首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of various pretreatments in vivo (3MC, PB, 2 and 4FAA) and of various inhibitors in vitro (7,8 BF, SKF525A and MN R) on the activity of rat liver microsomal BP hydroxylase were analyzed and correlated with the S-9 mediated mutagenicity of BP. 3MC is the only treatment which both induces and modifies the hydroxylase activity; it also specifically increases the enzyme mediated mutagenicity. Miconazole R which inhibits all the tested microsomal preparations, also reduces the mutagenicity mediated by all the S-9 preparations whereas the inhibitory effects of 7,8 BF and SKF525A are limited respectively to enzyme preparations from 3MC induced and control or PB treated rats.  相似文献   

2.
Nectins are Ca2+-independent immunoglobulin-like cell-cell adhesion molecules that form homo- and hetero-trans-dimers (trans-interactions). Nectins first form cell-cell contact and then recruit cadherins to the nectin-based cell-cell contact sites to form adherens junctions cooperatively with cadherins. In addition, the trans-interactions of nectins induce the activation of Cdc42 and Rac small G proteins, which enhances the formation of adherens junctions by forming filopodia and lamellipodia, respectively. The trans-interactions of nectins first recruit and activate c-Src at the nectin-based cell-cell contact sites. c-Src then phosphorylates and activates FRG, a Cdc42-GDP/GTP exchange factor (GEF) for Cdc42. The activation of both c-Src and Cdc42 by FRG is necessary for the activation of Rac, but the Rac-GEF responsible for this activation of Rac remains unknown. We showed here that the nectin-induced activation of Rac was inhibited by a dominant negative mutant of Vav2, a Rac-GEF. Nectins recruited and tyrosine-phosphorylated Vav2 through c-Src at the nectin-based cell-cell contact sites, whereas Cdc42 was not necessary for the nectin-induced recruitment of Vav2 or the nectin-induced, c-Src-mediated tyrosine phosphorylation of Vav2. Cdc42 activated through c-Src then enhanced the GEF activity of tyrosine-phosphorylated Vav2 on Rac1. These results indicate that Vav2 is a GEF responsible for the nectin-induced, c-Src-, and Cdc42-mediated activation of Rac.  相似文献   

3.
The close quantitative interrelation between the reaction of birch to abiotic stress (spring–summer droughts) (the degree to which the yearly radial increment of trees decreases) and entomoresistance has been established. Tree stands that were heavily defoliated by gypsy moth showed a much stronger reaction to the droughts which preceded the outbreaks by the decrease in their radial increment than those weakly defoliated by this phytophagous insect. The reaction of trees to the abiotic stress is regarded as the key factor that controls the drop in their entomoresistance during outbreaks of gypsy moth in woods damaged by anthropogenic effects.  相似文献   

4.
One of the side chains of Orn residues in gramicidin S (GS) was connected with alanine (AGS), sarcosine (SGS), or histidine (HGS) residue, aiming at developing membrane-active artificial enzymes by virtue of the membrane-associating property of GS. The conformation of the GS analogs was similar to that of GS. However, the affinity of GS and its analogs for dipalmitoylphosphatidylcholine (DPPC) vesicles decreased in the order of GS greater than SGS greater than HGS congruent to AGS. The addition of GS analogs at 10 microM to DPPC vesicles decreased the membrane fluidity, indicating that GS analogs did not disrupt the vesicular structure of DPPC vesicles. On the other hand, GS analogs enhanced carboxyfluorescein-leakage from DPPC vesicles. It was therefore considered that the GS analogs induced the phase-separation of the lipid bilayer membrane. Hydrolytic reactions of HGS in the presence of DPPC vesicles were studied using N-methylindoxyl alkanoate as substrate. HGS reacted only with N-methylindoxyl hexanoate below the phase-transition temperature of the membrane. The substrate specificity of HGS was ascribed to the condensation of HGS in the neighbourhood of the substrate in the lipid bilayer membrane due to the phase-separation below the phase-transition temperature of the membrane.  相似文献   

