首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The steady-state isometric force following active muscle shortening is smaller than the corresponding force obtained for purely isometric contractions. This so-called residual force depression has been observed consistently for more than half a century, however its mechanism remains a matter of scientific debate. [Maréchal, G., Plaghki, L., 1979. The deficit of the isometric tetanic tension redeveloped after a release of frog muscle at a constant velocity. J. Gen. Physiol. 73, 453–467] suggested that force depression might be caused by alterations in the cross-bridge kinetics following muscle shortening, but there is no research studying force depression systematically for altered cross-bridge kinetic conditions. The purpose of this study was to investigate if force depression affects so-called weakly and strongly bound cross-bridges to the same degree. In order to achieve this aim, we modified the ratio of weakly to strongly bound cross-bridges with 2,3-butanedione monoxime (BDM) in single frog fibers. BDM inhibits the formation of strongly bound cross-bridges in a dose-dependent manner, thus the ratio of weakly to strongly bound cross-bridges could be altered in a systematic way. We found that the absolute amount of force depression was decreased by 50% while the relative amount was decreased by 12% in BDM exposed fibers compared to fibers in normal Ringer's solution. Furthermore, force depression was accompanied by a decrease in stiffness that was much greater in normal compared to BDM exposed fibers, leading to the conclusion that force depression was caused by an inhibition of cross-bridge attachment following fiber shortening and that this inhibition primarily affected cross-bridges in the strongly bound states.  相似文献   

2.
Residual force enhancement (FE) following stretch of an activated muscle is a well accepted property of skeletal muscle contraction. However, the mechanism underlying FE remains unknown. A crucial assumption on which some proposed mechanisms are based is the idea that forces in the enhanced state cannot exceed the steady-state isometric force at a sarcomere length associated with optimal myofilament overlap. Although there are a number of studies in which forces in the enhanced state were compared with the corresponding isometric forces on the plateau of the force-length relationship, these studies either did not show enhanced forces above the plateau or, if they did, they lacked measurements of sarcomere lengths confirming the plateau region. Here, we revisited this question by optimizing stretch conditions and measuring the average sarcomere lengths in isolated fibers, and we found that FE exceeded the maximal isometric reference force obtained at the plateau of the force-length relationship consistently (mean+/-SD: 4.8+/-2.1%) and by up to 10%. When subtracting the passive component of FE from the total FE, the enhanced forces remained greater than the isometric plateau force (mean+/-SD: 4.3+/-2.0%). Calcium-induced increases in passive forces, known to be present in single fibers and myofibrils, are too small to account for the FE observed here. We conclude that FE cannot be explained exclusively with a stretch-induced development of sarcomere length nonuniformities, that FE in single fibers may be associated with the recruitment of additional contractile force, and that isometric steady-state forces in the enhanced state are not uniquely determined by sarcomere lengths.  相似文献   

3.
Calcium controls the level of muscle activation via interactions with the troponin complex. Replacement of the native, skeletal calcium-binding subunit of troponin, troponin C, with mixtures of functional cardiac and mutant cardiac troponin C insensitive to calcium and permanently inactive provides a novel method to alter the number of myosin cross-bridges capable of binding to the actin filament. Extraction of skeletal troponin C and replacement with functional and mutant cardiac troponin C were used to evaluate the relationship between the extent of thin filament activation (fractional calcium binding), isometric force, and the rate of force generation in muscle fibers independent of the calcium concentration. The experiments showed a direct, linear relationship between force and the number of cross-bridges attaching to the thin filament. Further, above 35% maximal isometric activation, following partial replacement with mixtures of cardiac and mutant troponin C, the rate of force generation was independent of the number of actin sites available for cross-bridge interaction at saturating calcium concentrations. This contrasts with the marked decrease in the rate of force generation when force was reduced by decreasing the calcium concentration. The results are consistent with hypotheses proposing that calcium controls the transition between weakly and strongly bound cross-bridge states.  相似文献   

