首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to measure the changes and rates of adaptation of left ventricular volumes at the onset of exercise. Eight asymptomatic subjects, in whom intramyocardial markers had been implanted 3-6 years previously during aortocoronary bypass surgery, exercised in the supine position at a constant workload of 73.6 W for 5 min. Six also exercised first at 16.4 W, and then against a workload which progressively increased by 8.2 W every 15 s. Cardiac volumes were measured by computer assisted analysis of the motion of the implanted markers. In the constant workload test, cardiac output increased rapidly from 5.7 +/- 1 min-1 to 10.3 +/- 1.9 1 min-1 by 2 min and then increased more slowly to 10.8 +/- 2.0 1 min-1 by 5 min. The cardiac output increase was mainly due to an increase in heart rate from 68 +/- 12 beats min-1 to 120 +/- 16 beats min-1 with minimal changes in stroke volume. The time constant for the early increase in cardiac output was 45s and for heart rate, 35s. With progressively increasing workloads, there was an almost linear increase of heart rate and cardiac output, but these increased at a slower rate than during the early phase of the constant load exercise test. In conclusion: rapid changes in cardiac output during supine exercise were produced by changes in heart rate; changes in stroke volume provided minor adjustments to cardiac output; the end-diastolic volume was almost constant.  相似文献   

2.
We examined the hemodynamic factors associated with the lower maximal O2 consumption (VO2max) in older formerly elite distance runners. Heart rate and VO2 were measured during submaximal and maximal treadmill exercise in 11 master [66 +/- 8 (SD) yr] and 11 young (32 +/- 5 yr) male runners. Cardiac output was determined using acetylene rebreathing at 30, 50, 70, and 85% VO2max. Maximal cardiac output was estimated using submaximal stroke volume and maximal heart rate. VO2max was 36% lower in master runners (45.0 +/- 6.9 vs. 70.4 +/- 8.0 ml.kg-1.min-1, P less than or equal to 0.05), because of both a lower maximal cardiac output (18.2 +/- 3.5 vs. 25.4 +/- 1.7 l.min-1) and arteriovenous O2 difference (16.6 +/- 1.6 vs. 18.7 +/- 1.4 ml O2.100 ml blood-1, P less than or equal to 0.05). Reduced maximal heart rate (154.4 +/- 17.4 vs. 185 +/- 5.8 beats.min-1) and stroke volume (117.1 +/- 16.1 vs. 137.2 +/- 8.7 ml.beat-1) contributed to the lower cardiac output in the older athletes (P less than or equal 0.05). These data indicate that VO2max is lower in master runners because of a diminished capacity to deliver and extract O2 during exercise.  相似文献   

3.
The purpose of this study was to measure the cardiac output using the CO2 rebreathing method during submaximal and maximal arm cranking exercise in six male paraplegic subjects with a high level of spinal cord injury (HP). They were compared with eight able bodied subjects (AB) who were not trained in arm exercise. Maximal O2 consumption (VO2max) was lower in HP (1.11.min, SD 0.1; 17.5 ml.min-1.kg-1, SD 4) than in AB (2.5 l.min-1, SD 0.6; 36.7 ml.min-1.kg, SD 10.7). Maximal cardiac output was similar in the groups (HP, 14 l.min-1, SD 2.6; AB, 16.8 l.min-1, SD 4). The same result was obtained for maximal heart rate (fc,max) (HP, 175 beats.min-1, SD 18; AB, 187 beats.min-1, SD 16) and the maximal stroke volume (HP, 82 ml, SD 13; AB, 91 ml, SD 27). The slopes of the relationship fc/VO2 were higher in HP than AB (P less than 0.025) but when expressed as a %VO2max there were no differences. The results suggest a major alteration of oxygen transport capacity to active muscle mass in paraplegics due to changes in vasomotor regulation below the level of the lesion.  相似文献   

