首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C R Murphy  J G Swift 《Acta anatomica》1983,116(2):174-179
The proteolytic enzyme, pronase, was injected into the uterine lumen of rats. This treatment removed half the intramembranous particles (IMPs) from the apical plasma membrane of the uterine epithelial cells but tight junctions of these cells were unaffected. We conclude that at least some of the IMPs are proteinaceous in nature and suggest that IMPs not affected by pronase may be deeply embedded in the lipid bilayer.  相似文献   

2.
Integral membrane proteins (IMPs) control countless fundamental biological processes and constitute the majority of drug targets. For this reason, uncovering their molecular mechanism of action has long been an intense field of research. They are, however, notoriously difficult to work with, mainly due to their localization within the heterogeneous of environment of the biological membrane and the instability once extracted from the lipid bilayer. High‐resolution structures have unveiled many mechanistic aspects of IMPs but also revealed that the elucidation of static pictures has limitations. Hydrogen–deuterium exchange coupled to mass spectrometry (HDX‐MS) has recently emerged as a powerful biophysical tool for interrogating the conformational dynamics of proteins and their interactions with ligands. Its versatility has proven particularly useful to reveal mechanistic aspects of challenging classes of proteins such as IMPs. This review recapitulates the accomplishments of HDX‐MS as it has matured into an essential tool for membrane protein structural biologists.  相似文献   

3.
Chew CF  Guy A  Biggin PC 《Biophysical journal》2008,95(12):5627-5636
The adamantanes are a class of compounds that have found use in the treatment of influenza A and Parkinson's disease, among others. The mode of action for influenza A is based on the adamantanes’ interaction with the transmembrane M2 channel, whereas the treatment of Parkinson's disease is thought to relate to a channel block of N-methyl-D-aspartate receptors. An understanding of how these compounds interact with the lipid bilayer is thus of great interest. We used molecular-dynamics simulations to calculate the potential of mean force of adamantanes in a lipid bilayer. Our results demonstrate a preference for the interfacial region of the lipid bilayer for both protonated and deprotonated species, with the protonated species proving significantly more favorable. However, the protonated species have a large free-energy barrier in the center of the membrane. In contrast, there is no barrier (compared with aqueous solution) at the center of the bilayer for deprotonated species, suggesting that the permeant species is indeed the neutral form, as commonly assumed. We discuss the results with respect to proposed mechanisms of action and implications for drug-delivery in general.  相似文献   

4.
为建立一种快捷和准确的方法用于新型杀真菌剂的筛选,以外源表达的稻瘟菌羊毛甾醇14α-去甲基化酶为靶酶,以市售烯唑醇、戊唑醇、三唑醇、三唑酮为DMIs类杀真菌剂代表,分析了靶酶活性、靶酶纯度和靶酶浓度对二者结合光谱的影响,并与生物测试结果比较分析其可靠性。结果表明靶酶的高活性、无其他P450干扰和合适的靶酶浓度是获得准确结合光谱的必要条件。烯唑醇、戊唑醇、三唑醇、三唑酮与靶酶结合常数(Kd)分别为0.143μmol/L、0.24μmol/L、0.257μmol/L、0.307μmol/L,该结果与其对稻瘟菌生长抑制能力(120h-EC50)显著相关,证明结合光谱法可作为一种简便可靠的DMIs类杀真菌剂筛选方法。  相似文献   

5.
In Escherichia coli, two main protein targeting pathways to the inner membrane exist: the SecB pathway for the essentially posttranslational targeting of secretory proteins and the SRP pathway for cotranslational targeting of inner membrane proteins (IMPs). At the inner membrane both pathways converge at the Sec translocase, which is capable of both linear transport into the periplasm and lateral transport into the lipid bilayer. The Sec-associated YidC appears to assist the lateral transport of IMPs from the Sec translocase into the lipid bilayer. It should be noted that targeting and translocation of only a handful of secretory proteins and IMPs have been studied. These model proteins do not include lipoproteins. Here, we have studied the targeting and translocation of two secretory lipoproteins, the murein lipoprotein and the bacteriocin release protein, using a combined in vivo and in vitro approach. The data indicate that both murein lipoprotein and bacteriocin release protein require the SRP pathway for efficient targeting to the Sec translocase. Furthermore, we show that YidC plays an important role in the targeting/translocation of both lipoproteins.  相似文献   