4.
Mechanical and two-dimensional (2D) x-ray diffraction studies suggest that during isometric steady-state contraction, strongly bound cross-bridges mostly occupy early states in the power stroke, whereas rigor or rigor-like cross-bridges could not be detected. However, it remained unclear whether cross-bridges accumulate, at least transiently, in rigor or rigor-like states in response to rapid-length releases. We addressed this question using time-resolved recording of 2D x-ray diffraction patterns of permeabilized fibers from rabbit psoas muscles during isometric contraction and when small, ramp-shaped length-releases were applied to these fibers. This maneuver allows a transient accumulation of cross-bridges in states near the end of their power stroke. By lowering the temperature to 5°C, force transients were slowed sufficiently to record diffraction patterns in several 2-4-ms time frames before and during such releases, using the RAPID detector (Refined ADC Per Input Detector) at beam line ID02 of the European Synchrotron Radiation Facility (Grenoble, France). The same sequence of frames was recorded in relaxation and rigor. Comparisons of 2D patterns recorded during isometric contraction, with patterns recorded at different [MgATPγS] and at 1°C, showed that changes in intensity profiles along the first and sixth actin layer lines (ALL1 and ALL6, respectively) allowed for discernment of the formation of rigor or rigor-like cross-bridges. During ramp-shaped releases of activated fibers, intensity profiles along ALL1 and ALL6 did not reveal evidence for the accumulation of rigor-like cross-bridges. Instead, changes in the ALL6-profile suggest that during ramp-shaped releases, cross-bridges transiently accumulate in a structural state that, to our knowledge, was not previously seen, but that could well be a strongly bound state with the light-chain binding domain in a conformation between a near prepower-stroke (isometric) orientation and the orientation in rigor.  相似文献   

5.
Previously we showed that stiffness of relaxed fibers and active force generated in single skinned fibers of rabbit psoas muscle are inhibited in parallel by actin-binding fragments of caldesmon, an actin-associated protein of smooth muscle, under conditions in which a large fraction of cross-bridges is weakly attached to actin (ionic strength of 50 mM and temperature of 5 degrees C). These results suggested that weak cross-bridge attachment to actin is essential for force generation. The present study provides evidence that this is also true for physiological ionic strength (170 mM) at temperatures up to 30 degrees C, suggesting that weak cross-bridge binding to actin is generally required for force generation. In addition, we show that the inhibition of active force is not a result of changes in cross-bridge cycling kinetics but apparently results from selective inhibition of weak cross-bridge binding to actin. Together with our previous biochemical, mechanical, and structural studies, these findings support the proposal that weak cross-bridge attachment to actin is an essential intermediate on the path to force generation and are consistent with the concept that isometric force mainly results from an increase in strain of the attached cross-bridge as a result of a structural change associated with the transition from a weakly bound to a strongly bound actomyosin complex. This mechanism is different from the processes responsible for quick tension recovery that were proposed by Huxley and Simmons (Proposed mechanism of force generation in striated muscle. Nature. 233:533-538.) to represent the elementary mechanism of force generation.  相似文献   

6.
Thin filament regulation of muscle contraction is believed to be mediated by both Ca2+ and strongly bound myosin cross-bridges. We found that secophalloidin (SPH, 5-8 mM) activates cross-bridge cycling without Ca2+ causing isometric force comparable to that induced by Ca2+. At saturated [SPH], Ca2+ further increased force by 20%. SPH-induced force was reversible upon washing with a relaxing solution. However, there was more than 30% irreversible loss in subsequent Ca2+-activated force. We hypothesize that SPH activates muscle via strongly bound cross-bridges. SPH-activated contraction provides a new model for studying the role of Ca2+ and cross-bridges in muscle regulation.  相似文献   

7.
The relationship of the biochemical states to the mechanical events in contraction of smooth muscle cross-bridges is reviewed. These studies use direct measurements of the kinetics of Pi and ADP release. The rate of release of Pi from thiophosphorylated cycling cross-bridges held isometric was biphasic with turnovers of 1.8 s-1 and 0.3 s-1, reflecting properties and forces directly acting on cross-bridges through mechanisms such as positive strain and inhibition by high-affinity MgADP binding. Fluorescent transients reporting release of an ADP analogue 3'-deac-edaADP were significantly faster in phasic than in tonic smooth muscles. Thiophosphorylation of myosin regulatory light chains (RLCs) increased and positive strain decreased the release rate around twofold. The rates of ADP release from rigor cross-bridges and the steady-state Pi release from cycling isometric cross-bridges are similar, indicating that the ADP-release step or an isomerization preceding it may limit the ATPase rate. Thus ADP release in phasic and tonic smooth muscles is a regulated step with strain- and dephosphorylation-dependence. High affinity of cross-bridges for ADP and slow ADP release prolong the fraction of the duty cycle occupied by strongly bound AM.ADP state(s) and contribute to the high economy of force that is characteristic of smooth muscle. RLC thiophosphorylation led to structural changes in smooth muscle cross-bridges consistent with our findings that thiophosphorylation and strain modulate product release.  相似文献   

