首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
Nonoriented hydrated films of double helical poly(dG-dC) in the Z-form were studied by Fourier transform infrared (FT-IR) spectroscopy either as equilibrated slow-cooled samples between 290 and 220 K or, after quenching into the glassy state, as nonequilibrated film isothermally at 200, 220, and 240 K. IR spectral changes on isothermal relaxation at 200 and 220 K toward equilibrium, caused by interconversion of two conformer substates (CS) called Z1 and Z2, are revealed by IR difference spectra. Pronounced spectral changes on Z1-to-Z2 interconversion occur between approximately 750-1250 cm(-1) and these are attributed to structural changes of the phosphodiester-sugar backbone caused by changes of torsion angles, and to decreasing hydrogen-bonding of the ionic phosphate group with water molecules. These spectral changes on Z1-to-Z2 transition can be related to structural differences between ZI and ZII CS observed in single crystals. ZI/ZII CS occurs only at (dGpdC) base steps, and similar behavior is assumed for Z1/Z2. The Z1/Z2 population ratio was determined via curve resolution of marker bands for Z1 and Z2 centered at 785 and 779 cm(-1). This ratio is 0.64 at 290 K, corresponding to 39% of the phosphates of the (dGpdC) base steps in Z1 and 61% in Z2, and it increases to 1.24 on cooling to 220 K. For the Z2<=>Z1 equilibrium, an enthalpy change of -4.9 +/- 0.2 kJ mol(dGpdC)(-1) is obtained from the temperature dependence of the equilibrium constant. Z1 interconverts into Z2 at isothermal relaxation at 200 and 220 K, whereas on slow cooling from ambient temperature, Z2 interconverts into Z1. This unexpected reversal of CS interconversion is attributed to slow restructuring of hydration shells of the CS on quenching, in the same manner reported by Pichler et al. for the BI and BII CS of B-DNA (J. Phys. Chem. B 106, 3263-3274 (2002)). IR difference curves demonstrate two time scales on isothermal relaxation of Z1-->Z2 interconversion, a fast one for structural relaxation of the sugar-phosphate backbone, and a slow one for relaxation of the hydration shells. This slowing down of restructuring of CS hydration shells at approximately 220-240 K could be the cause for the suppression of biological functions at low temperatures.  相似文献   

2.
A nonoriented hydrated film of poly(dG-dC) with ?20 water molecules per nucleotide (called B* by Loprete and Hartman (Biochem. 32, 4077-4082 (1993)) was studied by Fourier transform infrared (FT-IR) spectroscopy either as equilibrated sample between 290 and 270 K or, after quenching into the glassy state, as nonequilibrated film isothermally at 200 and 220 K. IR spectral changes on isothermal relaxation at 200 and 220 K, caused by interconversion of two conformer substates, are revealed by difference spectra. Comparison with difference curves obtained in the same manner from two classical B-DNA forms, namely the d(CGCGAATTCGCG)(2) dodecamer and polymeric NaDNA from salmon testes, revealed that the spectral changes on B(I)-to-B(II) interconversion in the classical B-DNA forms are very similar to those in the B*-form, and that the spectroscopic differences between the B(I) and B(II) features from classical B-DNA and those from the modified B*-form are minor. Nonexponential kinetics of the B(I)-->B(II) transition in the B*-form of poly(dG-dC) at 200 K showed that the structural relaxation time is about three times of that in the classical B-DNA forms (approximately equal to 30 versus approximately equal to 10 min at 200 K). The unexpected reversal of conformer substates interconversion (that is B(II)-->B(I) transition on cooling from 290 K and B(I)-->B(II) transition on isothermal relaxation at 200 K) observed for classical B-DNA occurs also in the modified B*-form. We therefore conclude that restructuring of hydration shells rules the low-temperature dynamics of the B*-form via its two conformer substates in the same manner reported for classical B-DNA by Pichler et al. (J. Phys. Chem. B 106, 3263-3274 (2002)).  相似文献   

