grownAlocasia macrorrhiza (L.) G. Don during lightflecks consisting of short periods of high photon flux density (PFD) superimposed on a low-PFD background illumination. Oxygen exchange was measured with a zirconium-oxide ceramic cell in an atmosphere containing 1 600 bar O2 and 350 bar CO2. Following an increase in PFD from 10 to 500 mol photons·m-2·s-1, O2 evolution immediately increased to a maximum rate that was about twice as high as the highest CO2-exchange rates that were observed. Oxygen evolution then decreased over the next 5–10 s to rates equal to the much more slowly increasing rates of CO2 uptake. When the PFD was decreased at the end of a lightfleck, O2 evolution decreased nearly instantaneously to the low-PFD rate while CO2 fixation continued at an elevated rate for about 20 s. When PFD during the lightfleck was at a level that was limiting for steady-state CO2 exchange, then the O2-evolution rate was constant during the lightfleck. This observed pattern of O2 evolution during lightflecks indicated that the maximum rate of electron transport exceeded the maximum rate of CO2 fixation in these leaves. In noninduced leaves, rates of O2 evolution for the first fraction of a second were about as high as rates in fully induced leaves, indicating that O2 evolution and the electron-transport chain are not directly affected by the leaf's induction state. Severalfold differences between induced and noninduced leaves in O2 evolution during a lightfleck were seen for lightflecks longer than a few seconds where the rate of O2 evolution appeared to be limited by the utilization of reducing power in CO2 fixation.Abbreviation PFD photon flux density (of photosynthetically active radiation)  相似文献   

10.
Summary Responses of leaf gas exchange in shade and half-shade grown seedlings of the European beech, Fagus sylvatica L., to constant light conditions indicate different phases of photosynthetic induction: an immediate, a fast and a subsequent slow phase. The slow phase has both biochemical and stomatal components. The higher the induction, the higher the lightfleck utilization efficiency (LUE) attributable to a lightfleck. LUE can be higher than 100% compared to a theoretical instantaneous response. Lightfleck quantum yield (total carbon gain attributable to a lightfleck per incident quantum density in the fleck) is highest in short pulses of light. Post-illumination carbon gain initially increases with fleck length, levelling off above 20 s. The lower the induction, the longer carbon is fixed post-illuminatively (up to 84 s) but the less carbon is gained. Shade leaves are induced much faster than partial shade leaves. They utilize series of lightflecks to become fully induced, while half-shade (and sun) leaves depend on continuous high light. Half-shade leaves lose induction faster in low light between lightflecks. High as well as low temperatures strongly delay induction in half-shade but not in shade leaves. In general, shade leaves are much better adapted to the dynamic light environment of the forest understorey; however, their water-use efficiency during induction is lower.Dedicated to Prof. O. L. Lange on the occasion of his 65th birthday  相似文献   

11.
The photosynthetic induction state under conditions of different lightfleck frequencies or durations, or different shade periods was studied in soybean leaves in order to examine how it might limit utilization of sunflecks in leaf canopies. Induction following an increase in photon flux density (PFD) from strongly limiting to saturating PFDs exhibited two phases; a fast-inducing one, requiring about 1 min and a slow one, requiring up to 60 min for completion. Transfer of fully induced leaves to low light resulted in a rapid decrease in the fast-inducing component, a slower decrease in the slow-inducing component and an even slower decrease in stomatal conductance. Therefore, the decreases in extent of induction appeared to be due to biochemical factors and not to stomatal closure. Under flashing light regimes consisting of 1-s lightflecks given at different frequencies for long periods, a constant induction state was achieved, the measure of induction state increased with the frequency of the lightflecks. This constant induction state also depended on the growth conditions, with shade leaves having a higher value than those grown at high light at any particular lightfleck frequency. The measure of induction state was mostly lower in flashing light as compared to constant light of the same mean PFD, particularly in leaves with a low light saturation point and in short lightflecks. Initial activities of ribulose-1,5-bisphosphate carboxylase (rubisco) were also higher in continuous light and were highly correlated with the measure of induction state. The rapid decrease in extent of induction of soybean leaves during shade periods is an important limitation to the ability of the leaves to respond to light increases similar to those occurring with sunflecks. At least part of the limitation on carbon assimilation during sunflecks due to photosynthetic induction is based on regulation of rubisco activity.  相似文献   

