共查询到16条相似文献,搜索用时 171 毫秒
1.
独行菜种子下胚轴伸长存在低温停滞现象,是研究温度对植物下胚轴伸长影响的良好材料。为了揭示下胚轴伸长相关转录因子HY5在独行菜下胚轴低温伸长中的作用,该研究从独行菜种子转录组中获得LaHY5序列,并进行了克隆、序列分析,通过实时定量PCR技术研究了该基因表达与低温诱导及萌发阶段的关系,并通过转化拟南芥分析该基因表达对下胚轴低温伸长的影响。结果表明:(1)LaHY5基因的cDNA序列包含447 bp的完整阅读框序列,其编码产物为富含丝氨酸的149个氨基酸组成的肽链,包含典型的BRLZ结构域,相对分子质量为16.830 kD,分子式为C_(692)H_(1156)N_(228)O_(246)S_7,理论等电点为8.73,与十字花科植物同源序列高度一致。(2)LaHY5基因在独行菜萌发过程中的种子或幼苗中受低温诱导快速上调表达。(3)转LaHY5基因拟南芥种子在常温或低温条件下,下胚轴伸长均比野生型植株快。研究表明,LaHY5转录因子在种子低温萌发及幼苗耐受低温胁迫中起重要作用,但LaHY5基因并不是造成独行菜下胚轴伸长低温停滞的限制性因素。 相似文献
2.
该研究在转录组数据基础上,以独行菜(Lepidium apetalum Willd.)种子耐受和不能耐受低温萌发的2组样本为材料,对其bHLH转录因子家族成员进行分析,并对该家族成员表达差异极显著的laICE1基因进行克隆、序列分析、结构预测,以探讨独行菜幼苗中laICE1基因表达对低温胁迫的响应特征。结果表明:(1)萌发中的独行菜种子,至少有83个bHLH转录因子序列表达,相对于低温萌发停滞组,在低温萌发耐受组的独行菜种子中,有10个下调、13个上调、60个表达差异不显著。其中表达量极显著下调的序列c20009_g1具有1 503bp开放阅读框,GO注释到ICE1基因,该基因命名为laICE1。(2)laICE1基因编码500aa,蛋白分子量为54 635.19kD,理论等电点为5.45,分子式为C2364H3742N688O758S22;该蛋白具有保守结构域bHLH。(3)定量分析表明,laICE1基因在非低温胁迫的独行菜种子中的表达量显著低于一直处于低温胁迫中不能进行萌发的独行菜种子,这与转录组数据库中该序列表达情况一致;而laICE1基因在独行菜幼苗期经低温处理后,其表达量显著上调,表明laICE1基因可能在独行菜幼苗耐受低温生长中具有一定的作用。 相似文献
3.
抱茎独行菜(Lepidium perfoliatum L.)为十字花科具典型粘液繁殖体植物,为探究该植物中种皮粘液质基因(MUCILAGE-MODIFIED4,MUM4,该基因在拟南芥中编码NDP-L-鼠李糖合成酶)的功能,通过生物信息学分析设计引物克隆得到抱茎独行菜MUM4基因,命名为LpMUM4。同源比对分析结果表明,LpMUM4与拟南芥AtMUM4基因具有很高的一致性。qRT-PCR结果表明,该基因在抱茎独行菜各组织中均有表达,在角果和根中的表达量最高,且其表达量随角果的发育表现出渐强的趋势。免疫组织化学定位分析表明,LpMUM4基因于角果发育的早期阶段在内珠被和外珠被都有表达,而在外珠被的表皮和亚表皮中表达量更高,至角果发育的最后阶段,其表达集中于表皮和亚表皮层,这可能与抱茎独行菜的外珠被发育成种皮及粘液质的生成有关。将LpMUM4基因转化拟南芥,该基因的过表达对位于粘液质合成途径中的上游基因AtTTG1具有显著的抑制作用。表型比对观察显示,转基因拟南芥与其野生型植株形态无显著差异,这可能是因为抱茎独行菜种皮的发育和粘液质的形成是一个多基因调控的复杂过程,某一基因的过表达或许不会引起明显的表型变化。 相似文献
4.