3.
Abstract

A nonoriented hydrated film of poly(dG-dC) with ≈20 water molecules per nucleotide (called B by Loprete and Hartman (Biochem. 32, 4077–4082 (1993)) was studied by Fourier transform infrared (FT-IR) spectroscopy either as equilibrated sample between 290 and 270 K or, after quenching into the glassy state, as nonequilibrated film isothermally at 200 and 220 K. IR spectral changes on isothermal relaxation at 200 and 220 K, caused by interconversion of two conformer substates, are revealed by difference spectra. Comparison with difference curves obtained in the same manner from two classical B-DNA forms, namely the d(CGCGAATTCGCG)2 dodecamer and polymeric NaDNA from salmon testes, revealed that the spectral changes on BIto-BII interconversion in the classical B-DNA forms are very similar to those in the B-form, and that the spectroscopic differences between the BI and BII features from classical B-DNA and those from the modified B-form are minor. Nonexponential kinetics of the BI→BII transition in the B-form of poly(dG-dC) at 200 K showed that the structural relaxation time is about three times of that in the classical B-DNA forms (≈30 versus ≈10 min at 200 K). The unexpected reversal of conformer substates interconversion (that is BII→BI transition on cooling from 290 K and BI→BII transition on isothermal relaxation at 200 K) observed for classical B-DNA occurs also in the modified B-form. We therefore conclude that restructuring of hydration shells rules the low-temperature dynamics of the B-form via its two conformer substates in the same manner reported for classical B-DNA by Pichler et al. (J. Phys. Chem. B 106, 3263–3274 (2002)).  相似文献   

4.
Sugar-phosphate backbone conformations are an important structural element for a complete understanding of specific recognition in nucleic acid-protein interactions. They can be involved both in early stages of target discrimination and in structural adaptation upon binding. In the first part of this study, we have analyzed high-resolution structures of double-stranded B-DNA either isolated or bound to proteins, and explored the impact of both the standard BI and the unusual BII phosphate backbone conformations on neighboring sugar puckers and on selected helical parameters. Correlations are found to be similar for free and bound DNA, and in both categories, the possible facing backbone conformations (BI.BI, BI.BII, and BII.BII) define well-characterized substates in the B-DNA conformational space. Notably, BII.BII steps are characterized by specific, and sequence-independent, structural effects involving reduced standard deviations for almost all conformational parameters. In the second part of this work, we analyze four 10 ns molecular dynamics simulations in explicit solvent on the DNA targets of NF-kappaB and bovine papillomavirus E2 proteins, highlighting the multiplicity of backbone dynamical behavior. These results show sequence effects on the percentages of BI and BII conformers, the preferential state of facing backbones, the occurrence of coupled transitions. The backbone states can consequently be seen as a mechanism for transmitting information from the bases to the phosphate groups and thus for modulating the overall structural properties of the target DNA.  相似文献   

5.
Deciphering sequence information from sugar-phosphate backbone is finely tuned through the conformational substates of DNA. BII conformation, one of the conformational substates of B-DNA, is known to play a key role in DNA-protein recognition. BI and BII are identified by the epsilon-zeta difference, which is negative in BI and positive in BII. Our analysis of MD and crystal structures shows that BII conformation is sequence specific and dinucleotides GC, CG, CA, TG, TA show high preference to take up BII conformation, while TT, TC, CT, CC dinucleotides rarely take up this conformation. Significant changes were observed in the dinucleotide parameters viz. twist, roll, and slide for the steps having BII conformation. Interestingly, the magnitude of variation in the dinucleotide parameters is seen to depend mainly on two factors, the magnitude of epsilon-zeta difference and the presence or absence of BII conformation in the second strand, across the WC base-paired dinucleotide step. Based on these two factors, the conformational substate of a dinucleotide step can be further classified as BI.BI (BI conformation in both strands), BI.BII (BI conformation in one strand and BII conformation in the other), and BII.BII (BII conformation in both strands). The occurrence of BII in both strands was found to be quite rare and thus, it can be concluded that BI.BI and BI.BII hybrid steps are more favorable than a BII.BII step. In conformity with the sequence preference seen for dinucleotides in each strand, BII.BII combination of backbone conformation was observed only for GC, CG, CA, and TG containing dinucleotide steps. We further classified BII.BII step as strong BII and weak BII depending on the magnitude of the average epsilon-zeta difference. The dinucleotide steps which belong to the category of strong BII, have large twist, high positive slide and negative roll values, while those in the weak BII group have roll, twist, and slide values similar to that of hybrid BI.BII steps. This conformational property could be contributing to the groove opening/closing and thus can modulate protein-DNA interaction.  相似文献   