12.
High air temperatures increase atmospheric vapor pressure deficit (VPD) and the severity of drought, threatening forests worldwide. Plants regulate stomata to maximize carbon gain and minimize water loss, resulting in a close coupling between net photosynthesis (Anet) and stomatal conductance (gs). However, evidence for decoupling of gs from Anet under extreme heat has been found. Such a response both enhances survival of leaves during heat events but also quickly depletes available water. To understand the prevalence and significance of this decoupling, we measured leaf gas exchange in 26 tree and shrub species growing in the glasshouse or at an urban site in Sydney, Australia on hot days (maximum Tair > 40°C). We hypothesized that on hot days plants with ample water access would exhibit reduced Anet and use transpirational cooling leading to stomatal decoupling, whereas plants with limited water access would rely on other mechanisms to avoid lethal temperatures. Instead, evidence for stomatal decoupling was found regardless of plant water access. Transpiration of well-watered plants was 23% higher than model predictions during heatwaves, which effectively cooled leaves below air temperature. For hotter, droughted plants, the increase in transpiration during heatwaves was even more pronounced—gs was 77% higher than model predictions. Stomatal decoupling was found for most broadleaf evergreen and broadleaf deciduous species at the urban site, including some wilted trees with limited water access. Decoupling may simply be a passive consequence of the physical effects of high temperature on plant leaves through increased cuticular conductance of water vapor, or stomatal decoupling may be an adaptive response that is actively regulated by stomatal opening under high temperatures. This temperature response is not yet included in any land surface model, suggesting that model predictions of evapotranspiration may be underpredicted at high temperature and high VPD.  相似文献   

13.
 Field studies of gas exchange of Populus deltoides, Prosopis juliflora and Acacia auriculiformis showed large diurnal changes in net photosynthesis (A) and stomatal conductance (gs) during autumn. P. deltoides and P. juliflora undergo pronounced midday depression in A and gs while A. auriculiformis showed a one-peak response. Several factors indicative of photosynthetic performance were found to be reversibly affected during afternoon decline. These include (i) decrease in initial slope of the CO2 response curve (carboxylation efficiency), (ii) substantial increase in CO2 compensation point and (iii) decrease in overall quantum yield of photosystem II. The phenomenon can be duplicated in potted plants by simulating a typical daily pattern of PPFD and VPD. It is found that high VPD induces significant decline in A and gs at moderate temperature and saturating PPFD (800 μmol m–2 s–1) whereas these parameters are only marginally affected at high PPFD and low VPD. Fluorescence data show that the tree species under study have a high capacity for safe dissipation of excessive excitation energy. The activation of photorespiration, as evident from an increase in CO2 compensation point, maintains constant internal CO2 concentration (Ci) which may aid in minimizing photoinhibition during stomatal closure at midday. In case of P. deltoides and P. juliflora the stomata seem to be quite sensitive to the changes in humidity whereas this does not appear to be essential in case of A. auriculiformis because of its phyllode structure that endows it with mechanisms for conserving water without undergoing large-scale stomatal changes. Received: 16 October 1997 / Accepted: 5 March 1998  相似文献   

14.
Stomatal responsiveness to vapour pressure deficit (VPD) results in continuous regulation of daytime gas‐exchange directly influencing leaf water status and carbon gain. Current models can reasonably predict steady‐state stomatal conductance (gs) to changes in VPD but the gs dynamics between steady‐states are poorly known. Here, we used a diverse sample of conifers and ferns to show that leaf hydraulic architecture, in particular leaf capacitance, has a major role in determining the gs response time to perturbations in VPD. By using simultaneous measurements of liquid and vapour fluxes into and out of leaves, the in situ fluctuations in leaf water balance were calculated and appeared to be closely tracked by changes in gs thus supporting a passive model of stomatal control. Indeed, good agreement was found between observed and predicted gs when using a hydropassive model based on hydraulic traits. We contend that a simple passive hydraulic control of stomata in response to changes in leaf water status provides for efficient stomatal responses to VPD in ferns and conifers, leading to closure rates as fast or faster than those seen in most angiosperms.  相似文献   