6.
Triadimefon is a systemic agricultural fungicide of the triazole class whose major metabolite, triadimenol, also a commercial fungicide, provides the majority of the actual fungicidal activity, i.e., inhibition of steroid demethylation. Both chemicals are chiral: triadimefon has one chiral center with two enantiomers while its enzymatic reduction to triadimenol produces a second chiral center and two diastereomers with two enantiomers each. All six stereoisomers of the two fungicides were separated from each other using a chiral BGB‐172 column on a GC‐MS system so as to follow stereospecificity in metabolism by rainbow trout hepatic microsomes. In these microsomes the S‐(+) enantiomer of triadimefon was transformed to triadimenol 27% faster than the R‐(?) enantiomer, forming the four triadimenol stereoisomers at rates different from each other. The most fungi‐toxic stereoisomer (1S,2R) was produced at the slowest rate; it was detectable after 8 h, but below the level of method quantitation. The triadimenol stereoisomer ratio pattern produced by the trout microsomes was very different from that of the commercial triadimenol standard, in which the most rat‐toxic pair of enantiomers (known as “Diastereomer A”) is about 85% of the total stereoisomer composition. The trout microsomes produced only about 4% of “Diastereomer A”. Complementary metabolomic studies with NMR showed that exposure of the separate triadimefon enantiomers and the racemate to rainbow trout for 48 h resulted in different metabolic profiles in the trout liver extracts, i.e., different endogenous metabolite patterns that indicated differences in effects of the two enantiomers. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
S Hippe 《Histochemistry》1987,87(4):309-315
The intracellular localization of the sterol-biosynthesis-inhibiting (SBI) fungicide (3H)triadimenol A is investigated in vitro in the fungus Ustilago avenae. For this purpose low temperature preparation techniques (shock freezing, freeze substitution, embedding in Lowicryl HM20) are combined with conventional electron microscopic (EM) autoradiography. In particular the suitability of Lowicryl HM20 embedded specimens for EM autoradiography with regard to the finestructure preservation is shown. For the localization of (3H)triadimenol the filamentous grain development as well as the application of the gold latensification method resulting in the appearance of spherical silver grains is tested. Fungicide sensitive wild type sporidia of U. avenae are compared with fungicide resistant cells of the mutant r8. A quantitative analysis of the autoradiographs of the wild type developed according to the gold latensification process shows a relatively homogeneous distribution of silver grains over the entire cell. On the other hand, the resistant mutant is characterized by an accumulation of silver deposits over the vacuoles as compared with the lower density of grains over the cell walls and cytoplasm. The data are discussed in the context of possible resistance mechanisms against SBI-fungicides.  相似文献   

