首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Green fluorescent protein (GFP) gene was transfected and expressed in murine embryonic stem (ES) cells under the control of the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter. Stably transfected cells were characterized by immunohistochemistry and by fluorescence microscopy. Cells containing GFP were differentiated to Type I and Type II astrocytes after induction by all-trans retinoic acid. Differentiated cells were expressed GFP and visualized by fluorescence microscopy. Differentiated cells expressed GFP were correlated with the expression of GFAP and morphological change. It demonstrates that the cell line expressed GFP can be used to trace the morphological changes of astrocytes during differentiation, and further for the isolation of astrocytes from the mixed cells differentiated from ES cell.  相似文献   

2.
3.
Bovine papilloma virus type-1 (BPV-1)-based expression plasmids TkBPVTH and CGalBPVTH encoding the rat tyrosine hydroxylase (TH) enzyme have been designed for the development of gene therapy for experimental Parkinson's disease. The aim of the present work was to examine the transfection of BPVTH plasmids to express a dopaminergic transgene in the monkey CV1-P fibroblast, rat C6 glioma and human NHA astrocyte cell cultures. The biological function of the transgene was estimated by analyzing the production of recombinant TH mRNA and protein, and the synthesis of L-dopa and dopamine. The highest transfection efficiency was obtained using TkBPVTH plasmids (5 microg). Furthermore, the expression of TkBPVTH plasmids was associated with significant synthesis of TH enzyme and L-dopa in the C6 and NHA cell cultures.  相似文献   

4.
5.
6.
7.
Isolation and characterization of the murine Nanog gene promoter   总被引:9,自引:0,他引:9  
Wu da Y  Yao Z 《Cell research》2005,15(5):317-324
  相似文献   

8.
9.
10.
Glial fibrillary acidic protein (GFAP), a protein largely limited to astrocytes, was studied in relation to the shape, motility, and differentiation and malignancy of astrocytoma cells in tissue culture by use of time-lapse photography and the immunoperoxidase method.A relationship was observed between the shape of astrocytes and the distribution of GFAP. Spindle-shaped cells showed abundant GFAP in the cell body and processes. In round or polyhedral cells without well developed processes the GFAP was largely perinuclear. As processes developed, GFAP extended out from the nucleus iri dense parallel arrays that radiated into the developing processes. Fully differentiated cells with stellate shape had abundant GFAP throughout.A relationship was also observed between the motility of astrocytes and GFAP. Stellate-shaped cells, showing paucity of locomotion and relatively rigid postures of processes, contained an abundance of GFAP which tended to form dense parallel arrays extending into the processes during their development. Spindle-shaped cells with extending and retracting processes and active migration also contained an abundance of GFAP but not organized into parallel arrays. Bulbous dilatations at the tips of processes (growth cones) contained abundant GFAP. There was also abundant GFAP in the intermittent dilatations along the processes of stellate cells. In contrast to these observations, a retraction of processes, a high degree of plasticity (undulating motion) and multidirectional locomotion were often associated with a paucity of GFAP in less differentiated cells. We hypothesize that GFAP filaments may be inhibitory to great plasticity of motion but not to extension-retraction movements.During mitosis GFAP was sparse at the spindle and in intercellular bridges. Colcemid caused GFAP to disappear from processes and peripheral parts of the cell and to become concentrated near the nucleus.In cultures derived from malignant tumors, undifferentiated and large multinucleated cells usually showed sparsity of GFAP, but occasional well differentiated stellate or spindle-shaped cells containing abundant GFAP were seen. Conversely, although cultures derived from benign tumors may have scattered less well differentiated cells, the differentiated cells with well developed processes were most densely stained and account for the high concentration of GFAP in tissue from these tumors.  相似文献   

11.
Glial fibrillary acidic protein (GFAP) is an intermediate filament protein found predominantly in astrocytes. This specificity has recommended the GFAP gene promoter for targeting transgene expression to astrocytes. Although both we [Brenner et al. J. Neurosci. 14:1030–1037, (1994)] and others [Mucke et al. New Biol. 3:465–474, (1991)] have reported astrocyte specificity for GFAP promoters, we demonstrate here that these DNA sequences can also direct activity in neurons. The pattern of neuronal activity varied with both the nature of the expressed sequence and the transgene insertion site. Specifically, neuronal expression was very high for a protective protein/cathepsin A minigene, moderate for lacZ and undetectable for GFP. These findings, coupled with a survey of the literature, recommend that investigators using GFAP-driven transgenes verify specificity for each line studied, using a detection system whose sensitivity is sufficient to detect a compromising level of misexpression.Special issue dedicated to Lawrence F. Eng.Physical address (use for express mail), Department of Neurobiology, SRC R556, 1717 6th Avenue South, University of Alabama at Birmingham, Birmingham, AL 35294-0021.  相似文献   

