首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Net CO2 exchange rates (CERs) were measured in seedlings of two loblotly pine ( Pinus taeda L.) families following 6- or 13-week exposures to ozone (charcoalfiltered or ambient air + O3) and acid rain treatments (pH 3.3, 4.5 and 5.2). Ozone exposures (14 or 170 nl l−1) were made in open-top chambers, and in continously stirred tank reactors (14, 160 or 320 nl l−1) located in the field and laboratory, respectively. The CERs of whole shoots were measured in an open infrared gas analysis system at 6 levels of photosynthetic photon flux density (0, 33, 60, 410, 800 and 1660 μmol m−2 s−1). Treatment effects were not consistent between field- and laboratory-exposed seedlings. Ozone-treated field seedlings exhibited statistically significant reductions in light-saturated CER of 12.5 and 25% when measured at 6 and 13 weeks, respectively. Laboratory seedlings exhibited mixed responses to O3, with one family showing reduced CER only after 6 weeks of O3 exposure and the other only after 13 weeks (O3 >160 nl l−1 for both). After 13 weeks of exposure, pH 3.3, and 4.5 rain treatments enhanced light-saturated CER by an average of 52% over that observed in seedlings exposed to the pH 5.2 treatment. Enhanced CERs due to acid rain were of the same magnitude (3–5 μmol CO2g−1 s−1) as ozone-induced CER reductions. No differences in dark respiration were detected between treatments. Although ozone and acid rain treatments altered seedling CER, the differences were not translated into altered final plant dry weights over the 13-week exposure period.  相似文献   

2.
Two rice ( Oryza sativa L.) cultivars of contrasting morphologies, IR-36 and Fujiyama-5, were exposed to ambient (360 μl l−1) and ambient plus 300 μl l−1 CO2 from time of emergence until ca 50% grain fill at the Duke University Phytotron, Durham, North Carolina. Exposure to increased CO2 resulted in about a 50% increase in the photosynthetic rate for both cultivars and photosynthetic enhancement was still evident after 3 months of exposure to a high CO2 environment. The photosynthetic response at 5% CO2 and the response of CO2 assimilation (A) to internal CO2 (Ci) suggest a reallocation of biochemical resources from RuBP carboxylation to RuBP regeneration. Increases in total plant biomass at elevated CO2 were approximately the same in both cultivars, although differences in allocation patterns were noted in root/shoot ratio. Differences in reproductive characteristics were also observed between cultivars at an elevated CO2 environment with a significant increase in harvest index for IR-36 but not for Fujiyama-5. Changes in carbon allocation in reproduction between these two cultivars suggest that lines of rice could be identified that would maximize reproductive output in a future high CO2 environment.  相似文献   

3.
We repeatedly sampled the surface mineral soil (0–20 cm depth) in three northern temperate forest communities over an 11-year experimental fumigation to understand the effects of elevated carbon dioxide (CO2) and/or elevated phyto-toxic ozone (O3) on soil carbon (C). After 11 years, there was no significant main effect of CO2 or O3 on soil C. However, within the community containing only aspen ( Populus tremuloides Michx.), elevated CO2 caused a significant decrease in soil C content. Together with the observations of increased litter inputs, this result strongly suggests accelerated decomposition under elevated CO2. In addition, an initial reduction in the formation of new (fumigation-derived) soil C by O3 under elevated CO2 proved to be only a temporary effect, mirroring trends in fine root biomass. Our results contradict predictions of increased soil C under elevated CO2 and decreased soil C under elevated O3 and should be considered in models simulating the effects of Earth's altered atmosphere.  相似文献   

4.
Sporocarp production is essential for ectomycorrhizal fungal recombination and dispersal, which influences fungal community dynamics. Increasing atmospheric carbon dioxide (CO2) and ozone (O3) affect host plant carbon gain and allocation, which may in turn influence ectomycorrhizal sporocarp production if the carbon available to the ectomycorrhizal fungus is dependant upon the quantity of carbon assimilated by the host. We measured sporocarp production of ectomycorrhizal fungi over 4 years at the Aspen FACE (free air CO2 enrichment) site, which corresponded to stand ages seven to 10 years. Total mean sporocarp biomass was greatest under elevated CO2, regardless of O3 concentration, while it was generally lowest under elevated O3 with ambient CO2. Community composition differed significantly among the treatments, with less difference in the final year of the study. Whether this convergence was due to succession or environmental factors is uncertain. CO2 and O3 affect ectomycorrhizal sporocarp productivity and community composition, with likely effects on dispersal, colonization and sporocarp-dependent food webs.  相似文献   

