首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Epithelial-like chondrocytes obtained from chick embryo were transformed with Rous sarcoma virus. Cellular transformation was monitored looking at the morphology change, the cell growth, and the expression of plasminogen activator. Analysis on polyacrylamide gel of intracellular and secreted proteins showed: 1) a disappearance of the specific products of differentiated chondrocytes; 2) a switch in the collagen synthesis from the type II, the chondrocyte-specific type, to the type I, characteristic of fibroblasts and other cells of mesenchymal origin; 3) an enhancement of fibronectin synthesis. Analysis of the proteins from chondrocytes infected with Rous-associated virus 1, a virus unable to induce cell transformation in vitro, indicated that the altered expression of the differentiated proteins in Rous sarcoma virus-infected chondrocytes depended upon the action of src gene product.  相似文献   

2.
Monolayer cultures of chondrocytes isolated from 11-day-old chick embryo vertebral cartilage were transformed by Rous sarcoma virus, and the effects of transformation on synthesis and secretion of extracellular proteins by these cells were studied. Transformation resulted in decreased synthesis of type II collagen which did not appear to be due to underhydroxylation of collagenous protein but to a decrease in the total amount synthesized. Carboxymethyl-cellulose chromatography and polyacrylamide disc gel electrophoresis failed to demonstrate any alpha 2 chains as a result of the transformation, suggesting that conversion of type II to type I collagen did not occur. In contrast to the decrease in collagen synthesis, synthesis of a molecule with biochemical characteristics similar to fibronectin increased markedly in virally transformed cultures. Although there were no significant differences in the amount of fibronectin-like molecules in the cell layers of normal and transformed chondrocytes, a marked increase of these molecules in the culture media of the transformed cells was demonstrated. These findings were confirmed by experiments with temperature-sensitive mutants of the virus.  相似文献   

3.
4.
5.
6.
Chicken vertebral chondrocytes, which normally grow in suspension, synthesize large amounts of cartilage extracellular matrix proteins, but little fibronectin. We have analyzed the effects of both substrate attachment and transformation with a temperature-sensitive mutant of Rous sarcoma virus on fibronectin gene expression in these cells. Our experiments show that viral transformation increases fibronectin synthesis to a greater extent than substrate attachment. Furthermore, transformed chondrocytes have lost the ability to decrease fibronectin synthesis in response to suspension culture, suggesting that transformation alters the normal attachment-responsive control of fibronectin gene expression. Finally, infected substrate-attached chondrocytes shifted to the nonpermissive temperature for transformation use fibronectin RNA more efficiently in protein synthesis than cells grown under the other conditions, suggesting for the first time a role for translational control of fibronectin gene expression.  相似文献   

7.
Endochondral bone formation involves the progression of epiphyseal growth plate chondrocytes through a sequence of developmental stages which include proliferation, differentiation, hypertrophy, and matrix calcification. To study this highly coordinated process, we infected growth plate chondrocytes with Rous sarcoma virus (RSV) and studied the effects of RSV transformation on cell proliferation, differentiation, matrix synthesis, and mineralization. The RSV-transformed chondrocytes exhibited a distinct bipolar, fibroblast-like morphology, while the mock-infected chondrocytes had a typical polygonal morphology. The RSV-transformed chondrocytes actively synthesized extracellular matrix proteins consisting mainly of type I collagen and fibronectin. RSV-transformed cells produced much less type X collagen than was produced by mock-transformed cells. There also was a significant reduction of proteoglycan levels secreted in both the cell-matrix layer and culture media from RSV-transformed chondrocytes. RSV-transformed chondrocytes expressed two- to- threefold more matrix metalloproteinase, while expressing only one-half to one-third of the alkaline phosphatase activity of mock infected cells. Finally, RSV-transformed chondrocytes failed to calcify the extracellular matrix, while mock-transformed cells deposited high levels of calcium and phosphate into their extracellular matrix. These results collectively indicate that RSV transformation disrupts the preprogrammed differentiation pattern of growth plate chondrocytes and inhibit chondrocyte terminal differentiation and mineralization. They also suggest that the expression of extracellular matrix proteins, type II and type X collagens, and the cartilage proteoglycans are important for chondrocyte terminal differentiation and matrix calcification. J. Cell. Biochem. 69:453–462, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
9.
M R McConnell  P M Blumberg 《Cytobios》1982,33(130):89-102
Chick embryo fibroblasts (CEFs) transformed by Rous sarcoma virus synthesize reduced amounts of fibronectin and also shed this protein into the medium more rapidly than do uninfected cells. We wanted to know whether or not the increased fibronectin shedding rate observed in RSV-transformed CEFs could be explained by an inability of fibronectin to form dimers and/or HMW complex. Our studies on normal and RSV-transformed fibroblasts labelled either metabolically or by lactoperoxidase-catalysed iodination indicate that RSV-induced transformation does not alter the subunit structure of either cell-bound or shed fibronectin, nor does it appear to alter the kinetics of conversion of dimeric fibronectin into HMW complex. We conclude that transformation of CEFs by Rous sarcoma virus does not prevent the assembly of fibronectin into dimeric and HMW complex forms and we offer alternative hypotheses for the more rapid shedding of fibronectin protein by these cells.  相似文献   