15.
A model of maize stomatal behaviour has been developed, in which stomatal conductance is linked to the concentration of abscisic acid ([ABA]) in the xylem sap, with a sensitivity dependent upon the leaf water potential (Ψ1). It was tested against two alternative hypotheses, namely that stomatal sensitivity to xylem [ABA] would be linked to the leaf-to-air vapour pressure difference (VPD), or to the flux of ABA into the leaf. Stomatal conductance (gs) was studied: (1) in field-grown plants whose xylem [ABA] and Ψ1 depended on soil water status and evaporative demand; (2) in field-grown plants fed with ABA solutions such that xylem [ABA] was artificially raised, thereby decreasing gs and increasing Ψ1 and leaf-to-air VPD; and (3) in ABA-fed detached leaves exposed to varying evaporative demands, but with a constant and high Ψ1. The same relationships between gs, xylem [ABA] and Ψ1, showing lower stomatal sensitivity to [ABA] at high Ψ1, applied whether variations in xylem [ABA] were due to natural increase or to feeding, and whether variations in Ψ1, were due to changes in evaporative demand or to the increased Ψ1 observed in ABA-fed plants. Conversely, neither the leaf-to-air VPD nor the ABA flux into the leaf accounted for the observed changes in stomatal sensitivity to xylem [ABA]. The model, using parameters calculated from previous field data and the detached-leaf data, was tested against the observations of both ABA-fed and droughted plants in the field. It accounted with reasonable accuracy for changes in gs (r2 ranging from 0.77 to 0.81). These results support the view that modelling of stomatal behaviour requires consideration of both chemical and hydraulic aspects of root-to-shoot communication.  相似文献   

16.
The mechanisms regulating transient photosynthesis by soybean (Glycine max) leaves were examined by comparing photosynthetic rates and carbon reduction cycle enzyme activities under flashing (saturating 1 s lightflecks separated by low photon flux density (PFD) periods of different durations) and continuous PFD. At the same mean PFD, the mean photosynthetic rates were reduced under flashing as compared to continuous light. However, as the duration of the low PFD period lengthened, the CO2 assimilation attributable to a lightfleck increased. This enhanced lightfleck CO2 assimilation was accounted for by a greater postillumination CO2 fixation occurring after the lightfleck. The induction state of photosynthesis, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco), fructose 1,6-bisphosphatase (FBPase) and ribulose 5-phosphate kinase (Ru5P kinase) activities all responded similarly and were all lower under flashing as compared to constant PFD of the same integrated mean value. However, the fast phase of induction and FBPase and Ru5P kinase activities were reduced more than were the slow phase of induction and rubisco activity. This was consistent with the role of the former enzymes in the fast induction component that limited RuBP regeneration. Competition for reducing power between carbon metabolism and thioredoxin-mediated enzyme activation may have resulted in lower enzyme activation states and hence lower induction states under flashing than continuous PFD, especially at low lightfleck frequencies (low mean PFD).Abbreviations FBPase fructose 1,6-bisphosphatase (EC 3.1.3.11) - LUE lightfleck use efficiency - P-glycerate 3-phosphoglycerate - PICF post-illumination CO2 fixation - Ru5P kinase ribulose 5-phosphate kinase (EC 2.7.1.19) - RuBP ribulose 1,5-bisphosphate - rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) - SBpase sedoheptulose 1,7-bisphosphatase (EC 3.1.3.37)  相似文献   

17.
We report the photosynthetic characteristics of a C3 shade plant native to the tropical rain forest understory. It was shown that Elatostema repens Lour. (Hall) f. (Urticaceae) presents a large light adjustment capacity. The effects of several lightfleck sequences on photoinhibition of photosynthesis and carbon gain are analyzed. Photoinhibition is measured both as a decrease in leaf net CO2 uptake in limiting light (shown to be linearly correlated to quantum yield of O2 evolution measured at saturating CO2) and as a decrease of the ratio of variable fluorescence (Fv) to maximum fluorescence (Fmax) measured in liquid nitrogen. It is shown that lightflecks (from 10 to 30 min in duration) of 700 μmol m–2 s–1 (high light) induce photoinhibition, and that the effects of those successive high light periods are additive; there is apparently no recovery from photoinhibition during the low light periods (from 10 to 45 min in duration). In contrast, the Fv/Fmax ratio, though decreasing similarly to quantum yield of net CO2 uptake on leaves submitted to a continuous illumination of 700 μmol m–2 s–1, is only decreased a little on leaves submitted to lightfleck sequences of the same photon flux density. Lightflecks of 250 μmol m–2 s–1 are not photoinhibitory. Compared to the control maintained under light growth condition (40 μmol m–2 s–1) carbon gain is increased on leaves submitted to lightflecks; this gain remains high throughout the light cycles on leaves submitted to nonphotoinhibitory lightflecks and to the photoinhibitory lightflecks followed by the shortest low light period. In the other cases, carbon gain, higher than that of the control at the beginning of the treatments, decreases and becomes lower than the control carbon gain. Finally, the relevance of photoinhibition in the tropical rain forest understory environment is discussed.  相似文献   