5.
We investigated the thermal acclimation of photosynthesis and respiration in black spruce seedlings [ Picea mariana (Mill.) B.S.P.] grown at 22/14 °C [low temperature (LT)] or 30/22 °C [high temperature (HT)] day/night temperatures. Net CO2 assimilation rates ( A net) were greater in LT than in HT seedlings below 30 °C, but were greater in HT seedlings above 30 °C. Dark and day respiration rates were similar between treatments at the respective growth temperatures. When respiration was factored out of the photosynthesis response to temperature, the resulting gross CO2 assimilation rates ( A gross) was lower in HT than in LT seedlings below 30 °C, but was similar above 30 °C. The reduced A gross of HT seedlings was associated with lower needle nitrogen content, lower ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) maximum carboxylation rates ( V cmax) and lower maximum electron transport rates ( J max). Growth treatment did not affect V cmax :  J max. Modelling of the CO2 response of photosynthesis indicated that LT seedlings at 40 °C might have been limited by heat lability of Rubisco activase, but that in HT seedlings, Rubisco capacity was limiting. In sum, thermal acclimation of A net was largely caused by reduced respiration and lower nitrogen investments in needles from HT seedlings. At 40 °C, photosynthesis in LT seedlings might be limited by Rubisco activase capacity, while in HT seedlings, acclimation removed this limitation.  相似文献   

6.
Rice is arguably the most important food source on the planet and is consumed by over half of the world's population. Considerable increases in yield are required over this century to continue feeding the world's growing population. This meta-analysis synthesizes the research to date on rice responses to two elements of global change, rising atmospheric carbon dioxide concentration ([CO2]) and rising tropospheric ozone concentration ([O3]). On an average, elevated [CO2] (627 ppm) increased rice yields by 23%. Modest increases in grain mass and larger increases in panicle and grain number contributed to this response. The response of rice to elevated [CO2] varied with fumigation technique. The more closely the fumigation conditions mimicked field conditions, the smaller was the stimulation of yield by elevated [CO2]. Free air concentration enrichment (FACE) experiments showed only a 12% increase in rice yield. The rise in atmospheric [CO2] will be accompanied by increases in tropospheric O3 and temperature. When compared with rice grown in charcoal-filtered air, rice exposed to 62 ppb O3 showed a 14% decrease in yield. Many determinants of yield, including photosynthesis, biomass, leaf area index, grain number and grain mass, were reduced by elevated [O3]. While there have been too few studies of the interaction of CO2 and O3 for meta-analysis, the interaction of temperature and CO2 has been studied more widely. Elevated temperature treatments negated any enhancement in rice yield at elevated [CO2], which suggests that identifying high temperature tolerant germplasm will be key to realizing yield benefits in the future.  相似文献   

7.
The photosynthetic response was studied in two clones ( Populus deltoides × maximowiczii Eridano and Populus × euramericana I‐214), known for their differential response to ozone (O3) in terms of visible symptoms, when exposed to O3 (60 nl l−1 5 h day−1, 7 and 15 days). The photosynthetic ability was tested using gas exchange and chlorophyll fluorescence analysis. O3 caused a decrease in the CO2 assimilation rate at light saturation level in mature leaves of both clones. Alterations of Chl fluorescence parameters, in particular the Fv/Fm ratio and non‐photochemical quenching were also observed. The effects were similar for both clones and it could not be concluded that differential effects on electron transport capacity were responsible for the observed reduction in photosynthesis. The reduction of photosynthetic rate in Eridano was due mainly to a reduced mesophyll activity, as evidenced by the increase in intercellular CO2 concentration and the minimal changes in stomatal conductance. In contrast, in I‐214, stomatal effects were primarily responsible, although effects on the mesophyll cannot be excluded. Data obtained indicate that the effects observed at the mesophyll level may be attributed to indirect effects caused by membrane disorders.  相似文献   

8.
Aims:  To evaluate the impact of modified atmosphere packaging on in vitro growth of Aspergillus carbonarius and Aspergillus niger , and possible effects on ochratoxin A (OTA) biosynthesis.
Methods and Results:  Ochratoxigenic isolates belonging to the species A. carbonarius and A. niger were grown on a synthetic grapejuice medium (SNM) and packaged in combinations of controlled O2 (1% and 5%) and CO2 levels (0% and 15%), and in air as a control. Colony diameters were recorded every 3 days up to 21 days, and OTA was analysed after 7, 14 and 21 days. The greatest reductions in mycelial growth rate were observed at 1% O2 followed by 1% O2/15% CO2, whereas 5% O2 stimulated the growth of all isolates. OTA production by A. carbonarius and A. niger isolates was minimized at 1% O2/15% CO2 and 1% O2, respectively, after 7 days of incubation. Maximal OTA accumulation after 7 days was observed for all isolates in the control pack and at 5% O2.
Conclusions:  Of the atmospheres tested, only 1% O2 combined with 15% CO2 consistently reduced fungal growth and OTA synthesis by A. carbonarius and A. niger .
Significance and Impact of the Study:  Storage under modified atmospheres is unlikely to be suitable as the sole method for OTA minimization and grape preservation; other inhibitory factors are necessary.  相似文献   