10.
11.
A mouse genomic clone was isolated by cross-hybridization with a DNA fragment which codes for the NH2-propeptide of chick alpha1(III) collagen. The region of cross-hybridization within the mouse clone was localized, its sequence determined, and an exon coding for the NH2-propeptide of mouse alpha1(III) collagen was identified. This DNA fragment hybridizes to an RNA species of approximately 5300 nucleotides, slightly larger than the major alpha2(I) collagen RNA species. The mouse type III collagen probe was used to examine the effect of transformation on alpha1(III) collagen RNA levels in mouse fibroblasts. The levels of type III and type I collagen mRNA levels were compared in control and sarcoma virus-transformed murine cell lines, as well as in NIH 3T3 cells transformed by members of the human ras oncogenes. The levels of type III RNA decreased about 10-15-fold in Moloney sarcoma virus-transformed cells and in a cell line transformed with a v-mos-containing plasmid, but showed only a 50% decrease in a Kirsten murine sarcoma virus-transformed BALB 3T3 cell line, and increased 4-fold in a Rous sarcoma virus (RSV)-transformed BALB 3T3 cell line. In contrast, the levels of alpha2(I) collagen mRNA are 8- to 10-fold lower in all these cell lines when compared to untransformed cells. NIH 3T3 cells transformed with two human ras oncogenes showed decreased levels of alpha2(I) and alpha1(III) mRNAs. In contrast to the RSV-transformed mouse cell line, RSV-transformed chick embryo fibroblasts contained much smaller amounts of type III RNA than control chick embryo fibroblasts. We conclude that the levels of alpha1(III) and alpha2(I) collagen mRNA are often but not necessarily coordinately regulated by transformation in mouse cells.  相似文献   

12.
Chondrogenesis, the differentiation of mesenchyme into cartilage, results in a change in composition of the extracellular matrix. The cartilage matrix contains several unique components, including type II collagen and chondroitin sulfate proteoglycan; it also contains fibronectin, a glycoprotein that mediates the interaction of cells with their matrix. We show that chick cartilage fibronectin mRNA contains an unusual pattern of alternatively spliced exons. Specifically, it contains exon IIIB but does not contain exon IIIA whereas fibronectin mRNA from mesenchyme contains both exons IIIB and IIIA. Thus the splicing pattern of the fibronectin mRNA must change from B+A+ to B+A- during chondrogenesis. Most fibronectin mRNA in other mesenchymal tissues contains exon IIIA but little exon IIIB (B-A+). Culturing of chondrocytes (cartilage-producing cells) results in loss of exon IIIB from fibronectin mRNA (B-A-). Manipulation of culture conditions to produce more adhesive chondrocytes (treatment with hyaluronidase, transformation with Rous sarcoma virus, and treatment with retinoic acid) increases the amount of fibronectin mRNA containing exon IIIA. These results suggest that exon IIIB may mediate the interactions of chondrocytes with the unique components of the cartilage matrix and exon IIIA may play a role in chondrocyte adhesion.  相似文献   