5.
The effect of temperature on enzymatic activity and stability was studied with respect to the monooxygenase activities of aminopyrine-N-demethylase (APD) and p-nitroanisole O-demethylase (pNAD) under incubation conditions for the liver microsomal assay. The activities of S9 liver fractions of mice induced with sodium phenobarbital and beta-naphthoflavone were determined during a period of preincubation in a range of temperatures from 30 to 44 degrees C. The greatest value of the mean specific activity was found at 40-42 degrees C for both APD and pNAD. The rapid increase of lipid peroxidation after 1 h of incubation at temperatures higher than 42 degrees C can provide an explanation of the enhancement of the rate of inactivation. In order to determine whether biological response is affected by the modifications induced by temperature in the metabolic activating system, tester strain D7 of Saccharomyces cerevisiae was used to assay the genetic activity of the well known premutagenic agent cyclophosphamide by incubating the mixtures both at the traditional temperature of 37 degrees C and at 42 degrees C. We suggest that the use of more favourable conditions for LMA with respect to enzymatic activity, than the traditional ones could improve the reliability and the sensitivity of such tests.  相似文献   

6.
Aminopyrine-N-demethylase and p-nitroanisole-O-demethylase activities were determined in incubation mixtures for the liver microsomal assay at time zero and after 1 h of incubation in the conditions for the mutagenic assay. The experiments were performed with the S9 liver fraction of mice in the basal state and induced with sodium phenobarbital, β-naphthoflavone or both. Lipid peroxidation was also determined.

The experiments were repeated with female mice and also in the presence of styrene, as an example of a xenobiotic substance. The activity of pNAD was much more stable than that of APD in all the conditions tested. The pattern of stability, however, was similar for the two activities: more stable than controls with S9 fractions from β-NF-induced mice, less stable than controls in PB-induced mice, intermediate between controls and PB-induced mice in those with combined induction by PB + βNF. Styrene 50 mM in the incubation mixtures led to a marked inactivation of enzymic activity, similar in all cases and reaching about 90% in 1 h. S9 fractions from female mice gave enzymes slightly more stable in almost all cases. Lipid peroxidation was appreciably more elevated in basal than in induced animals.

It was concluded that, for a mutagenesis test on an unknown xenobiotic, S9 fractions from mice following PB and β-NF induction are to be preferred from the point of view of activation.  相似文献   


7.
Large-scale expansion of (GAA)n repeats in the first intron of the FXN gene is responsible for the severe neurodegenerative disease, Friedreich’s ataxia in humans. We have previously conducted an unbiased genetic screen for GAA repeat instability in a yeast experimental system. The majority of genes that came from this screen encoded the components of DNA replication machinery, strongly implying that replication irregularities are at the heart of GAA repeat expansions. This screen, however, also produced two unexpected hits: members of the CST complex, CDC13 and TEN1 genes, which are required for telomere maintenance. To understand how the CST complex could affect intra-chromosomal GAA repeats, we studied the well-characterized temperature-sensitive cdc13-1 mutation and its effects on GAA repeat instability in yeast. We found that in-line with the screen results, this mutation leads to ∼10-fold increase in the rate of large-scale expansions of the (GAA)100 repeat at semi-permissive temperature. Unexpectedly, the hyper-expansion phenotype of the cdc13-1 mutant largely depends on activation of the G2/M checkpoint, as deletions of individual genes RAD9, MEC1, RAD53, and EXO1 belonging to this pathway rescued the increased GAA expansions. Furthermore, the hyper-expansion phenotype of the cdc13-1 mutant depended on the subunit of DNA polymerase δ, Pol32. We hypothesize, therefore, that increased repeat expansions in the cdc13-1 mutant happen during post-replicative repair of nicks or small gaps within repetitive tracts during the G2 phase of the cell cycle upon activation of the G2/M checkpoint.  相似文献   