8.
Stretch-induced force enhancement has been observed in a variety of muscle preparations and on structural levels ranging from single fibers to in vivo human muscles. It is a well-accepted property of skeletal muscle. However, the mechanism causing force enhancement has not been elucidated, although the sarcomere-length non-uniformity theory has received wide support. The purpose of this paper was to re-investigate stretch-induced force enhancement in frog single fibers by testing specific hypotheses arising from the sarcomere-length non-uniformity theory. Single fibers dissected from frog tibialis anterior (TA) and lumbricals (n=12 and 22, respectively) were mounted in an experimental chamber with physiological Ringer's solution (pH=7.5) between a force transducer and a servomotor length controller. The tetantic force-length relationship was determined. Isometric reference forces were determined at optimum length (corresponding to the maximal, active, isometric force), and at the initial and final lengths of the stretch experiments. Stretch experiments were performed on the descending limb of the force-length relationship after maximal tetanic force was reached. Stretches of 2.5-10% (TA) and 5-15% lumbricals of fiber length were performed at 0.1-1.5 fiber lengths/s. The stretch-induced, steady-state, active isometric force was always equal or greater than the purely isometric force at the muscle length from which the stretch was initiated. Moreover, for stretches of 5% fiber length or greater, and initiated near the optimum length of the fiber, the stretch-enhanced active force always exceeded the maximal active isometric force at optimum length. Finally, we observed a stretch-induced enhancement of passive force. We conclude from these results that the sarcomere length non-uniformity theory alone cannot explain the observed force enhancement, and that part of the force enhancement is associated with a passive force that is substantially greater after active compared to passive muscle stretch.  相似文献   

9.
The effects of myosin regulatory light chain (RLC) phosphorylation and strain on adenosine diphosphate (ADP) release from cross-bridges in phasic (rabbit bladder (Rbl)) and tonic (femoral artery (Rfa)) smooth muscle were determined by monitoring fluorescence transients of the novel ADP analog, 3'-deac-eda-ADP (deac-edaADP). Fluorescence transients reporting release of 3'-deac-eda-ADP were significantly faster in phasic (0.57 +/- 0.06 s(-1)) than tonic (0.29 +/- 0.03 s(-1)) smooth muscles. Thiophosphorylation of regulatory light chains increased and strain decreased the release rate approximately twofold. The calculated (k-ADP/k+ADP) dissociation constant, Kd of unstrained, unphosphorylated cross-bridges for ADP was 0.6 microM for rabbit bladder and 0.3 microM for femoral artery. The rates of ADP release from rigor bridges and reported values of Pi release (corresponding to the steady-state adenosine triphosphatase (ATPase) rate of actomyosin (AM)) from cross-bridges during a maintained isometric contraction are similar, indicating that the ADP-release step or an isomerization preceding it may be limiting the adenosine triphosphatase rate. We conclude that the strain- and dephosphorylation-dependent high affinity for and slow ADP release from smooth muscle myosin prolongs the fraction of the duty cycle occupied by strongly bound actomyosin.ADP state(s) and contributes to the high economy of force.  相似文献   