6.
Wibowo FR  Rauch C  Trieb M  Liedl KR 《Biopolymers》2005,79(3):128-138
MD simulations have been carried out to understand the dynamical behavior of the DNA substrate of the Thermus aquaticus DNA methyltransferase (M.TaqI) in the methylation process at N6 of adenine. As starting structures, an x-ray structure of M.TaqI in complex with DNA and cofactor analogue (PDB code: 1G 38) and free decamer d(GTTCGATGTC)(2) were taken. The x-ray structure shows two consecutive BII substates that are not observed in the free decamer. These consecutive BII substates are also observed during our simulation. Additionally, their facing backbones adopt the same conformations. These double facing BII substates are stable during the last 9 ns of the trajectories and result in a stretched DNA structure. On the other hand, protein-DNA contacts on 5' and 3' phosphodiester groups of the partner thymine of flipped adenine have changed. The sugar and phosphate parts of thymine have moved further into the empty space left by the flipping base without the influence of protein. Furthermore, readily high populated BII substates at the GpA step of palindromic tetrad TCGA rather than CpG step are observed in the free decamer. On the contrary, the BI substate at the GpA step is observed on the flipped adenine strand. A restrained MD simulation, reproducing the BI/BII pattern in the complex, demonstrated the influence of the unusual backbone conformation on the dynamical behavior of the target base. This finding along with the increased nearby interstrand phosphate distance is supportive to the N6-methylation mechanism.  相似文献   

7.
The kinetic properties of the three taxonomic A substates of sperm whale carbonmonoxy myoglobin in 75% glycerol/buffer are studied by flash photolysis with monitoring in the infrared stretch bands of bound CO at nu(A0) approximately 1967 cm-1, nu(A1) approximately 1947 cm-1, and nu(A3) approximately 1929 cm-1 between 60 and 300 K. Below 160 K the photodissociated CO rebinds from the heme pocket, no interconversion among the A substates is observed, and rebinding in each A substate is nonexponential in time and described by a different temperature-independent distribution of enthalpy barriers with a different preexponential. Measurements in the electronic bands, e.g., the Soret, contain contributions of all three A substates and can, therefore, be only approximately modeled with a single enthalpy distribution and a single preexponential. The bond formation step at the heme is fastest for the A0 substate, intermediate for the A1 substate, and slowest for A3. Rebinding between 200 and 300 K displays several processes, including geminate rebinding, rebinding after ligand escape to the solvent, and interconversion among the A substates. Different kinetics are measured in each of the A bands for times shorter than the characteristic time of fluctuations among the A substates. At longer times, fluctuational averaging yields the same kinetics in all three A substates. The interconversion rates between A1 and A3 are determined from the time when the scaled kinetic traces of the two substates merge. Fluctuations between A1 and A3 are much faster than those between A0 and either A1 or A3, so A1 and A3 appear as one kinetic species in the exchange with A0. The maximum-entropy method is used to extract the distribution of rate coefficients for the interconversion process A0 <--> A1 + A3 from the flash photolysis data. The temperature dependencies of the A substate interconversion processes are fitted with a non-Arrhenius expression similar to that used to describe relaxation processes in glasses. At 300 K the interconversion time for A0 <--> A1 + A3 is 10 microseconds, and extrapolation yields approximately 1 ns for A1 <--> A3. The pronounced kinetic differences imply different structural rearrangements. Crystallographic data support this conclusion: They show that formation of the A0 substate involves a major change of the protein structure; the distal histidine rotates about the C(alpha)-C(beta) bond, and its imidazole sidechain swings out of the heme pocket into the solvent, whereas it remains in the heme pocket in the A1 <--> A3 interconversion. The fast A1 <--> A3 exchange is inconsistent with structural models that involve differences in the protonation between A1 and A3.  相似文献   

8.
The structurally correlated dihedral angles epsilon and zeta are known for their large variability within the B-DNA backbone. We have used molecular modelling to study both energetic and mechanical features of these variations which can produce BI/BII transitions. Calculations were carried out on DNA oligomers containing either YpR or RpY dinucleotides steps within various sequence environments. The results indicate that CpA and CpG steps favour the BI/BII transition more than TpA or any RpY step. The stacking energy and its intra- and inter-strand components explain these effects. Analysis of neighbouring base pairs reveals that BI/BII transitions of CpG and CpA are easiest within (Y)n(R)n sequences. These can also induce a large vibrational amplitude for TpA steps within the BI conformation.  相似文献   