4.
A one-step CO2 rebreathing method for the determination of cardiac output and stroke volume (SV) has been evaluated by comparison with the direct Fick technique during recumbent exercise (10-90 W) in 13 patients. In an initial analysis, the influence of different rebreathing times and of correction for haemoglobin concentration was studied. The best correlation with the direct Fick technique was obtained with the longest analysis time, i.e. 21 s, and correction for variations in haemoglobin concentration further improved the correlation. Consequently, an analysis time of 21 s and correction for haemoglobin have been used. At low cardiac outputs, the CO2-rebreathing method overestimated the flow compared to the Fick technique. The correlation between the methods, however, was so good that a valid estimate of cardiac output could be obtained from the CO2 rebreathing method with appropriate corrections (Cardiac output, CO2 method = 2.7 + 0.77. Cardiac output, Fick; r = 0.91; Residual Standard deviation (SD res) = 0.77 l X min-1). Stroke volumes measured with the CO2 rebreathing method did not differ significantly from those obtained with the direct Fick technique, although there was a tendency to overestimate stroke volume with the CO2 rebreathing method (SV, CO2 method = 12 + 0.89 X SV, Fick; r = 0.82; SD res = 11 ml).  相似文献   

5.
We developed a statistical technique to estimate the reproducibility of a parameter from a population in which only two repeated measurements can be made in a single individual. The following data were analyzed: acetylene cardiac output (Qc), lung tissue volume (Vti), and carbon monoxide diffusing capacity (DLCO) measured by rebreathing techniques in a population of 86 healthy subjects (51 men and 35 women). Each subject was measured twice with a computerized rebreathing system using a test gas of 10% He-0.3% C18O-0.7% C2H2-25% O2-balance N2 while sitting at rest. The estimated coefficients of variation for repeated measurements were 6.8, 10.3, and 5.7% for Qc, Vti, and DLCO, respectively. Chebyshev's inequality was used to estimate the imprecision for a single measurement of these parameters and for averages of two or more repeated values. A single measurement of Qc would be within 14.2% of a "true" mean 90% of the time, whereas an average of three consecutive measurements would be within 8.2% of the true mean 90% of the time. Single measurements of Vti and DLCO were found to be within 21.7 and 12.0%, respectively, of the true mean 90% of the time. When three consecutive measurements are averaged, Vti is within 12.6% and DLCO is within 6.9% of the true mean 90% of the time. We conclude that 1) rebreathing Qc is as reproducible as other measurements of cardiac output, 2) rebreathing measurements of DLCO are as reproducible as those made by the single-breath technique, and 3) an average of two to three measurements of Vti should be made to obtain values with a reasonable degree of precision.  相似文献   

6.
We used direct invasive techniques to measure the effects of hyperventilation on the pulmonary blood flow (Q) and on recirculation time of helium and of carbon dioxide in humans. The subjects hyperventilated with a tidal volume of 1.5 liters (BTPS) and a frequency of 20 or 30 breaths/min. There was no significant change in Q from control at either level of hyperventilation. Helium first appeared in the pulmonary artery within 12 s from the onset of hyperventilation and increased by approximately 0.7% of its equilibrium arterial value per second at both levels of hyperventilation. In contrast, the PVCO2 remained at base-line level until 43 s from the onset of hyperventilation. We conclude that hyperventilation at 30 or 45 l/min with constant tidal volume does not significantly affect the value of Q and that the amount of recirculation of the two gases does not result in underestimation of Q when this variable is measured by indirect respiratory rebreathing techniques.  相似文献   

7.
We investigated the spleen volume changes as related to the cardiovascular responses during short-duration apneas at rest. We used dynamic ultrasound splenic imaging and noninvasive photoplethysmographic cardiovascular measurements before, during, and after 15-20 s apneas in seven trained divers. The role of baroreflex was studied by intravenous bolus of vasodilating drug trinitrosan during tidal breathing. The role of lung volume was studied by comparing the apneas at near-maximal lung volume with apneas after inhaling tidal volume, with and without cold forehead stimulation. In apneas at near maximal lung volume, a 20% reduction in splenic volume (P = 0.03) was observed as early as 3 s after the onset of breath holding. Around that time the heart rate increased, the mean arterial pressure abruptly decreased from 89.6 to 66.7 mmHg (P = 0.02), and cardiac output decreased, on account of reduction in stroke volume. Intravenous application of trinitrosan resulted in approximately 6-mmHg decrement in mean arterial pressure, while the splenic volume decreased for approximately 13%. In apneas at low lung volume, the early splenic contraction was also observed, 10% without and 12% with cold forehead stimulation, although the mean arterial pressure did not change or even increased, respectively. In conclusion, the spleen contraction is present at the beginning of apnea, accentuated by cold forehead stimulation. At large, but not small, lung volume, this initial contraction is probably facilitated by downloaded baroreflex in conditions of decreased blood pressure and cardiac output.  相似文献   