8.
This study investigates on effects of four fungicide and six isolate from Trichoderma and Gliocladium on Botrytis cinerea agent grey mold of strawberry under library and greenhouse condition. The effect of four fungicides i.e. benomyl, dichlofluanid, captan and triadimenol on B. cinerea was studied in the laboratory condition by method mixed poison to culture medium. It was shown that the fungicide including benomyl, triadimenol, dichlofluanid and captan were able to inhibit mycelial growth of B. cinerea on PDA plate with EC50 of 0.16, 1.42, 3.40 and 7.73 ppm respectively. These fungicides delayed myceliogenic germination of sclerotia at 1000 ppm, while exhibiting no fungicidal effect. Moreover, the antagonistic effects of six fungi including Trichoderma koningii (T21), T. viride (T4), T. harzionum (T5), T. viride (T2), G. virens (G2), G. virens (G8) on B. cinerea were assessed. This assessment was done under library condition and its results as follows: The antagonistic mechanism occurred through branching at the end of B. cinerea hyphae, hyphal contact, coiling, vacuolization and lyses. Volatile metabolites of T. koningii (T21) and non-volatile metabolites of G. virens (G2 and G8) and T. koningii (T21) caused maximum inhibition of the fungal growth. Trichoderma spp and G. virens were able to colonize and sporulate on sclerotia and caused their lysis within 7-21 days. In greenhouse, a completely randomized design with 11 treatments (4 chemical and 6 biological and one untreated control) each replicated five times were used for the comparison. Greenhouse studies revealed that application of fungicides i.e. captan, dichlofluanid, triadimenol and benomyl reduces disease severity by 42, 45, 48 and 52% respectively. The fungal antagonists reduce the grey mold disease severity between 5-42%. All treatments caused a decline in post harvest disease, as the most effective treatment of chemical control was benomyl with 68.33% and for the biological treatment this was T. koningii (T21) with 56%.  相似文献   

9.
Azole fungicides were thought to have much greater affinity for the fungal cytochrome P450 enzyme, sterol 14 alpha-demthylase (CYP51) than the plant orthologue. Using purified CYP51 from the plant Sorghum bicolor L Moenech, a direct comparison of the sensitivity to the fungicides triadimenol and tebuconazole has been carried out. S. bicolor CYP51 was purified to homogenity as determined by SDS--PAGE and specific heme content. Addition of the azole fungicides triadimenol and tebuconazole induced type II spectral changes, with saturation occurring at equimolar azole/P450 concentrations. Inhibition of reconstituted activities revealed only a threefold insensitivity of the plant CYP51 compared to a fungal CYP51, from the phytopathogen Ustilago maydis, as judged by IC(50) values. The implications for fungicide mode of action and application are discussed.  相似文献   

10.
Amyloid-β peptide (Aβ) is considered a triggering agent of Alzheimer's disease. In relation to a therapeutic treatment of the disease, the interaction of Aβ with the cell membrane has to be elucidated at the molecular level to understand its mechanism of action. In previous works, we had ascertained by neutron diffraction on stacked lipid multilayers that a toxic fragment of Aβ is able to penetrate and perturb the lipid bilayer. Here, the influence of Aβ(1-42), the most abundant Aβ form in senile plaques, on unilamellar lipid vesicles of phospholipids is investigated by small-angle neutron scattering. We have used the recently proposed separated form factor method to fit the data and to obtain information about the vesicle diameter and structure of the lipid bilayer and its change upon peptide administration. The lipid membrane parameters were obtained with different models of the bilayer profile. As a result, we obtained an increase in the vesicle radii, indicating vesicle fusion. This effect was particularly enhanced at pH 7.0 and at a high peptide/lipid ratio. At the same time, a thinning of the lipid bilayer occurred. A fusogenic activity of the peptide may have very important consequences and may contribute to cytotoxicity by destabilizing the cell membrane. The perturbation of the bilayer structure suggests a strong interaction and/or insertion of the peptide into the membrane, although its localization remains beyond the limit of the experimental resolution.  相似文献   

11.
Summary The intracellular localization of the sterol-biosynthesis-inhibiting (SBI) fungicide (3H)triadimenol A is investigated in vitro in the fungus Ustilago avenae. For this purpose low temperature preparation techniques (shock freezing, freeze substitution, embedding in Lowicryl HM20) are combined with conventional electron microscopic (EM) autoradiography. In particular the suitability of Lowicryl HM20 embedded specimens for EM autoradiography with regard to the finestructure preservation is shown. For the localization of (3H)triadimenol the filamentous grain development as well as the application of the gold latensification method resulting in the appearance of spherical silver grains is tested. Fungicide sensitive wild type sporidia of U. avenae are compared with fungicide resistant cells of the mutant r8. A quantitative analysis of the autoradiographs of the wild type developed according to the gold latensification process shows a relatively homogeneous distribution of silver grains over the entire cell. On the other hand, the resistant mutant is characterized by an accumulation of silver deposits over the vacuoles as compared with the lower density of grains over the cell walls and cytoplasm. The data are discussed in the context of possible resistance mechanisms against SBI-fungicides.  相似文献   