9.
The compound Rp-d[Gp(S)CpGp(S)CpGp(S)C], an analogue of the deoxyoligomer d(G-C)3, crystallizes in space group P2(1)2(1)2(1) with a = 34.90 A, b = 39.15 A and c = 20.64 A. The structure, which is not isomorphous with any previously determined deoxyoligonucleotide, was refined to an R factor of 14.5% at a resolution of 2.17 A, with 72 solvent molecules located. The two strands of the asymmetric unit form a right-handed double helix, which is a new example of a B-DNA conformation and brings to light an important and overlooked component of flexibility of the double helix. This flexibility is manifest in the alternation of the backbone conformation between two states, defined by the adjacent torsion angles epsilon and zeta, trans . gauche-(BI) and gauche-. trans (BII). BI is characteristic of classical of B-DNA and has an average C(1') to C(1') separation of 4.5 A. The corresponding separation for BII is 5.3 A. Each state is associated with a distinct phosphate orientation where the plane of the PO2 (or POS) group is alternately near horizontal or vertical with respect to the helix axis. The BI and BII conformations are out of phase on the two strands. As a consequence, on one strand purine-pyrimidine stacking is better than pyrimidine-purine, while the converse holds for the other strand. At each base-pair step, good and bad stacking alternate across the helix axis. The pattern of alternation is regular in the context of a fundamental dinucleotide repeat. Re-examination of the B-DNA dodecamer d(C-G-C-G-A-A-T-T-C-G-C-G) shows that the C-G-C-G regions contain the BI and BII conformations, and the associated dual phosphate orientation and asymmetric base stacking. Different mechanisms are used in the two structures to avoid clashes between guanine residues on opposite strands, a combination of lateral slide, tilt and helical twist in the present structure, and base roll, tilt and longitudinal slide (Calladine rules) in the dodecamer. The flexibility of the phosphate orientations demonstrated in this structure is important, since it offers a structural basis for protein-nucleic acid recognition.  相似文献   

10.
Phenomena occurring in the heme pocket after photolysis of carbonmonoxymyoglobin (MbCO) below about 100 K are investigated using temperature-derivative spectroscopy of the infrared absorption bands of CO. MbCO exists in three conformations (A substrates) that are distinguished by the stretch bands of the bound CO. We establish connections among the A substates and the substates of the photoproduct (B substates) using Fourier-transform infrared spectroscopy together with kinetic experiments on MbCO solution samples at different pH and on orthorhombic crystals. There is no one-to-one mapping between the A and B substates; in some cases, more than one B substate corresponds to a particular A substate. Rebinding is not simply a reversal of dissociation; transitions between B substates occur before rebinding. We measure the nonequilibrium populations of the B substates after photolysis below 25 K and determine the kinetics of B substate transitions leading to equilibrium. Transitions between B substates occur even at 4 K, whereas those between A substates have only been observed above about 160 K. The transitions between the B substates are nonexponential in time, providing evidence for a distribution of substates. The temperature dependence of the B substate transitions implies that they occur mainly by quantum-mechanical tunneling below 10 K. Taken together, the observations suggest that the transitions between the B substates within the same A substate reflect motions of the CO in the heme pocket and not conformational changes. Geminate rebinding of CO to Mb, monitored in the Soret band, depends on pH. Observation of geminate rebinding to the A substates in the infrared indicates that the pH dependence results from a population shift among the substates and not from a change of the rebinding to an individual A substate.  相似文献   