10.
The rate of relaxation from steady-state force in rabbit psoas fiber bundles was examined before and after phosphorylation of myosin regulatory light chain (RLC). Relaxation was initiated using diazo-2, a photolabile Ca2+ chelator that has low Ca2+ binding affinity (K(Ca) = 4.5 x 10(5) M(-1)) before photolysis and high affinity (K(Ca) = 1.3 x 10(7) M(-1)) after photolysis. Before phosphorylating RLC, the half-times for relaxation initiated from 0.27 +/- 0.02, 0.51 +/- 0.03, and 0.61 +/- 0.03 Po were 90 +/- 6, 140 +/- 6, and 182 +/- 9 ms, respectively. After phosphorylation of RLC, the half-times for relaxation from 0.36 +/- 0.03 Po, 0.59 +/- 0.03 Po, and 0.65 +/- 0.02 Po were 197 +/- 35 ms, 184 +/- 35 ms, and 179 +/- 22 ms. This slowing of relaxation rates from steady-state forces less than 0.50 Po was also observed when bundles of fibers were bathed with N-ethylmaleimide-modified myosin S-1, a strongly binding cross-bridge derivative of S1. These results suggest that phosphorylation of RLC slows relaxation, most likely by slowing the apparent rate of transition of cross-bridges from strongly bound (force-generating) to weakly bound (non-force-generating) states, and reduces or eliminates Ca2+ and cross-bridge activation-dependent changes in relaxation rates.  相似文献   

11.
The residual force enhancement following muscle stretch might be associated with an increase in the proportion of attached cross-bridges, as supported by stiffness measurements. In this case, it could be caused by an increase in the attachment or a decrease in the detachment rate of cross-bridges, or a combination of the two. The purpose of this study was to investigate if the stretch-induced force enhancement is related to cross-bridge attachment/detachment kinetics. Single muscle fibres dissected from the lumbrical muscle of frog were place at a length approximately 20% longer than the plateau of the force-length relationship; they were maximally activated, and after full isometric force was reached, ramp stretches were imposed with amplitudes of 5 and 10% fibre length, at a speed of 40% fibre length s(-1). Experiments were performed in Ringer's solution, and with the addition of 2, 5 and 10 nM of 2,3-butanedione monoxime (BDM), a drug that places cross-bridges in a pre-power-stroke, state, inhibiting force production. The total force following stretch was higher than the corresponding force measured after isometric contraction at the corresponding length. This residual force enhancement was accompanied by an increase relaxation time. BDM, which decreases force production during isometric contractions, considerably increased the relative levels of force enhancement. BDM also increased relaxation times after stretch, beyond the levels observed during reference contractions in Ringer's solution, and beyond isometric control tests at the corresponding BDM concentrations. Together, these results support the idea that force enhancement is caused, at least in part, by a decrease in cross-bridge detachment rates, as manifested by the increased relaxation times following fibre stretch.  相似文献   

12.
S Xu  S Malinchik  D Gilroy  T Kraft  B Brenner    L C Yu 《Biophysical journal》1997,73(5):2292-2303
X-ray diffraction patterns were obtained from skinned rabbit psoas muscle under relaxing and rigor conditions over a wide range of ionic strengths (50-170 mM) and temperatures (1 degree C-30 degrees C). For the first time, an intensification of the first actin-based layer line is observed in the relaxed muscle. The intensification, which increases with decreasing ionic strength at various temperatures, including 30 degrees C, parallels the formation of weakly attached cross-bridges in the relaxed muscle. However, the overall intensities of the actin-based layer lines are low. Furthermore, the level of diffuse scattering, presumably a measure of disorder among the cross-bridges, is little affected by changing ionic strength at a given temperature. The results suggest that the intensification of the first actin layer line is most likely due to the cross-bridges weakly bound to actin, and that the orientations of the weakly attached cross-bridges are hardly distinguishable from the detached cross-bridges. This suggests that the orientations of the weakly attached cross-bridges are not precisely defined with respect to the actin helix, i.e., nonstereospecific. Intensities of the myosin-based layer lines are only marginally affected by changing ionic strength, but markedly by temperature. The results could be explained if in a relaxed muscle the cross-bridges are distributed between a helically ordered and a disordered population with respect to myosin filament structure. Within the disordered population, some are weakly attached to actin and others are detached. The fraction of cross-bridges in the helically ordered assembly is primarily a function of temperature, while the distribution between the weakly attached and the detached within the disordered population is mainly affected by ionic strength. Some other notable features in the diffraction patterns include a approximately 1% decrease in the pitch of the myosin helix as the temperature is raised from 4 degrees C to 20 degrees C.  相似文献   