12.
Membrane alterations accompanying in vitro capacitation of hamster spermatozoa were examined using the freeze-fracture technique with or without use of filipin, a sterol-binding probe. In the spermatozoa prior to or at 10 min after start of incubation in capacitating medium, large (about 11 nm) and small (8–9 nm) intramembranous particles (IMPs) were present in the periacrosomal region of the sperm plasma membrane (PAPM). Filipin sterol complexes (FSCs) were densely (about 500/μ2) distributed in the PAPM prior to incubation. The density of FSCs in the PAPM was reduced by 70–80% of the original density by 2 hr of incubation. At the same time, small patches of IMP-free areas appeared in the plasma membrane above the equatorial and middle segments of the acrosome. By the end of 3 hr of incubation, the majority of small IMPs had disappeared from the PAPM. Remaining large and small IMPs tended to aggregate in the PAPM. During incubation in capacitation medium, “cords,” or linear arrangements of closely packed IMPs, appeared near the posterior ring of the sperm head. These observations strongly suggest that the acrosome reaction of the hamster spermatozoa is preceded by the removal (deletion) of filipin-reactive sterols (FRSs) and the disappearance of small IMPs from the lipid bilayer of PAPM.  相似文献   

13.
The Profiles-3D application, an inverse-folding methodology appropriate for water-soluble proteins, has been modified to allow the determination of structural properties of integral-membrane proteins (IMPs) and for testing the validity of solved and model structures of IMPs. The modification, known as reverse-environment prediction of integral membrane protein structure (REPIMPS), takes into account the fact that exposed areas of side chains for many residues in IMPs are in contact with lipid and not the aqueous phase. This (1) allows lipid-exposed residues to be classified into the correct physicochemical environment class, (2) significantly improves compatibility scores for IMPs whose structures have been solved, and (3) reduces the possibility of rejecting a three-dimensional structure for an IMP because the presence of lipid was not included. Validation tests of REPIMPS showed that it (1) can locate the transmembrane domain of IMPs with single transmembrane helices more frequently than a range of other methodologies, (2) can rotationally orient transmembrane helices with respect to the lipid environment and surrounding helices in IMPs with multiple transmembrane helices, and (3) has the potential to accurately locate transmembrane domains in IMPs with multiple transmembrane helices. We conclude that correcting for the presence of the lipid environment surrounding the transmembrane segments of IMPs is an essential step for reasonable modeling and verification of the three-dimensional structures of these proteins.  相似文献   

14.
It is found that bilayer lipid membranes acquire little cationic selectivity in the presence of systemic fungicide triforine at physiological pH, and besides potassium selectivity exceeds the sodium one. A decrease of pH to 3.5 leads to substitution of cationic selectivity by the anionic one. It is suggested that selectivity of the membranes modified by triforine is determined both by charge and dipole moments of the fungicide molecule.  相似文献   