G2/有丝分裂特异性细胞周期蛋白 2(G2/mitotic-specific cyclin-2,Msc2)作为高等植物应对逆境胁迫的关键调控蛋白,参与多个抗逆境胁迫的应答。为探究RcMsc2基因的功能,该研究从蓖麻叶片组织中成功克隆了RcMsc2,并利用生物信息学分析RcMsc2蛋白的结构和潜在功能,同时借助qRT-PCR方法分析RcMsc2基因的组织表达特性和非生物胁迫表达特性。结果表明:(1)RcMsc2基因位于蓖麻第5号染色体长臂,该基因的CDS(coding sequence)区是1 299 bp,编码432个氨基酸。(2)RcMsc2蛋白拥有细胞周期(cyclin)家族特征结构域,是一个不稳定酸性亲水蛋白,无跨膜域和信号肽,相对分子量为49.38 kD。(3)RcMsc2蛋白质的二级、三级结构以α-螺旋和无规则卷曲为主。(4)RcMsc2蛋白与麻风树和巴西橡胶树的CYCB2蛋白的序列同源性最高,且同被聚为Group Ⅱ。(5)35S-RcMsc2-GFP融合蛋白定位于细胞核。(6)RcMsc2基因在蓖麻的所有组织中均有表达且主要在根和茎中发挥作用; 非生物胁迫分析表明RcMsc2基因可以被脱落酸(abscisic acid, ABA)、盐、干旱和低温处理诱导表达,并且RcMsc2基因对低温胁迫的响应最敏感。综上表明,该研究较全面地分析了RcMsc2基因的结构特征、系统进化和表达模式,为揭示RcMsc2基因在蓖麻的生长发育和应答冷胁迫过程中的功能提供了理论参考。 相似文献
5.
通过花粉管通道技术,以该实验室自育陆地棉品系TH1和TH2为材料,将诸葛菜(Orychophragmus vidaceus)抗逆转录因子OvDREB2B基因构建到植物表达载体后,导入棉花基因组,经卡那霉素筛选和分子鉴定表明目的基因已整合到棉花基因组中并表达。将T1代转基因植株和受体对照在温室中栽培,待植株生长至四叶一心时,用不同渗透势的PEG-6000水溶液进行渗透胁迫处理,分析探讨转基因植株的抗旱效果及其抗旱机理。结果显示:当渗透势为0和0.5 MPa处理时,转基因植株和对照无明显差异;当渗透势为0.8 MPa和1.1 MPa处理时转基因植株较对照抗旱性明显提高。当渗透势为1.1 MPa处理96 h时,对照植株Fv/Fm降至0.2左右,而转基因植株仍正常生长,Fv/Fm值约为0.51,而且初始荧光(F0)值、净光合速率(Pn)、胞间CO2浓度(Ci)、蒸腾速率(Tr)等一系列参数转基因植株都明显优于对照,表明DREB2B基因能够提高棉花对水分胁迫的耐受性。 相似文献
6.
以切花百合(Lilium brownii var. viridulum)‘卡瓦纳’cDNA为模板,克隆了过氧化氢酶(LbCAT)和谷胱甘肽过氧化物酶(LbGPX)基因。序列分析表明,这2个基因分别包含1 479 bp和519 bp的开放阅读框(ORF),编码492个和172个氨基酸。进化分析结果表明,LbCAT蛋白与岷江百合CAT蛋白的氨基酸序列相似性最高(99.19%),且亲缘关系最近;LbGPX蛋白与油棕GPX蛋白的氨基酸序列相似性最高(78.61%),亲缘关系最近。qRT PCR结果显示,LbCAT和LbGPX在百合根、鳞茎、叶和花中都有表达。LbCAT在叶中表达量最高,LbGPX在花中表达量最高。这2个基因在百合花蕾的生长发育过程中均有表达,且表达量逐渐增加;在PEG处理后2个基因的转录水平升高,但独角金内酯(SLs)处理却显著降低了这2个基因的转录水平;该结果为百合抗逆性机理研究以及抗逆育种奠定了基础。 相似文献
7.