9.
Highbush blueberry plants ( Vaccinium corymbosum L. cv. Bluecrop) growing in containers were flooded in the laboratory for various durations to determine the effect of flooding on carbon assimilation, photosynthetic response to varying CO2 and O2 concentrations and apparent quantum yield as measured in an open flow gas analysis system. Hydraulic conductivity of the root was also measured using a pressure chamber. Root conductivity was lower and the effect of increasing CO2 levels on carbon assimilation less for flooded than unflooded plants after short-(i-2 days), intermediate-(10–14 days) and long-term (35–40 days) flooding. A reduction in O2 levels surrounding the leaves from 21 to 2% for unflooded plants increased carbon assimilation by 33% and carboxylation efficiency from 0.012 to 0.021 mol CO2 fixed (mol CO2)−1. Carboxylation efficiency of flooded plants, however, was unaffected by a decrease in percentage O2, averaging 0.005 mol CO2 fixed (mol CO2)−1. Apparent quantum yield decreased from 2.2 × 10−1 mol of CO2 fixed (mol light)−1 for unflooded plants to 2.0 × 10−3 and 9.0 × 10−4 for intermediate- and long-term flooding durations, respectively. Shortterm flooding reduced carbon assimilation via a decrease in stomatal conductance, while longer flooding durations also decreased the carboxylation efficiency of the leaf.  相似文献   

10.
The effect of 700 μmol CO2 mol−1, 200 nmol ozone mol−1 and a combination of the two on carbon allocation was examined in Pinus halepensis co-cultured with Betula pendula in symbiosis with the ectomycorrhizal fungus Paxillus involutus . The results show that under low nutrient and ozone levels, elevated CO2 has no effect on the growth of B. pendula or P. halepensis seedlings nor on net carbon partitioning between plant parts. Elevated CO2 did not enhance the growth of the fungus in symbiosis with the birch. On the other hand, ozone had a strong negative effect on the growth of the birch, which corresponded with the significantly reduced growth rates of the fungus. Exposure to elevated CO2 did not ameliorate the negative effects of ozone on birch; in contrast, it acted as an additional stress factor. Neither ozone nor CO2 had significant effects on biomass accumulation in the pine seedlings. Ozone stimulated the spread of mycorrhizal infection from the birch seedlings to neighbouring pines and had no statistically significant effects on phosphoenolpyruvate carboxylase (PEPC) or ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity in the pine needles or on PEPC activity in pine roots.  相似文献   

11.
The effects of mycorrhiza formation in combination with elevated CO2 concentrations on carbon metabolism of Norway spruce ( Picea abies ) seedlings and aspen ( Populus tremula × Populus tremuloides ) plantlets were analysed. Plants were inoculated for 6 wk with the ectomycorrhizal fungi Amanita muscaria and Paxillus involutus (aspen only) in an axenic Petri-dish culture at 350 and 700 μl l−1 CO2 partial pressure. After mycorrhiza formation, a stimulation of net assimilation rate was accompanied by decreased activities of sucrose synthase, an increased activation state of sucrose-phosphate synthase, decreased fructose-2,6-bisphosphate and starch, and slightly elevated glucose-6-phosphate contents in source leaves of both host species, independent of CO2 concentration. Exposure to elevated CO2 generally resulted in higher net assimilation rates, increased starch as well as decreased fructose-2,6-bisphosphate (aspen only) content in source leaves of both mycorrhizal and nonmycorrhizal plants. Our data indicate only slightly improved carbon utilization by mycorrhizal plants at elevated CO2. They demonstrate however, that both factors which modulate the sink-source properties of plants increase the capacity for sucrose synthesis in source leaves mainly by allosteric enzyme regulation.  相似文献   