12.
13.
采用凝胶阻滞实验比较分析了鸡烟碱样乙酰胆碱受体(AChR)亚基基因-275/+36片段与分化/未分化肌细胞核抽提物的相互作用.发现未分化肌细胞核内存在两种直接识别AChR启动子的结合活性,其结合反应不能被AChRα亚基基因增强子(含E盒子)竞争阻断,揭示此结合活性与MyoD家族无关,并表现为基因特异性结合;两种结合活性中一种结合活性既存在于未分化细胞,也存在于分化肌细胞,另一种结合活性只存在于未分化肌细胞.存在于未分化肌细胞、特异识别基因的结合活性不同于MyoD家族,也不同于已发现的Id和I-mf(两者不能直接结合DNA),可能与基因在未分化肌细胞中表达的负调控有关.  相似文献   

14.
Thyroid hormones (3,5,3′-triiodo-l-thyronine, T3; 3,5,3′,5′-l-tetraiodothyronine, T4; TH) play crucial roles in the growth and differentiation of the central nervous system. In this study, we investigated the actions of TH on proliferation, viability, cell morphology, in vitro phosphorylation of glial fibrillary acidic protein (GFAP) and actin reorganization in C6 glioma cells. We first observe that long-term exposure to TH stimulates cell proliferation without induce cell death. We also demonstrate that after 3, 6, 12, 18, and 24 h treatment with TH, C6 cells and cortical astrocytes show a process-bearing shape. Furthermore, immunocytochemistry with anti-actin and anti-GFAP antibodies reveals that TH induces reorganization of actin and GFAP cytoskeleton. We also observe an increased in vitro 32P incorporation into GFAP recovered into the high-salt Triton insoluble cytoskeletal fraction after 3 and 24 h exposure to 5×10−8 and 10−6 M T3, and only after 24 h exposure to 10−9 M T4. These results show a T3 action on the phosphorylating system associated to GFAP and suggest a T3-independent effect of T4 on this cytoskeletal protein. In addition, C6 cells and astrocytes treated with lysophosphatidic acid, an upstream activator of the RhoA GTPase pathway, totally prevented the morphological alterations induced by TH, indicating that this effect could be mediated by the RhoA signaling pathway. Considering that IF network can be regulated by phosphorylation leading to reorganization of IF filamentous structure and that alterations of the microfilament organization may have important implications in glial functions, the effects of TH on glial cell cytoskeleton could be implicated in essential neural events such as brain development.  相似文献   

15.
Recombinant adeno-associated virus (AAV) vectors are versatile tools for gene transfer to the central nervous system (CNS) and proof-of-concept studies in adult rodents have shown that the use of cell type-specific promoters is sufficient to target AAV-mediated transgene expression to glia. However, neurological disorders caused by glial pathology usually have an early onset. Therefore, modelling and treatment of these conditions require expanding the concept of targeted glial transgene expression by promoter selectivity for gene delivery to the immature CNS. Here, we have investigated the AAV-mediated green fluorescent protein (GFP) expression driven by the myelin basic protein (MBP) or glial fibrillary acidic protein (GFAP) promoters in the developing mouse brain. Generally, the extent of transgene expression after infusion at immature stages was widespread and higher than in adults. The GFAP promoter-driven GFP expression was found to be highly specific for astrocytes following vector infusion to the brain of neonates and adults. In contrast, the selectivity of the MBP promoter for oligodendrocytes was poor following neonatal AAV delivery, but excellent after vector injection at postnatal day 10. To extend these findings obtained in naïve mice to a disease model, we performed P10 infusions of AAV-MBP-GFP in aspartoacylase (ASPA)-deficient mouse mutants presenting with early onset oligodendrocyte pathology. Spread of GFP expression and selectivity for oligodendrocytes in ASPA-mutants was comparable with our observations in normal animals. Our data suggest that direct AAV infusion to the developing postnatal brain, utilising cellular promoters, results in targeted and long-term transgene expression in glia. This approach will be relevant for disease modelling and gene therapy for the treatment of glial pathology.  相似文献   