AP2/ERF是广泛存在于植物中一类重要的转录因子,调控一些参与非生物胁迫相关基因的表达,帮助植物提高逆境胁迫能力。为了深入探讨LaAP2在独行菜耐受低温萌发及幼苗耐受低温生长中的功能,该研究基于前期对独行菜(Lepidium apetalum)转录组数据库分析,克隆获得一个显著上调表达的AP2/ERF家族序列LaAP2。该基因cDNA全长为1 005 bp,编码氨基酸序列包含一个AP2和一个B3结构域,属于AP2/ERF转录因子RAV亚家族。推定的LaAP2蛋白分子量为37.744 67 kD,等电点为9.49。该蛋白氨基酸序列同亚麻荠、拟南芥、油菜等物种显示出较高同源性,系统进化分析结果表明与拟南芥亲缘关系较近。氨基酸序列分析预测表明,LaAP2基因所编码的蛋白不具备信号肽区段,无跨膜区,不属于分泌蛋白,可能为亲水性蛋白;定位于细胞质的可能性为56.5%,定位于细胞核的可能性为21.7%;其主要二级结构元件为无规则卷曲、延伸链、α-螺旋。Real-time PCR分析独行菜幼苗中LaAP2在低温4℃处理下的表达,显示LaAP2表达受低温胁迫呈先下降后升高趋势。这表明LaAP2在独行菜幼苗抵抗低温胁迫中起调控作用。 相似文献
8.
强心苷作为药用植物独行菜( Lepidium apetalum)的活性成分,其化学和药理学研究已有良好的基础,但其生物合成途径目前仍不清楚。该研究以独行菜幼苗为材料,通过分析独行菜转录组数据,设计特异性引物,PCR扩增得到了强心苷生物合成MEP途径的关键酶2-C-甲基赤藓醇-4-磷酸胞苷酰转移酶( MCT)基因的开放阅读框( ORF),命名为LaMCT( Genbank注册号KT832554),并进行序列分析和原核表达。序列分析结果表明:LaMCT基因ORF全长为912 bp,编码304个氨基酸。亚细胞定位和保守结构域分析结果表明:LaMCT蛋白位于叶绿体中,不含信号肽,没有跨膜区,含有类异戊二烯合成酶保守结构域( isoprenoid synthase domain)。系统进化树结果表明:LaMCT蛋白与拟南芥的MCT蛋白具有94%的序列相似性,亲缘关系较近。通过构建pET-32a-LaMCT原核表达载体,成功在大肠杆菌BL21( DE3)菌株中诱导表达LaMCT重组蛋白,并得到了纯化的LaMCT重组蛋白。该研究首次从独行菜中克隆了LaMCT基因,建立其稳定的原核表达体系,为LaMCT蛋白抗体的制备以及研究LaMCT基因在独行菜强心苷类化合物生物合成途径中的功能奠定了基础。 相似文献
9.
SVP (SHORT VEGETATIVE PHASE)是MADS box家族一员,它能够整合多条开花途径的开花信号,调节植物由营养生长向生殖生长的转变。为了解梅花(Prunus mume Sieb. et Zucc.)成花转变过程的分子机理,该研究采用RT PCR方法从梅花‘长蕊绿萼’中克隆到2个SVP的同源基因,分别命名为PmSVP1和PmSVP2,并采用荧光定量PCR对2个基因的表达模式进行分析。序列分析表明,PmSVP1和PmSVP2的编码区长度分别为687 和672 bp,分别编码228和223氨基酸。系统进化结果显示,PmSVP1与拟南芥AtSVP以及一些木本植物SVP同源基因聚为一组,PmSVP2与马铃薯、乳浆大戟等草本植物中的SVP同源基因聚为一组。实时荧光定量分析表明,在成年梅花中,2个PmSVP基因主要在茎、叶和叶芽等营养器官中表达,且都在叶中表达量最高。在1月龄幼苗中,PmSVP1基因在根、茎、叶中都有表达,PmSVP2基因则没有任何表达;在梅花花芽分化过程中,PmSVP1和PmSVP2基因的表达量均呈现下调表达的趋势。研究推测,PmSVP1和PmSVP2基因可能参与调控梅花从营养生长向生殖生长的转变。 相似文献
10.
采用同源克隆法从菜心中获得3个SOD基因,并进行生物信息学分析,采用qRT-PCR分析3个基因在不同组织器官和低温胁迫下的表达模式。结果表明:(1)获得Cu/Zn-SOD、Fe-SOD、Mn-SOD基因的ORF,分别命名为BclCZSD、BclFSD、BclMSD,序列长分别为459、639、696bp,分别编码152、212、231个氨基酸。(2)生物信息学分析显示,3种蛋白均为稳定的亲水性蛋白,均不存在跨膜结构和信号肽,BclCZSD的二级结构以无规则卷曲为主,含有2个Cu/Zn-SOD结构域,BclFSD和BclMSD的二级结构以α-螺旋为主,含有一个相同的Mn/Fe-SOD结构域;进化分析显示BclCZSD和BclMSD与油菜最先聚在一个分支,BclFSD与甘蓝、萝卜、油菜、芜菁聚在一个分支。(3)qRT-PCR结果显示,BclCZSD、BclFSD和BclMSD基因在菜心根、茎、叶和叶柄中均有表达,且在根、茎、叶和叶柄中的表达模式不完全相同;低温条件下,3个基因的表达量随着胁迫时间的延长均呈先升高后降低的变化趋势。研究结果为进一步探讨菜心SOD基因在低温胁迫下的响应机制奠定了基础。 相似文献
11.