8.
Kazuo Iwata 《Mycopathologia》1978,65(1-3):141-154
Although the mechanism of fungal infections, particularly that of opportunistic fungus infections, has been studied extensively, much still remains to be clarified. As is the case for certain bacterial infections, it has long been assumed by numerous investigators that some toxins, enzymes and other metabolites produced in vitro as well as in vivo by pathogenic fungi or their cellular constituents might be responsible for the establishment of fungal infections. However, there are very few papers which deal with isolation and/or characterization of pathogenic fungus-derived toxins, particularly those of high molecular weight, to sufficiently meet various criteria for toxins including etiopathological ability. Likewise, it has been speculated that certain enzymes produced by pathogenic fungi are related to the pathogenesis of infections with the fungi implicated, but no direct evidence has been provided.It is commonly held by researchers concerned with medical mycology that the lowering of specific and/or nonspecific resistance of a host to pathogenic fungi is a prerequisite for the establishment of infections, particularly opportunistic infections. However, it is also accepted that if a given fungus possesses no parasite factors (e.g. toxigenicity, invasiveness and others), it would be unable to initiate infection even when the host is in a severe immunodeficient state. This is supported by our recent studies working with Saccharomyces cerevisiae and some other so-called nonpathogenic yeasts (unpublished data). Based on these considerations, the author and his co-workers have attempted to isolate several high and low molecular weight toxins in a pure state from virulent strains of Candida albicans and Aspergillus fumigatus as opportunist. Studies have also been made on the etiopathological roles of some successfully isolated toxins in infections with the fungi implicated (46).In addition to our experimental results, general concepts in fungal toxins, particularly those related to such toxins as isolated in our laboratory are outlined. Since opportunistic fungus infections have created a global problem because of their world-wide prevalence, a sharp demarcation between the so-called pathogenic and nonpathogenic fungi has become vague. Despite this situation, two terms are conventionally used throughout this paper.The author thanks Drs. H. Yamaguchi and K. Uchida, Y. Yamamoto, T. Hiratani, and Y. Nozu for their collaboration during these studies.  相似文献   

9.
The location and nature of the endoproteolytic activity involved in processing of proproteins has been studied in chicken liver microsomes. A membrane-bound, calcium-dependent proteinase was found to cleave chicken proalbumin with a monobasic cleavage site approx. 10-times faster than human proalbumin, which has a dibasic cleavage site. The mutant (human) proalbumin Christchurch (Arg(-1)----Gln), with a potential monobasic site, was not processed. The enzyme, which had a pH optimum of between 5.0 and 7.0, was not inhibited by serine or aspartyl proteinase inhibitors but was affected by some inhibitors of cysteine proteinases. The convertase was specifically inhibited by the reactive centre variant alpha 1-antitrypsin Pittsburgh, but not by normal alpha 1-antitrypsin.  相似文献   

10.
PGBx, a derivative of prostaglandin B1, stimulated the oxidation of cytochrome c in the presence of H2O2. Although the reaction was nonenzymatic, the apparent activation energies of 12 and 4.9 kcal above and below the transition at 21.5 degrees C were similar to those for oxidation by cytochrome oxidase. Depletion of H2O2 and oxidation of cytochrome c followed similar time courses, suggesting that H2O2 was consumed in the reaction. PGBx was a specific requirement, but organic hydroperoxides (ethyl and T-butyl) could replace H2O2. Low concentrations of ethyl or t-butyl hydroperoxide initially stimulated the oxidation of cytochrome c; this stimulation disappeared before completion of the oxidation, but was restored when the hydroperoxide concentration was renewed, suggesting that these hydroperoxides were probably also consumed in the reaction. The concentration of PGBx (8.9 microM) required for half-maximum stimulation of the oxidation was similar to the apparent Kd for its dissociation from oxidized cytochrome c (6.8 microM). Binding data and CD spectra suggested that a 1:1 complex between cytochrome c and PGBx was formed, altering the conformation of the heme region. This conformational change caused a shift of the Soret absorption peak from 410 to 406 nm and may be responsible for the enhanced oxidizability of the cytochrome c by H2O2. Cytochrome c inhibited lipid peroxidation in microsomes, an effect enhanced by the addition of PGBx. In the absence of lipid peroxidation, cytochrome c and PGBx stimulated NADPH oxidation via NADPH-cytochrome c reductase. Thus the inhibition of lipid peroxidation by cytochrome c and PGBx may involve either the removal of hydroperoxides or deviation of electron transfer away from the pathway for lipid peroxidation.  相似文献   