16.
17.
The murine embryonal stem (ES) cell virus (MESV) can express transgenes from the long terminal repeat (LTR) promoter/enhancer in undifferentiated ES cells, but expression is turned off upon differentiation to embryoid bodies (EBs) and hematopoietic cells in vitro. We examined whether a human immunodeficiency virus type 1-based lentivirus vector pseudotyped with the vesicular stomatitis virus G protein (VSV-G) could transduce ES cells efficiently and express the green fluorescent protein (GFP) transgene from an internal phosphoglycerate kinase (PGK) promoter throughout development to hematopoietic cells in vitro. An oncoretrovirus vector containing the MESV LTR and the GFP gene was used for comparison. Fluorescence-activated cell sorting analysis of transduced CCE ES cells showed 99.8 and 86.7% GPF-expressing ES cells in the VSV-G-pseudotyped lentivirus (multiplicity of infection [MOI] = 59)- and oncoretrovirus (MOI = 590)-transduced cells, respectively. Therefore, VSV-G pseudotyping of lentiviral and oncoretrovirus vectors leads to efficient transduction of ES cells. Lentivirus vector integration was verified in the ES cell colonies by Southern blot analysis. When the transduced ES cells were differentiated in vitro, expression from the oncoretrovirus LTR was severely reduced or extinct in day 6 EBs and ES cell-derived hematopoietic colonies. In contrast, many lentivirus-transduced colonies, expressing the GFP gene in the undifferentiated state, continued to express the transgene throughout in vitro development to EBs at day 6, and many continued to express in cells derived from hematopoietic colonies. This experimental system can be used to analyze lentivirus vector design for optimal expression in hematopoietic cells and for gain-of-function experiments during ES cell development in vitro.  相似文献   

18.
Glial fibrillary acidic protein (GFAP) is the major intermediate filament protein of astrocytes, and its expression changes dramatically during development and following injury. To facilitate study of the regulation of GFAP expression, we have generated dual transgenic mice expressing both firefly luciferase under the control of a 2.2 kb human GFAP promoter and Renilla luciferase under the control of a 0.5 kb human Glyceraldehyde 3 phosphate dehydrogenase (GAPDH) promoter for normalization of the GFAP signal. The GFAP-fLuc was highly expressed in brain compared to other tissues, and was limited to astrocytes, whereas the GAPDH-RLuc was more widely expressed. Normalization of the GFAP signal to the GAPDH signal reduced the inter-individual variability compared to using the GFAP signal alone. The GFAP/GAPDH ratio correctly reflected the up-regulation of GFAP that occurs following retinal degeneration in FVB/N mice because of the rd mutation. Following kainic acid-induced seizures, changes in the GFAP/GAPDH ratio precede those in total GFAP protein. In knock-in mice expressing the R236H Alexander disease mutant, GFAP promoter activity is only transiently elevated and may not entirely account for the accumulation of GFAP protein that takes place.  相似文献   

19.
Abstract: The cellular functions of the intermediate filament family including glial fibrillary acidic protein (GFAP) are not well known yet beyond their roles as structural elements of cells. Expression of GFAP, which is specific in astrocytes and regulated developmentally, suggests its involvement in cell growth and differentiation of astrocytes. We transfected murine GFAP cDNA into a rat astrocytoma C6 cell line to assess the specific effect of GFAP on cells. Two stable GFAP-transfected cell lines, GFC6-5 and GFC6-6, exhibited a series of morphological and growth characteristics that distinguish them from their counterparts, i.e., NeoC6 cells transfected only with the neomycin-resistant gene, and native C6 cells. Both GFC6-5 and GFC6-6 cells showed elongated cell shapes with extended processes rich in GFAP, markedly suppressed cell growth, and decreased bromodeoxyuridine uptake. Western blot analysis revealed a remarkable increase of GFAP expression in GFC6-5 and GFC6-6 compared with that in NeoC6 and C6, in contrast to similar vimentin expression in all cell lines. The results indicate that the expression of GFAP has dramatic effects on cell morphology and cell growth suppression in C6 cells, suggesting that GFAP may function as a tumor suppressor in astrocytoma.  相似文献   

20.
Bone marrow mesenchymal stem cells (MSC) are multipotent cells. To explain their plasticity, we postulated that undifferentiated MSC may express proteins from other tissues such as neuronal tissues. MSC are obtained by two different approaches: plastic adhesion or negative depletion (RosetteSep and magnetic beads CD45/glycophorin A). MSC are evaluated through FACS analysis using a panel of antibodies (SH2, SH3, CD14, CD33, CD34, CD45, etc.). To confirm the multipotentiality in vitro, we have differentiated MSC into adipocytes, chondrocytes, osteocytes, and neuronal/glial cells using specific induction media. We have evaluated neuronal and glial proteins (Nestin, Tuj-I, betaIII Tubulin, tyrosine hydroxylase [TH], MAP-2, and GFAP) by using flow cytometry, Western blots, and RT-PCR. We found that MSC constituently express native immature neuronal proteins such as Nestin and Tuj-1. After only five passages, MSC can already express more mature neuronal or glial proteins, such as TH, MAP-2, and GFAP, without any specific induction. We noticed an increase in the expression of more mature neuronal/glial proteins (TH, MAP-2, and GFAP) after exposure to neural induction medium, thus confirming the differentiation of MSC into neurons and astrocytes. The constitutive expression of Nestin or Tuj-1 by MSC suggests that these cells are "multidifferentiated" cells and thus can retain the ability for neuronal differentiation, enhancing their potentiality to be employed in the treatment of neurological diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号