12.
Differences in mitochondrial membrane composition and ultrastructure were studied after storage of cauliflower ( Brassica oleracea , L., Botrytis group) for 5 days at 25°C in air or under controlled atmospheres: 3% O2, 21% O2+ 15% CO2 or 3% O2+ 15% CO2. In air, postharvest senescence involved a 20% decrease in mitochondrial phospholipid content. A large reduction in the relative abundance of phosphati-dylcholine (PC) and in the degree of unsaturation of PC and phosphatidyl ethanolamine (PE) was observed. However, the degree of unsaturation increased in cardiolipin (CL). Storage under 3% O2 did not prevent phospholipid breakdown. Low O2 prevented the relative decrease in PC observed during storage in air and the loss of linoleic acid from PC, but not from PE. This relative protection offered by the low O2 atmosphere was lost under 3% O2+ 15% CO2. The high CO2 atmospheres caused twice as much loss in phospholipids as that observed during storage in air. Extensive loss of mitochondrial protein, a marked decrease in phospholipid to protein ratio, and electron micrograph observations suggest structural alterations in the presence of high CO2.  相似文献   

13.
Short-term exposure to high CO2 increases rates of photosynthesis and growth in soybeans, but with prolonged high CO2 exposure, these high rates are sometimes not maintained. Growth of soybean (Glycine max (L.) Merrill cv. Fiskeby V) seedlings kept for 25 days at atmospheres of 350 or 1000 μ/l CO2 was compared with growth of plants given 2, 4 or 6 day alternating exposure to high and low CO2 levels (13 days of total exposure to each level). Final dry weight of plants increased with number of days in high CO2 but leaf areas were not greatly affected. Thus dry weight gains per unit leaf area (net assimilation rates) were higher in high CO2 than in low CO2 throughout the entire period of the experiment and the pattern of exposure to high CO2 did not affect the rate of dry weight gain in high CO2.  相似文献   

14.
The long-term response of Arabidopsis thaliana to increasing CO2 was evaluated in plants grown in 800 μl l−1 CO2 from sowing and maintained, in hydroponics, on three nitrogen supplies: "low,""medium" and "high." The global response to high CO2 and N-supply was evaluated by measuring growth parameters in parallel with photosynthetic activity, leaf carbohydrates, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) messenger RNA and protein, stomatal conductance (gs) and density. CO2 enrichment was found to stimulate biomass production, whatever the N-supply. This stimulation was transient on low N-supply and persisted throughout the whole vegetative growth only in high N-supply. Acclimation on low N–high CO2 was not associated with carbohydrate accumulation or with a strong reduction in Rubisco amount or activity. At high N-supply, growth stimulation by high CO2 was mainly because of the acceleration of leaf production and expansion while other parameters such as specific leaf area, root/shoot ratio and gs appeared to be correlated with total leaf area. Our results thus suggest that, in strictly controlled and stable growing conditions, acclimation of A. thaliana to long-term CO2 enrichment is mostly controlled by growth rate adjustment.  相似文献   

15.
Influence of soil O2 and CO2 on root respiration for Agave deserti   总被引:5,自引:0,他引:5  
Respiration measured as CO2 efflux was determined at various soil O2 and CO2 concentrations for individual, attached roots of a succulent perennial from the Sonoran Desert, Agave deserti Engelm. The respiration rate increased with increasing O2 concentration up to about 16% O2 for established roots and 5% O2 for rain roots (fine branch roots on established roots induced by wetting of the soil) and then remained fairly constant up to 21% O2. When O2 was decreased from 21 to 0%, the respiration rates were similar to those obtained with increasing O2 concentration. The CO2 concentration in the root zone, which for the shallow-rooted A. deserti in the field was about 1 000 μl l-1, did not affect root respiration at concentrations up to 2 000 μl l-1, but higher concentrations reduced it, respiration being abolished at 20 000 μl l-1 (2%) CO2 for both established and rain roots. Upon lowering CO2 to 1 000 μl l-1 after exposure to concentrations up to 10000 μl l-1 CO2, inhibition of respiration was reversible. Uptake of the vital stain neutral red by root cortical cells was reduced to zero, indicating cell death, in about 4 h at 2% CO2, substantiating the detrimental effects of high soil CO2 concentrations on roots of A. deserti . This CO2 response may explain why roots of desert succulents tend to occur in porous, well-aerated soils.  相似文献   