8.
We examined the influence of three variables (different breathing circuits, breath selected for analysis, and alveolar dead space ventilation) on the accuracy of noninvasive cardiac output determinations with the Fick CO2 (indirect) equation. We compared noninvasive determinations with invasive thermodilution measurements over a wide range of cardiac outputs in 17 2-mo-old pigs anesthetized with halothane and nitrous oxide and paralyzed with either pancuronium or d-tubocurare. We found that rebreathing and nonrebreathing circuits provide accurate cardiac output determinations and that the optimal breath for analysis with either the rebreathing or nonrebreathing technique appears to depend on the cardiac output. When alveolar dead space was increased by using positional changes and the intracardiac administration of glass beads, there was still a good correlation between noninvasive and invasive cardiac output determinations. We conclude that both rebreathing and nonrebreathing techniques of indirect Fick cardiac output determinations correlate well with thermodilution measures over a wide range of cardiac outputs and alveolar dead space/tidal volume fractions.  相似文献   

9.
In pentobarbital-anesthetized mongrel dogs the intravenous actions of 0.50 mg/kg molsidomine on pulmonary artery and left ventricular (LV) end-diastolic pressures and internal heart dimensions (preload), left ventricular systolic and peripheral blood pressures, and total peripheral resistance (afterload), as well as on heart rate, dP/dt, stroke volume, and cardiac output (heart performance) were studied for 2 h. Hemodynamic molsidomine effects were influenced by increasing amounts of intravenously infused dihydroergotamine solution (DHE, 1-64 micrograms X kg-1 X min-1). Molsidomine decreased preload, stroke volume, and cardiac output for over 2 h but decreased ventricular and peripheral pressures for 45 min. Systemic vascular resistance showed a tendency to decrease while heart rate and LV dP/dtmax were not altered. DHE infusion reversed molsidomine effects on the preload and afterload of the heart. The diminished stroke volume was elevated so that cardiac output also increased. Total peripheral resistance increased while heart rate fell in a dose-dependent fashion. The LV dP/dtmax remained unchanged until the highest dose of 64 micrograms X kg-1 X min-1 DHE elevated the isovolumic myocardial contractility. These experiments indicate that DHE can reverse the intravenous molsidomine effects on hemodynamics. Most likely, this is mediated through peripheral vasoconstriction of venous capacitance vessels, thereby affecting molsidomine's action on postcapillary beds of the circulation.  相似文献   

10.
Allergic bronchoconstriction may be associated with hemodynamic alterations due to changes in respiratory mechanics (or the associated changes in arterial blood gas composition) or the cardiovascular effects of chemical mediators. In an attempt to differentiate between these two possible mechanisms, we obtained measurements of hemodynamics, respiratory mechanics, and O2 consumption (VO2) in nine asymptomatic adult ragweed asthmatics before and after inhalation challenge with either ragweed extract or methacholine. We measured specific airway conductance (sGaw) by body plethysmography, pleural pressure with an esophageal balloon catheter, pulmonary blood flow (Q) and VO2 by a rebreathing technique, and heart rate. For a similar degree of bronchoconstriction after the two types of challenge (mean +/- SD sGaw 0.06 +/- 0.03 and 0.05 +/- 0.02 cmH2O-1 . s-1, P = NS), mean Q increased by 29 and 29%, and mean VO2 by 33 and 37% 15-20 min after ragweed and methacholine, respectively. Since heart rate did not change, there was a concomitant increase in mean stroke volume by 25 and 35%, respectively (P less than 0.05). The respiratory pleural pressure swings during quiet breathing and the rebreathing maneuver and the work of breathing during rebreathing also increased to a similar degree after the two types of challenge. These observations suggest that, if chemical mediators are released into the circulation during antigen-induced bronchoconstriction, their blood concentrations are too low for appreciable cardiovascular effects. The increase in rebreathing cardiac output during allergic and nonallergic bronchoconstriction is probably due to increases in intrathoracic pressure swings and in the work of breathing.  相似文献   