11.
Summary Eosinophil granule major basic protein (MBP) is a potent toxin for mammalian cells and helminths, but the mechaism of its toxicity is not known. Here we tested whether MBP toxicity is exerted through its effect on the lipid bilayer of its targets. Liposomes prepared from synthetic phospholipids were used as targets for MBP and their properties examined by fluorescence and circular dichroism (CD) spectroscopy. MBP caused a change in the temperature transition profiles of acidic liposomes (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidyl serine or an equimolar mixture of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and 1,2-dimyristoyl-sn-glycero-3-phosphatidic acid) and induced their aggregation as shown by fluorescence resonance energy transfer experiments. The CD spectra and fluorescence characteristics of MBP itself were altered by its interaction with acidic lipids. Blue shifts in the emission maxima of the Trp, and of the dimethylaminonaphthyl moiety in acrylodan-labeled MBP, and a reduction in the effectiveness of quenching of Trp fluorescence by acrylamide were observed in the presence of acidic lipids. None of these effects were noted with zwitterionic lipids. This MBP : lipid bilayer interaction resulted in fusion and lysis of liposomes as indicated by the fluorescent indicator calcein. The results demonstrate that MBP associates with acidic lipids and that it disrupts, aggregates, fuses, and lyses liposomes prepared from such lipids. Such interaction might account for its wide range of toxicity.Abbreviations used Acrylodan 6-acryloyl-2-dimethylam-inonaphthalene - CD circular dichroism - DMPA 1,2-dimyrist-oyl-sn-glycero-3-phosphatidic acid - DMPC 1,2-dimyristoyl-sn-glycero-3-phosphocholine - DPH 1,6-diphenyl-1,3,5-hexatriene - DTT dithiothreitol - FRET fluorescence resonance energy transfer - HEPES N-2-hydroxyethyl piperazine-N-2-ethane sulfonic acid - K sv Stern-Volmer constant - K q bimolecular quenching coefficient - em emission wavelength - ex excitation wavelength - MBP major basic protein - MOPC 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine - NBD-PE N-(7-nitro-2,1,3-benzo-xadiazol-4-yl)-phosphatidylethanolamine - nMBP native major basic protein - PBS phosphate-buffered saline - POPC 1-palmit-oyl-2-oleoyl-sn-glycero-3-phosphocholine - POPS 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidyl serine - raMBP reduced and alkylated major basic protein - RHO-PE rhodamine-phosphatidylethanolamine - Tes N-tris[hydroxymethyl]-methyl-2-amino-ethane-sulfonic acid - Tris tris[hydroxymethyl]-amino-methane We would like to thank Dr. Predrag J.K. Ilich for assistance with initial data analysis, Dr. Salah S. Sedarous for the lifetime data and for helpful discussions, Dr. S. Yu. Venyaminov for helpful discussions, Mr. Kenneth D. Peters and Mr. Peter J. Callahan for assistance with some of the illustrations, and Ms. Jill Wagner for performing the radioimmunoassays. We would also like to thank Ms. Jill Kappers for excellent secretarial work. This work was supported in part by a Fellowship grant from the American Heart Association, Minnesota Affiliate, and by grants from the National Institutes of Health AI 09728 and from the Mayo Foundation. RIA-G is a Fellow of the American Heart Association.  相似文献   