16.
Seedlings of three species native to central North America, a C3 tree, Populus tremuloides Michx., a C3 grass, Agropyron smithii Rybd., and a C4 grass, Bouteloua curtipendula Michx., were grown in all eight combinations of two levels each of CO2, O3 and nitrogen (N) for 58 days in a controlled environment. Treatment levels consisted of 360 or 674 μmol mol-1 CO2, 3 or 92 nmol mol-1 O3, and 0.5 or 6.0 m M N. In situ photosynthesis and relative growth rate (RGR) and its determinants were obtained at each of three sequential harvests, and leaf dark respiration was measured at the second and third harvests. In all three species, plants grown in high N had significantly greater whole-plant mass, RGR and photosynthesis than plants grown in low N. Within a N treatment, elevated CO2 did not significantly enhance any of these parameters nor did it affect leaf respiration. However, plants of all three species grown in elevated CO2 had lower stomatal conductance compared to ambient CO2-exposed plants. Seedlings of P. tremuloides (in both N treatments) and B. curtipendula (in high N) had significant ozone-induced reductions in whole-plant mass and RGR in ambient but not under elevated CO2. This negative O3 impact on RGR in ambient CO2 was related to increased leaf dark respiration, decreased photosynthesis and/or decreased leaf area ratio, none of which were noted in high O3 treatments in the elevated CO2 environment. In contrast, A. smithii was marginally negatively affected by high O3.  相似文献   

17.
The developmental profile of the activities of some enzymes involved in malate metabolism, namely phosphoenolpyruvate carboxylase (PEPC; EC 4. 1. 1. 31), NAD+-linked (EC 1. 1. 1. 37) and NADP+-linked (EC 1. 1. 1. 82) malate dehydrosenase (MDH), NAD+linked (EC 1. 1. 1. 39) and NADP+-linked (EC 1. 1. 1. 40) malic enzyme (ME), has been determined in leaves of peach [ Prunus persica (L.) Batsch cv. Maycrest], a woody C3 species. In order to study the role of these enzymes, their activities were related to developmental changes of photosynthesis, respiration, and capacity for N assimilation. Activities of PEPC, NAD(P)+-MDH and NADP+-ME were high in young expanding leaves and decreased 2- to 3-fold in mature ones, suggesting that such enzymes play some role during the early stages of leaf expansion. In leaves of peach, such a role did not seem to be linked to C3 photosynthesis or nitrate assimilation, in that photosynthetic O2 evolution and activities of nitrate reductase (EC 1. 6. 6. 1) and glutamine synthetase (EC 6. 3. 1. 2) increased during leaf development. In contrast, leaf respiration strongly decreased with increasing leaf age. We suggest that in expanding leaves of this woody species the enzymes associated with malate metabolism have anaplerotic functions, and that PEPC may also contribute to the recapture of respiratory CO2.  相似文献   

18.
Abstract. A field study was conducted to determine the relationship of solar-excited chlorophyll a fluorescence to net CO2 assimilation rate in attached leaves. The Fraunhofer line-depth principle was used to measure fluorescence at 656.3 nm wavelength while leaves remained exposed to full sunlight and normal atmospheric pressures of CO2 and O2. Fluorescence induction kinetics were observed when leaves were exposed to sunlight after 10 min in darkness. Subsequently, fluorescence varied inversely with assimilation rate. In the C4 Zea mays , fluorescence decreased from 2.5 to 0.8 mW m-2 nm-1 as CO2 assimilation rate increased from 1 to 8 μmol m-2 s-1 (r2= 0.520). In the C3 Liquidambar styraciflua and Pinus taeda , fluorescence decreased from 6 to 2 mW m-2 nm-1 as assimilation rate increased from 2 to 5 or 0 to 2 μmol m-2 s-1 (r2= 0.44 and 0.45. respectively). The Fraunhofer line-depth principle enables the simultaneous measurement of solar-excited fluorescence and CO2 assimilation rate in individual leaves, but also at larger scales. Thus, it may contribute significantly to field studies of the relationship of fluorescence to photosynthesis.  相似文献   

19.
Brassica rapa L. (rapid-cycling Brassica), was grown in environmentally controlled chambers to determine the interactive effects of ozone (O3) and increased root temperature (RT) on biomass, reproductive output, and photosynthesis. Plants were grown with or without an average treatment of 63 ppb O3. RT treatments were 13°C (LRT) and 18°C (HRT). Air temperatures were 25°C/15°C day/night for all RT treatments.
Ozone affected plant biomass more than did root temperature. Plants in O3 had significantly smaller total plant d. wt, shoot weight, leaf weight, leaf area and leaf number than plants grown without O3. LRT plants tended to have slightly smaller total plant d. wt, shoot weight, root weight, leaf weight, leaf area, and leaf number than HRT plants. For all variables, LRT plants grown in O3 had the smallest biomass, and plants grown in HRT without O3 had the largest biomass.
Ozone reduced both fruit weight and fruit number; LRT also reduced fruit weight but had no effect on fruit number. Ozone reduced photosynthesis but RT had no effect. Conductance and internal CO2 were unaffected by O3 or RT.
These studies indicate that plant growth with LRT might be more reduced in the presence of O3 than growth in plants with HRT, which might be able to compensate for O3-caused reductions in photosynthesis to avoid decreased biomass and reproductive output.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号