13.
14.
Fibronectin, the major cell surface glycoprotein of fibroblasts, is absent from differentiated cartilage matrix and chondrocytes in situ. However, dissociation of embryonic chick sternal cartilage with collagenase and trypsin, followed by inoculation in vitro reinitiates fibronectin synthesis by chondrocytes. Immunofluorescence microscopy with antibodies prepared against plasma fibronectin (cold insoluble globulin [CIG]) reveals fibronectin associated with the chondrocyte surface. Synthesis and secretion of fibronectin into the medium are shown by anabolic labeling with [35S]methionine or [3H]glycine, and identification of the secreted proteins by immunoprecipitation and sodium dodecyl sulfate (SDS)-disc gel electrophoresis. When chondrocytes are plated onto tissue culture dishes, the pattern of surface-associated fibronectin changes from a patchy into a strandlike appearance. Where epithelioid clones of polygonal chondrocytes develop, only short strands of fibronectin appear preferentially at cellular interfaces. This pattern is observed as long as cells continue to produce type II collagen that fails to precipitate as extracellular collagen fibers for some time in culture. Using the immunofluorescence double-labeling technique, we demonstrate that fibroblasts as well as chondrocytes which synthesize type I collagen and deposit this collagen as extracellular fibers show a different pattern of extracellular fibronectin that codistributes in large parts with collagen fibers. Where chondrocytes begin to accumulate extracellular cartilage matrix, fibronectin strands disappear. From these observations, we conclude (a) that chondrocytes synthesize fibronectin only in the absence of extracellular cartilage matrix, and (b) that fibronectin forms only short intercellular "stitches" in the absence of extracellular collagen fibers in vitro.  相似文献   

15.
16.
Chondrocytes isolated from the cephalic region of sterna from 14-day-old chick embryos used β1 integrins and required either Mg2+ or Mn2+ for attachment to plates coated with type I collagen, type II collagen, and fibronectin. β1 integrin was concentrated in adhesion plaques of the chondrocytes plated on type I collagen, type II collagen, and fibronectin substrates. Chondrocytes expressed at least 3 α-subunits, including α3, α5, and putative α2. α5, but not α3, had a higher molecular weight in chondrocytes than in fibroblasts. Levels of α3 and α5 were about 25-30% of that in fibroblasts. When the chondrocytes were cultured in the presence of ascorbate in suspension, the cells aggregated into clusters. This aggregation was dependent on β1 integrin and type II collagen.  相似文献   

17.
We have employed a highly specific in situ hybridization protocol that allows differential detection of mRNAs of collagen types I and II in paraffin sections from chick embryo tissues. All probes were cDNA restriction fragments encoding portions of the C-propeptide region of the pro alpha-chain, and some of the fragments also encoded the 3'-untranslated region of mRNAs of either type I or type II collagen. Smears of tendon fibroblasts and those of sternal chondrocytes from 17-d-old chick embryos as well as paraffin sections of 10-d-old whole embryos and of the cornea of 6.5-d-old embryos were hybridized with 3H-labeled probes for either type I or type II collagen mRNA. Autoradiographs revealed that the labeling was prominent in tendon fibroblasts with the type I collagen probe and in sternal chondrocytes with the type II collagen probe; that in the cartilage of sclera and limbs from 10-d-old embryos, the type I probe showed strong labeling of fibroblast sheets surrounding the cartilage and of a few chondrocytes in the cartilage, whereas the type II probe labeled chondrocytes intensely and only a few fibroblasts; and that in the cornea of 6.5-d-old embryos, the type I probe labeled the epithelial cells and fibroblasts in the stroma heavily, and the endothelial cells slightly, whereas the type II probe labeled almost exclusively the epithelial cells except for a slight labeling in the endothelial cells. These data indicate that embryonic tissues express these two collagen genes separately and/or simultaneously and offer new approaches to the study of the cellular regulation of extracellular matrix components.  相似文献   