12.
A membrane protein fraction was obtained from rat liver rough microsomes by affinity chromatography on a concanavalin A-Sepharose column and then a chelating-Sepharose column. This protein fraction comprised about 2% of the total membrane proteins of rough microsomes and the ribosome-binding activity of ribosome-stripped rough microsomes was predominantly found in this protein fraction, as determined with a liposome assay system. To identify the essential components responsible for the ribosome binding, two approaches were employed. Trypsin treatment of liposomes reconstituted with this protein fraction resulted in the loss of the ribosome-binding activity in parallel with the loss of a dominant band, estimated Mr 34,000, in SDS-polyacrylamide gels. Next, the direct interaction between the binding sites on the membrane of reconstituted liposomes and 60S ribosomal subunits was investigated by photocrosslinking using sulfosuccinimidyl 2-(m-azido-o-nitrobenzamido)-ethyl-1,3'-dithiopropionate (SAND). The photocrosslinked complex was formed between 60S ribosomal subunits pretreated with SAND and binding-site proteins on the membrane of the liposomes. Then, after the liposomes were solubilized, the complex was isolated by sucrose gradient centrifugation of the binding mixture. The crosslinked proteins were released from 60S ribosomal subunits by cleavage of of crosslinks with beta-ME and analyzed by SDS-polyacrylamide gel electrophoresis and 125I-autoradiography. The 34-kDa protein (p34) was the predominant component that crosslinked to the 60S ribosomal subunits and was found in proportion to the amount of 60S ribosomal subunits added to the system. The p34 was distinguishable by immunoblot analysis from urate oxidase, which is the 34-kDa protein of peroxisomal cores contaminating rough microsomes. These results suggest that the present p34 is a likely candidate molecule for the ribosome-binding activity of rough microsomes.  相似文献   

13.
14.
The effects of chronic ethanol feeding of rats on the ability of liver fractions to modulate the bacterial mutagenicity of three dinitropyrene isomers (1,3-, 1,6- and 1,8-DNP), which require bacterial enzymes but not an exogenous enzyme source for activation, were studied. The mutagenicity of the DNP isomers toward S. typhimurium TA98 and TA100 was attenuated in the presence of post-mitochondrial supernatants (S9) from both ethanol-fed and pair-fed rats albeit, that from the ethanol-fed group was more efficient in lowering the mutagenicity. The cytosolic fraction from ethanol-fed rats enhanced the mutagenicity of all of the DNP isomers in TA100. The most notable enhancement was with 1,3-DNP in which a more than 4-fold enhancement was obtained. Cytosol from pair-fed rats enhanced only the mutagenicity of 1,3-DNP, this by 2.9-fold. Cytosolic NADPH-nitroreductase activity from ethanol-treated rats toward 1,6-, 1,8- and 1,3-DNP was increased 2.8-, 1.7- and 1.3-fold, respectively over pair-fed controls. Cytosolic NADH-nitroreductase from ethanol-fed rats was increased with 1,3-DNP (1.7-fold) and 1,8-DNP (1.4-fold) as substrates, but not with 1,6-DNP. Microsomes decreased the mutagenicity of DNP similarly to S9, i.e., fractions from ethanol-fed rats were more efficient than those of pair-fed rats in deactivating all the DNP isomers. Per mg of protein, detoxification of DNP by S9 was more efficient than with microsomes, thus both cytosolic and microsomal enzymes are required for maximal detoxification. In summary, ethanol feeding modulates both the augmented cytosolic activation of DNP to mutagens and the deactivation of the direct-acting mutagenicity of DNP by microsomes. In combination, as is the case with S9, the microsomal detoxifying activity outcompetes the cytosolic activation.  相似文献   