11.
12.
Rebinding and relaxation in the myoglobin pocket   总被引:28,自引:0,他引:28  
The infrared stretching bands of carboxymyoglobin (MbCO) and the rebinding of CO to Mb after photodissociation have been studied in the temperature range 10-300 K in a variety of solvents. Four stretching bands imply that MbCO can exist in four substates, A0-A3. The temperature dependences of the intensities of the four bands yield the relative binding enthalpies and and entropies. The integrated absorbances and pH dependences of the bands permit identification of the substates with the conformations observed in the X-ray data (Kuriyan et al., J. Mol. Biol. 192 (1986) 133). At low pH, A0 is hydrogen-bonded to His E7. The substates A0-A3 interconvert above about 180 K in a 75% glycerol/water solvent and above 270 K in buffered water. No major interconversion is seen at any temperature if MbCO is embedded in a solid polyvinyl alcohol matrix. The dependence of the transition on solvent characteristics is explained as a slaved glass transition. After photodissociation at low temperature the CO is in the heme pocket B. The resulting CO stretching bands which are identified as B substates are blue-shifted from those of the A substates. At 40 K, rebinding after flash photolysis has been studied in the Soret, the near-infrared, and the integrated A and B substates. All data lie on the same rebinding curve and demonstrate that rebinding is nonexponential in time from at least 100 ns to 100 ks. No evidence for discrete exponentials is found. Flash photolysis with monitoring in the infrared region shows four different pathways within the pocket B to the bound substates Ai. Rebinding in each of the four pathways B----A is nonexponential in time to at least 10 ks and the four pathways have different kinetics below 180 K. From the time and temperature dependence of the rebinding, activation enthalpy distributions g(HBA) and preexponentials ABA are extracted. No pumping from one A substate to another, or one B substate to another, is observed below the transition temperature of about 180 K. If MbCO is exposed to intense white light for 10-10(3) s before being fully photolyzed by a laser flash, the amplitude of the long-lived states increases. The effect is explained in terms of a hierarchy of substates and substate symmetry breaking. The characteristics of the CO stretching bands and of the rebinding processes in the heme pocket depend strongly on the external parameters of solvent, pH and pressure. This sensitivity suggests possible control mechanisms for protein reactions.  相似文献   

13.
Experimental characterization of the structural couplings in free B-DNA in solution has been elusive, because of subtle effects that are challenging to tackle. Here, the exploitation of the NMR measurements collected on four dodecamers containing a substantial set of dinucleotide sequences provides new, consistent correlations revealing the DNA intrinsic mechanics. The difference between two successive residual dipolar couplings (ΔRDCs) involving C6/8-H6/8, C3′-H3′ and C4′-H4′ vectors are correlated to the 31P chemical shifts (δP), which reflect the populations of the BI and BII backbone states. The δPs are also correlated to the internucleotide distances (Dinter) involving H6/8, H2′ and H2″ protons. Calculations of NMR quantities on high resolution X-ray structures and controlled models of DNA enable to interpret these couplings: the studied ΔRDCs depend mostly on roll, while Dinter are mainly sensitive to twist or slide. Overall, these relations demonstrate how δP measurements inform on key inter base parameters, in addition to probe the BI↔BII backbone equilibrium, and shed new light into coordinated motions of phosphate groups and bases in free B-DNA in solution. Inspection of the 5′ and 3′ ends of the dodecamers also supplies new information on the fraying events, otherwise neglected.  相似文献   

14.
Using the patch-voltage-clamp method it was shown that oscillations of an open channel are fast current transitions between 64 multiple sublevels. Average values of elementary conductance step (gamma) and substate lifetime (tau el) were determined for different kinds of ionic channels. The values of gamma lie in the range from 1.5 to 6 pS, and tau el--in the range from 0.15 to 0.5 ms. The channel transitions between the substates are highly cooperative processes. The data are regarded in terms of the hypothesis about clustery organization of ionic channels.  相似文献   

15.
Molecular dynamics simulations of a total duration of 30 ns in explicit solvent were carried out on the BPV-1-E2 protein complexed to a high-affinity DNA target containing the two hydrogen-bonded ACCG.CGGT half-sites separated by the noncontacted ACGT sequence. The analysis of the trajectories focuses on the DNA structure and on the dynamics. The data are compared to those issued from recent simulations made on three free targets that recognize E2 with different affinities. E2 does not drastically perturb the mechanic properties of the free DNA: the structural relationships between the BI/BII backbone substates and some helical parameters are preserved in the complex despite a severe slowing down of the phosphate group motions. The structures of both free and bound half-sites are very close to each other although the conformational space explored by these regions is narrowed when they are contacted by the protein. The enhanced plasticity found in the best free target spacers, mainly manifested through the backbone motions, allows a clear overlap between several free and bound global DNA features such as the base displacement. Furthermore, this flexibility is preserved in the complex. Our results support the hypothesis that E2 takes advantage of free predistorted structures that may minimize the DNA deformation cost. In addition, we observe that E2 is far from totally stiffening the DNA, suggesting that the entropic penalty inherent in the complex formation could be limited.  相似文献   