11.
Six male non-endurance trained subjects (S) and six marathon runners (M) underwent graded treadmill exercise (T) and isoproterenol stimulation (I; 2 and 4 microgram X min-1). beta-adrenergic receptor density was additionally determined as the amount of 3H-Dihydroalprenolol (DHA) specifically bound on intact polymorphonuclear leucocytes. Heart rate, VO2 uptake, lactate, plasma noradrenaline, and adrenaline were estimated during T. Heart rate, stroke volume, cardiac output, as well as lactate, glucose, free fatty acids (FFA), and glycerol levels in the blood were determined during I. M showed the known training-dependent responses during T, such as lower heart rates, lactate levels, and plasma catecholamines at identical work loads, as well as higher VO2 max than S. I-induced cardiac output increase was quite similar in both groups. Stroke volume, however, increased significantly in M and stayed constant in S. Lactate decreased (S), glucose increased significantly (M), glycerol increased similarly in both groups, FFA rise was less marked in S. I-induced stroke volume response (I) may be indicative of a more economic regulation of heart work in M than S. Lactate decrease and less marked FFA increase, as observed in S, may be the result of a somewhat higher cardiac energy demand, dependent on less economic heart work. Higher DHA-binding as observed in M, as well as stroke volume response and glucose increase, may be indicators of a training-dependent rise in sensitivity to catecholamines. The unsolved question is, however, to what extent beta-receptor responses in intact blood cells are significant for receptor behavior in other organs.  相似文献   

12.
Brain natriuretic peptide (BNP) is a cardiac hormone with natriuretic activity. The aim of this study was to investigate the cardiovascular effects of pathophysiological levels of BNP on central hemodynamics, cardiac function, renal hemodynamics and function, and microvascular hemodynamics in healthy subjects. In this double-blind, placebo-controlled crossover study, we intravenously infused BNP (4 pmol. kg-1. min-1) or placebo for 1 h on two separate days in 12 healthy subjects (mean age, 60 +/- 5 yr). Nailfold and conjunctival capillary density, finger-skin (thermoregulatory) microvascular blood flow, and cardiac output were studied before and after infusion using intravital videomicroscopy, laser-Doppler fluxmetry, and echocardiography, respectively. Furthermore, during infusion, we measured the effective renal plasma flow and glomerular filtration rate using p-aminohippurate and inulin clearances. Blood pressure and heart rate were monitored for all measurements. Compared with placebo, BNP significantly decreased stroke volume with a tendency to decrease cardiac output. With subjects in the sitting position, mean arterial pressure decreased and heart rate increased after BNP infusion, whereas with subjects in the supine position, these variables remained unchanged. BNP increased natriuresis, diuresis, glomerular filtration rate, filtration fraction, and filtered load of Na+ compared with placebo, whereas effective renal plasma flow did not change. BNP did not affect the microvascular capillary density of conjunctiva and skin, microvascular blood flow, total skin oxygen capacity, and postocclusive recruitment. These results suggest that BNP has predominantly central and renal hemodynamic effects; however, it does not influence peripheral microcirculation in skin and conjunctiva.  相似文献   

13.
Summary Minimum resting values for several cardiovascular and respiratory characteristics were established for two marsupial species,Trichosurus vulpecula andMacropus eugenii. Certain characteristics including heart rate, stroke volume and cardiac output varied significantly with body mass and allometric equations of the formy=aM b were derived to describe the relationships. The exponents of body mass,b, were generally similar to those for eutherian mammals, but in the marsupials they intercept,a, differed significantly from reported eutherian values.Although resting cardiac output in the marsupials appeared reduced in proportion to their lower resting oxygen consumption this pattern was not repeated for other variables. The stroke volume of the marsupials was 156% of eutherian levels while heart rate was less than 50% of the eutherian values.Initial data for respiratory variables also indicated comparable differences in this aspect of oxygen transport between marsupials and eutherians. Minimum respiratory rates of the marsupials were much lower than those of eutherians and tidal volumes appear larger in marsupials. The results are interpreted as suggesting that marsupials may have a large aerobic capacity.  相似文献   