13.
The isometric contractile properties of frog (Rana pipiens) and toad (Bufo bufo) sartorii have been studied over the temperature range from 0 to 20 degrees C. The isometric twitch tension was found to vary considerably between these two species and between muscles in the same species. Between 0 and 4 degrees C there was very little change in maximum isometric twitch tension. Between 4 and 12 degrees C several muscles from frog or toad showed a potentiation of twitch tension whereas others showed a decline. Over this temperature range the toad sartorii consistently demonstrated a greater potentiation. By 12 degrees C a steady decline in twitch tension in both muscles was seen as the temperature range the toad sartorii consistently demonstrated a greater potentiation. By 12 degrees C a steady decline in twitch tension in both muscles was seen as the temperature approached 20 degrees C. The maximum isometric tetanic tension recorded between 18 and 20 degrees C increased fractionally to an average of 1.504 +/- 0.029 (n = 4) for frog sartorii and to 1.377 +/- 0.008 (n = 5) for toad sartorii. The time to peak twitch tension and the half-relaxation time decreased markedly with an increase in temperature. Moreover, the half-relaxation time was reduced by a greater proportion than the time to peak twitch tension. Measurements of instantaneous stiffness by controlled velocity releases from the plateau of isometric tetani revealed that the large increase in isometric tetanus tension as the muscle was warmed was not accompanied by a corresponding increase in the total number of active cross-bridges. The possibility that a decreased availability of intracellular Ca2+ ions at the contractile sites contributing to the fall of isometric twitch tension at elevated temperatures is discussed. The possibility exists that at elevated temperatures a change inthe intrinsic contractile ability of the muscle occurs which produces an increased tension per cross-bridge.  相似文献   

14.
Force development in smooth muscle, as in skeletal muscle, is believed to reflect recruitment of force-generating myosin cross-bridges. However, little is known about the events underlying cross-bridge recruitment as the muscle cell approaches peak isometric force and then enters a period of tension maintenance. In the present studies on single smooth muscle cells isolated from the toad (Bufo marinus) stomach muscularis, active muscle stiffness, calculated from the force response to small sinusoidal length changes (0.5% cell length, 250 Hz), was utilized to estimate the relative number of attached cross-bridges. By comparing stiffness during initial force development to stiffness during force redevelopment immediately after a quick release imposed at peak force, we propose that the instantaneous active stiffness of the cell reflects both a linearly elastic cross-bridge element having 1.5 times the compliance of the cross-bridge in frog skeletal muscle and a series elastic component having an exponential length-force relationship. At the onset of force development, the ratio of stiffness to force was 2.5 times greater than at peak isometric force. These data suggest that, upon activation, cross-bridges attach in at least two states (i.e., low-force-producing and high-force-producing) and redistribute to a steady state distribution at peak isometric force. The possibility that the cross-bridge cycling rate was modulated with time was also investigated by analyzing the time course of tension recovery to small, rapid step length changes (0.5% cell length in 2.5 ms) imposed during initial force development, at peak force, and after 15 s of tension maintenance. The rate of tension recovery slowed continuously throughout force development following activation and slowed further as force was maintained. Our results suggest that the kinetics of force production in smooth muscle may involve a redistribution of cross-bridge populations between two attached states and that the average cycling rate of these cross-bridges becomes slower with time during contraction.  相似文献   