该研究以天山雪莲(Saussurea involucrata)的转录组数据为基础,利用Premier 5.0设计1对特异性引物SiICE2-Up和SiICE2-Down,以天山雪莲cDNA为模板克隆得到天山雪莲SiICE2基因的开放阅读框(ORF),对其进行生物信息学分析;构建植物表达载体pCAMBIA2300-35S-SiICE2-Nos,利用农杆菌介导法导入番茄(Lycopersicon esculentum),通过PCR和RT-PCR对转化植株进行验证,qRT-PCR分析转SiICE2基因番茄株系SiICE2基因的相对表达量;将转SiICE2基因型和野生型番茄在0℃处理后,进行抗寒性分析。结果表明:(1)成功克隆得到天山雪莲SiICE2基因,其大小为462bp,共编码153个氨基酸,系统进化分析发现SiICE2蛋白与菜蓟(Cynara scolymus L)亲缘关系最近。(2)成功构建了植物表达载体pCAMBIA2300-35S-SiICE2-Nos,经农杆菌介导法侵染番茄,PCR鉴定表明共有9株为转SiICE2基因番茄植株。(3)膜生理指标测定结果显示,随着低温处理时间的增加,转SiICE2基因型番茄的相对电导率、丙二醛含量均显著低于野生型,在处理时间为24h时,转SiICE2基因型番茄相对电导率比野生型低31.7%,丙二醛含量比野生型低4.2μmol/g。(4)抗氧化酶活性测定结果显示,随着低温处理时间的增加,转SiICE2基因番茄植株的POD、CAT和SOD活性均呈现持续递增趋势,野生型呈先逐渐升高后降低的趋势,且各处理时间内转SiICE2基因番茄的POD、CAT和SOD活性均显著高于野生型。研究发现,天山雪莲SiICE2基因可以显著增强非低温驯化番茄的抗寒性。 相似文献
12.
脱水应答蛋白22(RD22)属于植物特有的BURP蛋白家族中的一个亚族,与耐逆性关系密切。该研究从中国西北荒漠区特有的强耐逆植物蒙古沙冬青克隆到一个RD22基因(AmRD22)的全长cDNA,并对其编码蛋白、表达模式和耐逆功能进行了研究。结果表明:(1)AmRD22蛋白(360 aa)的初级结构中含有RD22亚族共有的4个结构域,预测其定位于细胞壁;在功能已知的RD22蛋白中,AmRD22与大豆GmRD22的进化关系最近。(2)在室内培养的蒙古沙冬青幼苗中,AmRD22的表达受失水、高盐、低温和ABA胁迫的诱导显著上调,其中失水和低温胁迫诱导其上调幅度较大;在野外生长的蒙古沙冬青植株嫩叶中,其表达量从中秋至隆冬远高于其他季节。(3)转AmRD22基因拟南芥的耐盐性显著提高且Na+含量降低,其耐旱性也有较明显的改善且在种子萌发早期对外源ABA的敏感性降低,但耐冷性和耐冻性无明显变化。 相似文献
13.