18.
Water relations dynamics during simulated sunflecks at high (36°C) and medium (27°C) temperatures and high and low vapour pressure deficits beween leaf and air (VPD) were studied on shade-grown Piper auritum H.B. & K. plants, a pioneer tree, common in gaps and clearings of tropical rain forests. The leaves of P. auritum wilt rapidly when exposed to high light. Exposure to high VPD and high light caused substantial and rapid dehydration of leaves. Dehydration could be prevented under high humidity irrespective of temperature. Water stored in leaf cells served as initial source for transpiration upon high light exposure. This effect increased with increasing VPD and temperature. The pronounced decrease in leaf water content over time in high light caused a rapid decrease in leaf water potential (Ψl) and a concomitant increase in water potential gradient (ΔΨ/Δx) between trunk and leaf, yet the high leaf elasticity (small bulk elastic modulus, ε) allowed turgor maintenance under most conditions. Under high VPD and high temperature, stomata remained open and ΔΨ/Δx frequently exceeded 0.95 MPa · m−1, the cavitation-inducing threshold (ΔΨ/Δx cav) causing high rates of acoustic emissions from stems and leaf petioles and leading to concomitant losses in hydraulic conductance per leaf area (k l). At medium temperature (high VPD), stomatal closure contained xylem embolism by keeping ΔΨ/Δx at or below this threshold. We argue that wilting substantially contributes to creating a sufficient driving force for water uptake from the soil, and reducing the VPD (through a decrease in radiation load and thus leaf temperature) to avoid excessive dehydration. Received: 3 March 1996 / Accepted: 10 November 1996  相似文献   

19.
Future climate change is expected to increase temperature (T) and atmospheric vapour pressure deficit (VPD) in many regions, but the effect of persistent warming on plant stomatal behaviour is highly uncertain. We investigated the effect of experimental warming of 1.9–5.1 °C and increased VPD of 0.5–1.3 kPa on transpiration and stomatal conductance (gs) of tree seedlings in the temperate forest understory (Duke Forest, North Carolina, USA). We observed peaked responses of transpiration to VPD in all seedlings, and the optimum VPD for transpiration (Dopt) shifted proportionally with increasing chamber VPD. Warming increased mean water use of Carya by 140% and Quercus by 150%, but had no significant effect on water use of Acer. Increased water use of ring‐porous species was attributed to (1) higher air T and (2) stomatal acclimation to VPD resulting in higher gs and more sensitive stomata, and thereby less efficient water use. Stomatal acclimation maintained homeostasis of leaf T and carbon gain despite increased VPD, revealing that short‐term stomatal responses to VPD may not be representative of long‐term exposure. Acclimation responses differ from expectations of decreasing gs with increasing VPD and may necessitate revision of current models based on this assumption.  相似文献   

20.
Rates of photosynthetic induction upon exposure to high light and rates of induction loss after darkening the leaf were measured in the field for four species of tropical shrubs in the family Rubiaceae. During wet season mornings, stomatal conductance (g s) in the shade prior to induction was generally high enough so that the time course of induction was determined primarily by rates of activation of biochemical processes. During wet season afternoons, however, g s values in the shade tended to be considerably lower and photosynthetic induction following a light increase exhibited a slower time course. In the afternoon, the time course of induction was determined by a combination of stomatal opening time and the rates of activation of light regulated enzymes. Stomatal behavior was also correlated with patterns of induction loss following a transfer from high light to darkness. In the afternoon, maximum g s was lower for all species, and for a given time in the darkness, leaves showed a greater loss of induction in the afternoon than in the morning. During the dry season, maximum g s and average values for g s in the shade were reduced in all species. Along with these shifts in stomatal behavior, reduced rates of photosynthetic induction were observed. In the high-light species, the lower maximum g s values observed during the dry season were also correlated with increased induction loss for a given time in the darkness. For all species, stomatal behavior was affected by season and time of day and, with the exception of wet season mornings, stomata appeared to exert significant control over rates of induction and patterns of induction loss. The results of simulation modeling suggest that the observed seasonal and diurnal changes in rates of induction and induction loss can have significant consequences on sunfleck carbon gain under a dynamic light regime. Received: 17 March 1999 / Accepted: 26 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号