18.
We have investigated the regulation of fibronectin and procollagen synthesis in normal and Rous sarcoma virus transformed primary avian tendon cells. These two proteins interact at the cell periphery and both are reportedly lost upon transformation. We thus examined whether their synthesis was coordinately regulated in Rous sarcoma virus-infected cells. It was found that while the synthesis of both pro alpha 1 and pro alpha 2 peptides was reduced upon transformation, the synthesis of fibronectin was not altered. Nevertheless, long term radiolabeling demonstrated that fibronectin levels were reduced in transformed cells. It is concluded that the reduction in levels of these components at the surface is brought about by different mechanisms; collagen levels being regulated by procollagen synthesis and fibronectin levels by degradation and/or release into the culture medium. The possibility is discussed that fibronectin is lost from the cell periphery of primary avian tendon cells as a consequence of decreased levels of anchoring collagen molecules.  相似文献   

19.
Using affinity chromatography with immobilized gelatin and native type I collagen, we have identified the major collagen-binding proteins in Nonidet P-40 extracts of chick embryo fibroblasts labeled with [35S] methionine. After washing the gelatin- or collagen-Sepharose beads with high ionic strength buffer, a 47,000-dalton protein was the only major protein besides fibronectin found to bind to these affinity beads. The isoelectric point of this protein was approximately 9.0, with a closely spaced minor spot. The total amount and the synthesis of this collagen-binding protein were both decreased in Rous sarcoma virus-transformed cells. This collagen-binding protein was found to be phosphorylated by incubating intact cells with [32P]orthophosphate. Phosphoamino acid analysis revealed that serine and threonine residues were phosphorylated, but tyrosine was not. Although quantities of the 47,000-dalton protein labeled with [35S]methionine were decreased by a factor 2.5 after transformation, the incorporation of [32P]orthophosphate/unit of protein was 5-7-fold higher in transformed cells. In temperature-sensitive mutant virus-infected cells, the amount of the 47,000-dalton protein was also decreased at the temperature permissive for transformation, and the incorporation of [32P]orthophosphate/protein was also increased. These studies establish that a major membrane-associated collagen-binding protein of fibroblasts is phosphorylated and that it is altered in both total quantity and degree of phosphorylation after malignant transformation.  相似文献   

20.
Changes in the regulation of collagen post-translational modification in transformed cells were studied in three established human sarcoma cell lines and in chick-embryo fibroblasts freshly transformed by Rous sarcoma virus. The collagens synthesized by all but one of these and by all the control human and chick-embryo cell lines were almost exclusively of types I and/or III. The relative rate of collagen synthesis and the amounts of prolyl hydroxylase activity and immunoreactive protein were markedly low in all the transformed human cell lines. The other enzymes studied, lysyl hydroxylase, hydroxylysyl galactosyltransferase and galactosylhydroxylysyl glucosyltransferase, never showed as large a decrease in activity as did prolyl hydroxylase, suggesting a more efficient regulation of the last enzyme than of the three others. The chick-embryo fibroblasts freshly transformed by Rous sarcoma virus differed from the human sarcoma cells in that prolyl hydroxylase activity was distinctly increased, whereas the decreases in immunoreactive prolyl hydroxylase protein and the three other enzyme activities were very similar to those in the simian-virus-40-transformed human fibroblasts. It seems possible that this increased prolyl hydroxylase activity is only a temporary phenomenon occurring shortly after the transformation, and may be followed by a decrease in activity later. The newly synthesized collagens of all the transformed cells that produced almost exclusively collagen types I and/or III had high extents of lysyl hydroxylation, and there was also an increase in the ratio of glycosylated to non-glycosylated hydroxylysine. The data suggest that one critical factor affecting modification is the rate of collagen synthesis, which affects the ratio of enzyme to substrate in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号