以柑橘品种‘日南1号’离体秋稍为试材,采用Hoagland营养液培养方法,研究添加不同浓度H_2O_2处理对4℃低温胁迫下柑橘生长状态和叶片细胞相对电导率(REC)、丙二醛(MDA)含量、脯氨酸含量以及过氧化氢酶(CAT)、超氧化物歧化酶(SOD)和过氧化物酶(POD)活性等生理指标的影响,筛选缓解柑橘低温伤害的最佳H_2O_2处理浓度,探讨外源H_2O_2处理对柑橘耐寒能力影响机制。结果显示:随低温胁迫时间的延长,各处理组柑橘叶片卷曲和叶片细胞膜伤害程度均逐渐加重;外源施加0.2和1.0mmol·L-1 H_2O_2处理均能缓解低温胁迫引起的叶片卷曲和萎蔫,降低叶片中REC和MDA的升高,减少叶片细胞中内源H_2O_2的积累,提高渗透调节物质脯氨酸的含量和抗氧化酶SOD、CAT和POD的活性,并以1.0mmol·L-1 H_2O_2缓解效果更为显著。研究表明,4℃低温能够引起柑橘离体秋梢叶片卷曲、枯萎、脱落和细胞膜伤害症状,外源1.0mmol·L-1 H_2O_2可以通过提高叶片的脯氨酸含量和SOD、CAT和POD抗氧化酶活性,有效缓解低温对柑橘叶片细胞膜的伤害,从而增强其抗寒性。 相似文献
14.
以萝卜幼苗和水稻T1代转RsICE1基因(从抗寒萝卜植株中分离的一个编码碱性螺旋-环-螺旋低温胁迫转录因子,HQ891287)株系为材料,通过半定量RT-PCR及实时定量PCR等方法,分析RsICE1基因的表达、水稻转基因株系中RsICE1基因的遗传及冷诱导基因的表达情况.结果显示:(1)半定量RT PCR分析表明,RsICE1基因在萝卜的根、茎、叶中为组成型表达,在幼苗根和茎中表达量较强;RsICE1基因的表达水平能够被冷处理和NaCl处理诱导上调表达,但ABA和脱水处理无上调作用.(2)卡方测验表明,水稻转基因T1代潮霉素抗性发生了3∶1分离模式;Southern和Northern杂交结果表明,4个抗冷转基因株系中RsICE1基因均以单拷贝、单位点整合到水稻基因组并正常表达.(3)实时定量PCR分析表明,冷胁迫下,RsICE1基因超表达但对水稻OsDREB1A(AF300970)、OsDREB1B(AF300972)、OsDREB1F(AY785897)基因表达没有影响,表明RsICE1基因对转基因水稻抗寒性的影响不依赖OsDERB1冷反应通路. 相似文献
15.
该研究以纤枝短月藓为材料,利用RT-PCR和HiTail-PCR技术分别克隆得到纤枝短月藓LEA5基因的ORF和启动子序列,并进行生物信息学、基因表达及耐盐性分析,为进一步研究LEA5蛋白的保护机制奠定基础。结果显示:(1)LEA5基因包含267 bp的开放阅读框(ORF),编码88个氨基酸。(2)LEA5基因启动子序列为1 053 bp,利用PlantCARE在线工具预测顺式作用元件显示,该启动子不仅具有典型的CAAT box元件,还含有ABRE、MYB、MYC、MYB结合位点(MBS)等其他元件。(3)荧光定量分析表明,LEA5基因在纤枝短月藓不同时期和不同组织中都有表达。(4)LEA5蛋白的异源表达提高了大肠杆菌对盐胁迫的耐受性,表明LEA5蛋白可能在耐盐性中起重要作用。 相似文献
16.
丝氨酸蛋白酶抑制剂(Serine Protease Inhibitor,SPI)通过抑制靶蛋白活性参与调节内源蛋白平衡,并在植物发育、防御机制中发挥重要作用。该研究利用RACE技术克隆获得百子莲(Agapanthus praecox ssp.orientalis)ApSPI基因全长序列,构建了E.coli Transetta(pET-32a-ApSPI)重组菌株,并检测重组菌株在不同非生物胁迫下的耐受性。结果显示:(1)ApSPI基因全长为652 bp,开放阅读框为366 bp,编码122个氨基酸。(2)ApSPI蛋白含有一个N端信号肽和一个典型的Kazal结构域,是一种Kazal型丝氨酸蛋白酶抑制剂。重组蛋白最佳诱导温度为37℃,诱导时间6 h,IPTG浓度为0.1 mmol·L~(-1),且主要以可溶性形式存在。(3)重组菌非生物胁迫耐受性研究发现,重组菌Transetta(pET-32a-ApSPI)对NaCl(200~400 mmol·L~(-1))、KCl(200~400 mmol·L~(-1))和PEG6000(5%)的耐受性明显高于对照菌株Transetta(pET-32a)。研究表明,过表达ApSPI蛋白增强了大肠杆菌对盐、干旱胁迫的抗性,为进一步研究ApSPI在植物抗逆中的作用奠定了基础。 相似文献