16.
Using the patch-voltage-clamp method kinetic parameters of single ionic channels were studied. It was found that the channels have long-lasting conductance substates along with the short-living ones. The conductance of a long-lasting substate fluctuates near an average sublevel in the boundaries of a restrict number (k) of elementary conductance steps. There is a direct relationship: the greater k, the longer is average duration (tau k) of the substate. For a given k the falling phase of tau k value distribution is approximately one-exponential. The substates of k-th order result in the multi-exponentiality of the ion current kinetics.  相似文献   

17.
The decay of Trp phosphorescence of proteins in fluid solutions was shown to provide a sensitive tool for probing the conformational homogeneity of these macromolecules in the millisecond to second time scale. Upon examination of 15 single Trp emitting proteins multiexponential decays were observed in 12 cases, a demonstration that the presence of slowly interconverting conformers in solution is more the norm rather than an exception. The amplitude of preexponential terms, from which the conformer equilibrium is derived, was found to be a sensitive function of solvent composition (buffer, pH, ionic strength and glycerol cosolvent), temperature, and complex formation with substrates and cofactors. In many cases, raising the temperature, a point is reached at which the decay becomes practically monoexponential, meaning that conformer interconversion rates have become commensurate with the triplet lifetime. Estimation of activation free energy barriers to interconversion shows that the large values of DeltaG* are rather similar among polypeptides and that the protein substates involved are sufficiently long-lived to display individual binding/catalytic properties.  相似文献   

18.
Proteins exist as conformational ensembles composed of multiple interchanging substates separated by kinetic barriers. Interconverting conformations are often difficult to probe, owing to their sparse population and transient nature. Here, we report the identification and characterization of a subset of conformations in ubiquitin that participate in microsecond-to-millisecond motions in the amides of Ile23, Asn25, and Thr55. A novel side chain to the backbone hydrogen bond that regulates these motions has also been identified. Combining our NMR studies with the available X-ray data, we have unearthed the physical process underlying slow motions—the interconversion of a type I into a type II β-turn flip at residues Glu51 through Arg54. Interestingly, the dominant conformer of wild-type ubiquitin observed in solution near neutral pH is only represented by about 22% of the crystal structures. The conformers generated as a result of the dynamics of the hydrogen bond appear to be correlated to ligand recognition by ubiquitin.  相似文献   

19.
Oguey C  Foloppe N  Hartmann B 《PloS one》2010,5(12):e15931

Background

The B-DNA major and minor groove dimensions are crucial for DNA-protein interactions. It has long been thought that the groove dimensions depend on the DNA sequence, however this relationship has remained elusive. Here, our aim is to elucidate how the DNA sequence intrinsically shapes the grooves.

Methodology/Principal Findings

The present study is based on the analysis of datasets of free and protein-bound DNA crystal structures, and from a compilation of NMR 31P chemical shifts measured on free DNA in solution on a broad range of representative sequences. The 31P chemical shifts can be interpreted in terms of the BI↔BII backbone conformations and dynamics. The grooves width and depth of free and protein-bound DNA are found to be clearly related to the BI/BII backbone conformational states. The DNA propensity to undergo BI↔BII backbone transitions is highly sequence-dependent and can be quantified at the dinucleotide level. This dual relationship, between DNA sequence and backbone behavior on one hand, and backbone behavior and groove dimensions on the other hand, allows to decipher the link between DNA sequence and groove dimensions. It also firmly establishes that proteins take advantage of the intrinsic DNA groove properties.

Conclusions/Significance

The study provides a general framework explaining how the DNA sequence shapes the groove dimensions in free and protein-bound DNA, with far-reaching implications for DNA-protein indirect readout in both specific and non specific interactions.  相似文献   

20.
BI-BII transitions in B-DNA.   总被引:3,自引:3,他引:0       下载免费PDF全文
Molecular modelling is used to study the conformational and energetic aspects of BI-BII transitions within the backbone of a B-DNA dodecamer d(CATGACGTCATG) whose fine structure has previously been determined by molecular modelling combined with NMR spectroscopy. It is shown that while the dodecamer under investigation does not contain any BII junctions, the central CpG step can most easily undergo the transition. More generally, it is also found that the base sequence and hence the backbone geometry of a DNA segment, strongly influences both the conformational impact of the transition, the associated energy barrier and the stability of the resulting BII state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号