15.
The effect of [MgADP] on relaxation from isometric tension, initiated by reducing free [Ca2+] through photolysis of the caged photolabile Ca2+ chelator diazo-2, was determined at 20 degrees C in alpha-toxin permeabilized tonic (rabbit femoral artery, Rf) and phasic (rabbit bladder, Rb) smooth muscle. In Rf, the shape of the relaxation curve was clearly biphasic, consisting of a slow "plateau" phase followed by a monotonic exponential decline with rate constant k. The duration of the plateau (d = 44 +/- 4 s, mean +/- SEM, n = 28) was well correlated (R = 0.92) with the total t1/2 of relaxation that was 66 +/- 3 s (n = 28) in the presence of 20 mM creatine phosphate (CP), and was prolonged in the absence of CP (t1/2 = 83 +/- 3 s, n = 7); addition of 100 microM MgADP further slowed relaxation (t1/2 = 132 +/- 7 s, n = 14). In Rb, a plateau was not detectable and t1/2 (= 15 +/- 2 s, n = 6) was not affected by 100 microM MgADP. In Rf the Q10 between 20 degrees C and 30 degrees C was 4.3 +/- 0.4 for d-1 and 2.8 +/- 0.3 for k (n = 8; p = 0.006). The regulatory myosin light chain (MLC20) in Rf was dephosphorylated at 0.07 +/- 0.02 s-1, from 42 +/- 3% before to 20 +/- 2% after photolysis of diazo-2, reaching basal values at a time when force had fallen by only 40%. We conclude that, in the presence of ATP, as during rigor, the affinity of dephosphorylated cross-bridges for MgADP is significantly higher in tonic than in phasic smooth muscle and contributes to the maintenance of force at low levels of phosphorylation. The MgADP dependence of the post-dephosphorylation phase of relaxation is consistent with its being rate-limited by the slow off-rate of ADP from cross-bridges that were dephosphorylated while in force-generating ADP-bound (AM*D) cross-bridge states. The fourfold faster off-rate of ADP from AM*D in the phasic, Rb, compared to tonic, Rf, smooth muscle is a major determinant of the different kinetics of relaxation in the two types of smooth muscle.  相似文献   

16.
Xu S  Martyn D  Zaman J  Yu LC 《Biophysical journal》2006,91(10):3768-3775
Low angle x-ray diffraction patterns from relaxed permeabilized rabbit cardiac trabeculae and psoas muscle fibers were compared. Temperature was varied from 25 degrees C to 5 degrees C at 200 mM and 50 mM ionic strengths (mu), respectively. Effects of temperature and mu on the intensities of the myosin layer lines (MLL), the equatorial intensity ratio I(1,1)/I(1,0), and the spacing of the filament lattice are similar in both muscles. At 25 degrees C, particularly at mu = 50 mM, the x-ray patterns exhibited up to six orders of MLL and sharp meridional reflections, signifying that myosin heads (cross-bridges) are distributed in a well-ordered helical array. Decreasing temperature reduced MLL intensities but increased I(1,1)/I(1,0). Decreases in the MLL intensities indicate increasing disorder in the distribution of cross-bridges on the thick filaments surface. In the skeletal muscle, order/disorder is directly correlated with the hydrolysis equilibrium of ATP by myosin, [M.ADP.P(i)]/[M.ATP]. Similar effects of temperature on MLL and similar biochemical ATP hydrolysis pathway found in both types of muscles suggest that the order/disorder states of cardiac cross-bridges may well be correlated with the same biochemical and structural states. This implies that in relaxed cardiac muscle under physiological conditions, the unattached cross-bridges are largely in the M.ADP.P(i) state and with the lowering of the temperature, the equilibrium is increasingly in favor of [M.ATP] and [A.M.ATP]. There appear to be some differences in the diffraction patterns from the two muscles, however. Mainly, in the cardiac muscle, the MLL are weaker, the I(1,1)/I(1,0) ratio tends to be higher, and the lattice spacing D(10), larger. These differences are consistent with the idea that under a wide range of conditions, a greater fraction of cross-bridges is weakly bound to actin in the myocardium.  相似文献   

17.
Access to different intermediates that follow ATP cleavage in the catalytic cycle of skeletal muscle actomyosin is a major goal of studies that aim toward an understanding of chemomechanical coupling in muscle contraction. 2,4-Dinitrophenol (DNP, 10(-2) M) inhibits muscle contraction, even though it accelerates the ATPase activity of isolated myosin. Here we used myosin subfragment 1 (S1), acto-S1 and mammalian skinned fibers to investigate the action of DNP in the presence of actin. DNP increases acto-S1 affinity and at the same time reduces the maximum rate of turnover as [actin]-->infinity. In skinned fibers, isometric force is reduced to the same extent (K0.5 approximately equal to 6 mM). Although actin activates Pi release from S1 at all DNP concentrations tested, the combination of enhanced S1 activity and reduced acto-S1 activity leads to a reduction in the ratio of these two rates by a factor of 30 at the highest DNP concentration tested. This effect is seen at low as well as at high actin concentrations and is less pronounced with the analog meta-nitrophenol (MNP), which does not inhibit the acto-S1 ATPase. Arrhenius plots for acto-S1 are parallel and linear between 5 and 30 degrees C, indicating no abrupt shifts in rate-limiting step with either DNP or MNP. Analysis of the reduction in isometric force with increasing Pi concentrations suggests that DNP and MNP stabilize weakly bound cross-bridges (AM.ADP.Pi). In addition, MNP (10(-2) M) increases the apparent affinity for Pi.  相似文献   