14.
In order to analyze the respiratory, cardiovascular, and ECG responses to acute hypoxic hypoxia, three experimental series were carried out in a randomized manner on 11 healthy, unacclimatized volunteers at rest during standardized stepwise exposure to 6000 m (PAO2 35.2 +/- 2.9 mmHg/4.7 +/- 0.4 kPa) in a low-pressure chamber a) without (control), b) with propranolol, and c) with atropine combined with propranolol. The results show that hypoxic hyperventilation and alveolar gases are not affected by activation of the sympatho-adrenal axis or by parasympathetic withdrawal. Sympathetic activity, however, increases heart rate, stroke volume (pulse pressure), estimated cardiac output and systolic blood pressure, whereas decreased parasympathetic activity increases heart rate and estimated cardiac output, but lowers stroke volume. The fall in peripheral resistance, observed during progressive hypoxia in all three groups, is thought to be due to hypoxia-induced depression of the vasomotor center. At altitude catecholamine secretion and vagal withdrawal synergistically account in the ECG for the R-R shortening, the relative Q-T lengthening, the elevation of the P wave and the ST-T flattening. Probable direct hypoxic effects on the heart are the increase in P-Q duration and the minor but still significant depression of the T wave. It is concluded that at altitude increased sympatho-adrenal and decreased parasympathetic activity is without effect on hypoxic hyperventilation, but accounts for most of the cardiovascular and ECG changes. Diminution of sympathetic activity and imminent vagotonia arising after acute ascent to 6000 m probably reflect hypoxia of the central nervous system.  相似文献   

15.
Postprandial hemodynamic changes were studied in healthy subjects at rest and during exercise in the upright position with and without autonomic blockade of the heart. At rest cardiac output increased 61% mostly because of a stroke volume increase accomplished by left ventricular end-diastolic dilation. These changes seemed to be dependent on the autonomic nervous system, whereas the postprandial heart rate increase did not. During exercise cardiac output was 23% higher after food intake due to a rise in both stroke volume and heart rate. These changes were apparently under influence of the autonomic nervous system, whereas left ventricular dilation was not. The present findings indicate that most of the postprandial changes in the central circulation are under control of the autonomic nervous system.  相似文献   

16.
Metabolic, temperature, and cardiorespiratory responses of 19 healthy males, age range 18-30 yr for one group and 40-55 yr for another, were studied during 210 minutes submaximal work at 35% Vo2 max. The subjects were exposed to four different pollutant gas mixtures at two different temperatures, 25 degrees C and 35 degrees C (relative humidity 30%). The four gas mixtures were filtered air (FA), 50 ppm carbon monoxide in filtered air (CO), 0.24 ppm peroxyacetyl nitrate in filtered air (PAN), and a combination of all three mixtures (PANCO). In the CO exposure, the heart rate was significantly greater than that observed during FA conditions (P less than 0.05). Metabolic and thermoregulatory responses to long-term work were not different in the various pollutant environments. Significant decreases in stroke volume and increases in heart rate were observed during the course of the 25 degrees C exposures with no alteration in cardiac output. Heart rates were higher during 35 degrees C exposures while cardiac output remained at the same level with a consequent further reduction in stroke output.  相似文献   

17.
Serial measurements of cardiac output and mean arterial pressure were performed in 15 women during the first stage of labour and at one and 24 hours after delivery. Cardiac output was measured by Doppler and cross sectional echocardiography at the pulmonary valve. Basal cardiac output (between uterine contractions) increased from a prelabour mean of 6.99 l/min to 7.88 l/min at greater than or equal to 8 cm of cervical dilatation as a result of an increase in stroke volume. Over the same period basal mean arterial pressure also increased. During uterine contractions there was a further increase in cardiac output as a result of increases in both stroke volume and heart rate. The increment in cardiac output during contractions became progressively greater as labour advanced. At greater than or equal to 8 cm of dilatation cardiac output increased from a basal mean of 7.88 l/min to 10.57 l/min during contractions. There were also further increases in mean blood pressure during contractions. One hour after delivery heart rate and cardiac output had returned to prelabour values, though mean arterial pressure and stroke volume remained raised. By 24 hours after delivery all haemodynamic variables had returned to prelabour values. Haemodynamic changes of the magnitude found in this series are of considerable clinical relevance in managing mothers with complicated cardiovascular function.  相似文献   