15.
o,p-Chlorophenylhydroxylamines (CPHAs) (10468-16-3, 823-86-9) only demonstrated mutagenicity in the presence of S9 mix and norharman (NOH) (244-63-3), as well as chloronitrobenzenes. The mutagenic activity of o-CPHA was 30 times higher than that of p-CPHA. When o-CPHA was preincubated with S9 mix without NOH, the mutagenic activity disappeared rapidly. The decrease in activity during the preincubation was suppressed by addition of NOH. HPLC analysis revealed that o-CPHA was metabolized to o-chloroaniline (o-CA) (95-51-2) and that the metabolic reduction was inhibited by NOH. When microsomes containing NADPH were used instead of S9 mix, o-CPHA exhibited only very weak mutagenicity. The activity in the microsome system, however, was greatly enhanced by adding cytosol or ascorbic acid (50-81-7). These phenomena were only observed in the conventional plate incorporation method. In the case of the liquid incubation assay, in which test compound metabolism and tester strain mutation only occur in the liquid incubation medium, the mutagenic activity of o-CPHA in the microsome system with NOH was comparable to that in the S9 system, indicating that o-CPHA was activated by an enzyme in microsomes in the presence of NOH. Consequently, it was concluded that NOH not only affects the metabolic inactivation of o-CPHA to o-CA by S9, but also the metabolic activation of o-CPHA by microsomes. No appreciable enhancing effects of cytosol and ascorbic acid were observed in the liquid incubation assay, suggesting that these factors affect the stability of CPHA or an active metabolite. The microsome activation of o-CPHA was dependent on NADPH and oxygen; SKF-525A (62-68-0), metyrapone (54-36-4) and alpha-naphthoflavone (604-59-1) inhibited the mutagenic activity by about 50%, suggesting that cytochrome P-450 was involved in the metabolic activation.  相似文献   

16.
In order to clarify the interaction of gossypol with proteins, the pure diastereoisomeric Schiff bases from L-tryptophan methyl ester and both gossypol enantiomers were prepared. Their c.d. and n.m.r. spectra demonstrate that the interaction between gossypol and tryptophan, previously reported to involve a weakly associated complex, consists in Schiff base formation. Recent studies on enzyme inhibition by gossypol are discussed; it is suggested that nonspecific covalent binding of gossypol to proteins may be responsible for a significant proportion of the in vitro effects of gossypol.  相似文献   

17.
18.
The interaction of a purified human plasma lipid transfer complex with cholesteryl ester, triacylglycerol and phosphatidylcholine in binary and ternary lipid monolayers was investigated. The lipid transfer complex, designated LTC, catalyzes the removal of cholesteryl oleate and triacylglycerol from phosphatidylcholine monolayers. Preincubation of LTC with p-chloromercuriphenyl sulfonate inhibits LTC-catalyzed removal of triacylglycerol; cholesteryl ester removal is not affected. The rate of LTC-facilitated removal of cholesteryl oleate from a phosphatidylcholine monolayer depends on the amount of LTC added to the subphase up to 100 μg protein. In addition, the rate of the LTC-catalyzed transfer of cholesteryl oleate to the subphase increases linearly as the amount of cholesteryl oleate in the monolayer increases to 6 mol%. LTC also removes cholesterol from phosphatidylcholine-cholesterol monolayers, albeit at a rate which is 15% of that for removal of cholesteryl oleate. The ability of LTC to facilitate triacylglycerol and cholesteryl ester removal depends on the composition of the monolayer. Phosphatidylcholine supports cholesteryl ester transfer whereas sphingomyelin-cholesteryl ester monolayers are almost refractory to LTC. In contrast, LTC removes triacylglycerol from either a phosphatidylcholine or a sphingomyelin monolayer. The results suggest the existence of at least two lipid transfer proteins, one of which catalyzes the removal of cholesteryl ester and the other triacylglycerol. The role of these proteins as they relate to lipoprotein metabolism is discussed.  相似文献   

19.
20.
Covalent antithrombin-heparin (ATH) complexes, formed spontaneously between antithrombin (AT) and unfractionated standard heparin (H), have a potent ability to catalyze the inhibition of factor Xa (or thrombin) by added AT. Although approximately 30% of ATH molecules contain two AT-binding sites on their heparin chains, the secondary site does not solely account for the increased activity of ATH. We studied the possibility that all pentasaccharide AT-binding sequences in ATH may catalyze factor Xa inhibition. Chromatography of ATH on Sepharose-AT resulted in >80% binding of the load. Similar chromatographies of non-covalent AT + H mixtures lead to a lack of binding for AT and fractionation of H into unbound (separate from AT) or bound material. Gradient elution of ATH from Sepharose-AT gave 2 peaks, a peak containing higher affinity material that had greater anti-factor Xa catalytic activity (708 units/mg heparin) compared with the peak containing lower affinity material (112 units/mg). Sepharose-AT chromatography of the ATH component with short heparin chains (相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号