18.
The purpose of this study was to investigate the effects of muscle temperature and fatigue during stretch (eccentric) and shortening (concentric) contractions of the maximally electrically activated human adductor pollicis muscle. After immersion of the lower arm in water baths of four different temperatures, the calculated muscle temperatures were 36.8, 31.6, 26.6, and 22.3 degrees C. Normalized (isometric force = 100%) eccentric force increased with stretch velocity to maximal values of 136.4 +/- 1.6 and 162.1 +/- 2.0% at 36.8 and 22.3 degrees C, respectively. After repetitive ischemic concentric contractions, fatigue was less at the lower temperatures, and at all temperatures the loss of eccentric force was smaller than the loss of isometric and concentric force. Consequently, normalized eccentric forces increased during fatigue to 159.7 +/- 4.6 and 185.7 +/- 7.3% at 36.8 and 22.3 degrees C, respectively. Maximal normalized eccentric force increased exponentially (r2 = 0.95) when Vmax was reduced by cooling and/or fatiguing contractions. This may indicate that a reduction in cross-bridge cycling rate could underlie the significant increases in normalized eccentric force found with cooling and fatigue.  相似文献   

19.
Asynchronous insect flight muscle is specialized for myogenic oscillatory work, but can also produce isometric tetanic contraction. In skinned insect flight muscle fibers from Lethocerus, with sarcomere length monitored by a striation follower, we determined the relation between isometric force (F(0)) at serial increments of [Ca(2+)] and the additional active force recruited at each [Ca(2+)] by a stretch of approximately 12 nm per half-sarcomere (F(SA)). The isometric force-pCa relation shows that 1.5-2 units of pCa are necessary to raise isometric force from its threshold (pCa approximately 6.5) to its maximum (F(0,max)). The amplitude of F(SA) depends only on the preceding baseline level of isometric force, which must reach at least 0.05 F(0,max) to enable stretch-activation. F(SA) rises very steeply to its maximum as F(0) reaches approximately 0.2 F(0,max), then decreases as F(0) increases so as to produce a constant sum (F(0) + F(SA)) = F(max). Thus Ca- and stretch-activation are complementary pathways that trigger a common process of cross-bridge attachment and force production. We suggest that stretch-induced distortion of attached cross-bridges relieves the steric blocking by tropomyosin of additional binding sites on actin, thereby enabling maximum force even at low [Ca(2+)].  相似文献   

20.
The birefringence of isolated skinned fibers from rabbit psoas muscle was measured continuously during relaxation from rigor produced by photolysis of caged ATP at sarcomere length 2.8-2.9 microns, ionic strength 0.1 M, 15 degrees C. Birefringence, the difference in refractive index between light components polarized parallel and perpendicular to the fiber axis, depends on the average degree of alignment of the myosin head domain with the fiber axis. After ATP release birefringence increased by 5.8 +/- 0.7% (mean +/- SE, n = 6) with two temporal components. A small fast component had an amplitude of 0.9 +/- 0.2% and rate constant of 63 s-1. By the completion of this component, the instantaneous stiffness had decreased to about half the rigor value, and the force response to a step stretch showed a rapid (approximately 1000 s-1) recovery phase. Subsequently a large slow birefringence component with rate constant 5.1 s-1 accompanied isometric force relaxation. Inorganic phosphate (10 mM) did not affect the fast birefringence component but accelerated the slow component and force relaxation. The fast birefringence component was probably caused by formation of myosin.ATP or myosin.ADP.Pi states that are weakly bound to actin. The average myosin head orientation at the end of this component is slightly more parallel to the fiber axis than in rigor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号