18.
Exercise intolerance in persons with paraplegia (PARAS) is thought to be secondary to insufficient venous return and a subnormal cardiac output at a given oxygen uptake. However, these issues have not been resolved fully. This study utilized lower-body positive pressure (LBPP) as an intervention during arm crank exercise in PARAS in order to examine this issue. Endurance-trained (TP, n= 7) and untrained PARAS (UP, n= 10) with complete lesions between T6 and T12, and a control group consisting of sedentary able-bodied subjects (SAB, n= 10) were tested. UP and TP subjects demonstrated a diminished cardiac output (via CO2 rebreathing) during exercise compared to SAB subjects. Peak oxygen uptake (O2peak) remained unchanged for all groups following LBPP. LBPP resulted in a significant decrease in heart rate (HR) in UP and TP (P≤0.05), but not SAB subjects. LBPP produced an insignificant increase in cardiac output () and stroke volume (SV). The significant decrease in HR in both PARA groups may indicate a modest hemodynamic benefit of LBPP at higher work rates where circulatory sufficiency may be most compromised. We conclude that PARAS possess a diminished cardiac output during exercise compared to the able-bodied, and LBPP fails to ameliorate significantly their exercise response irrespective of the conditioning level. These results support previous observations of a lower cardiac output during exercise in PARAS, but indicate that lower-limb blood pooling may not be a primary limitation to arm exercise in paraplegia. Accepted: 11 December 1997  相似文献   

19.
Operation Everest II: preservation of cardiac function at extreme altitude   总被引:8,自引:0,他引:8  
Hypoxia at high altitude could depress cardiac function and decrease exercise capacity. If so, impaired cardiac function should occur with the extreme, chronic hypoxemia of the 40-day simulated climb of Mt. Everest (8,840 m, barometric pressure of 240 Torr, inspiratory O2 pressure of 43 Torr). In the five of eight subjects having resting and exercise measurements at the barometric pressures of 760 Torr (sea level), 347 Torr (6,100 m), 282 Torr (7,620 m), and 240 Torr, heart rate for a given O2 uptake was higher with more severe hypoxia. Slight (6 beats/min) slowing of the heart rate occurred only during exercise at the lowest barometric pressure when arterial blood O2 saturations were less than 50%. O2 breathing reversed hypoxemia but never increased heart rate, suggesting that hypoxic depression of rate, if present, was slight. For a given O2 uptake, cardiac output was maintained. The decrease in stroke volume appeared to reflect decreased ventricular filling (i.e., decreased right atrial and wedge pressures). O2 breathing did not increase stroke volume for a given filling pressure. We concluded that extreme, chronic hypoxemia caused little or no impairment of cardiac rate and pump functions.  相似文献   

20.
The cardiac function was studied by radionuclide cardiography in eight healthy subjects at rest and during submaximal upright exercise before and after autonomic blockade with metoprolol and atropine. At rest the median stroke volume was reduced by 21% during autonomic blockade (P less than 0.01), but cardiac output was maintained by a concomitant increase in heart rate. The systolic blood pressure was reduced from 120 to 105 mmHg (P less than 0.01), and left ventricular ejection fraction was reduced from 61 to 56% (P less than 0.05). After autonomic blockade the heart rate reached during exercise was the same. Stroke volume and cardiac output were maintained through cardiac dilation. The increase in left ventricular end-diastolic volume was 31 vs. 10% during control conditions (P less than 0.01). The systolic blood pressure was reduced from 174 to 135 mmHg (P less than 0.01). Left ventricular ejection fraction was reduced from 75 to 67% (P less than 0.05), but the increase from rest to exercise was preserved. Total peripheral resistance was reduced by 17% (P less than 0.05). These findings suggest that the heart possesses intrinsic mechanisms to maintain cardiac output during submaximal upright exercise. End-diastolic dilation results in a preserved stroke volume despite a reduced contractility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号