15.
Bemporad D  Sands ZA  Wee CL  Grottesi A  Sansom MS 《Biochemistry》2006,45(39):11844-11855
VSTx1 is a tarantula venom toxin which binds to the archaebacterial voltage-gated potassium channel KvAP. VSTx1 is thought to access the voltage sensor domain of the channel via the lipid bilayer phase. In order to understand its mode of action and implications for the mechanism of channel activation, it is important to characterize the interactions of VSTx1 with lipid bilayers. Molecular dynamics (MD) simulations (for a total simulation time in excess of 0.2 micros) have been used to explore VSTx1 localization and interactions with zwitterionic (POPC) and with anionic (POPE/POPG) lipid bilayers. In particular, three series of MD simulations have been used to explore the net drift of VSTx1 relative to the center of a bilayer, starting from different locations of the toxin. The preferred location of the toxin is at the membrane/water interface. Although there are differences between POPC and POPE/POPG bilayers, in both cases the toxin forms favorable interactions at the interface, maximizing H-bonding to lipid headgroups and to water molecules while retaining interactions with the hydrophobic core of the bilayer. A 30 ns unrestrained simulation reveals dynamic partitioning of VSTx1 into the interface of a POPC bilayer. The preferential location of VSTx1 at the interface is discussed in the context of Kv channel gating models and provides support for a mode of action in which the toxin interacts with the Kv voltage sensor "paddle" formed by the S3 and S4 helices.  相似文献   

16.
de Gier JW  Luirink J 《EMBO reports》2003,4(10):939-943
In the bacterium Escherichia coli, inner membrane proteins (IMPs) are generally targeted through the signal recognition particle pathway to the Sec translocon, which is capable of both linear transport into the periplasm and lateral transport into the lipid bilayer. Lateral transport seems to be assisted by the IMP YidC. In this article, we discuss recent observations that point to a key role for the ribosome in IMP targeting and to the diverse roles of YidC in IMP assembly.  相似文献   

17.
The changes in membrane structure of rabbit polymorphonuclear (PMN) leukocytes during bacterial phagocytosis was investigated with scanning electron microscope (SEM), thin-section, and freeze-fracture techniques. SEM observations of bacterial attachment sites showed the involvement of limited areas of PMN membrane surface (0.01-0.25μm(2)). Frequently, these areas of attachment were located on membrane extensions. The membrane extensions were present before, during, and after the engulfment of bacteria, but were diminished in size after bacterial engulfment. In general, the results obtained with SEM and thin-section techniques aided in the interpretation of the three-dimensional freeze-fracture replicas. Freeze-fracture results revealed the PMN leukocytes had two fracture faces as determined by the relative density of intramembranous particles (IMP). Membranous extensions of the plasma membrane, lysosomes, and phagocytic vacuoles contained IMP's with a distribution and density similar to those of the plasma membrane. During phagocytosis, IMPs within the plasma membrane did not undergo a massive aggregation. In fact, structural changes within the membranes were infrequent and localized to regions such as the attachment sites of bacteria, the fusion sites on the plasma membrane, and small scale changes in the phagocytic vacuole membrane during membrane fusion. During the formation of the phagocytic vacuole, the IMPs of the plasma membrane appeared to move in with the lipid bilayer while maintaining a distribution and density of IMPs similar to those of the plasma membranes. Occasionally, IMPs were aligned to linear arrays within phagocytic vacuole membranes. This alignment might be due to an interaction with linearly arranged motile structures on the side of the phagocytic vacuole membranes. IMP-free regions were observed after fusion of lysosomes with the phagocytic vacuoles or plasma membrane. These IMP-free areas probably represent sites where membrane fusion occurred between lysosomal membrane and phagocytic vacuole membrane or plasma membrane. Highly symmetrical patterns of IMPs were not observed during lysosomal membrane fusion.  相似文献   

18.
Production of integral membrane proteins (IMPs) in a folded state is a key prerequisite for their functional and structural studies. In cell-free (CF) expression systems membrane mimicking components could be added to the reaction mixture that promotes IMP production in a soluble form. Here lipid-protein nanodiscs (LPNs) of different lipid compositions (DMPC, DMPG, POPC, POPC/DOPG) have been compared with classical membrane mimicking media such as detergent micelles, lipid/detergent bicelles and liposomes by their ability to support CF synthesis of IMPs in a folded and soluble state. Three model membrane proteins of different topology were used: homodimeric transmembrane (TM) domain of human receptor tyrosine kinase ErbB3 (TM-ErbB3, 1TM); voltage-sensing domain of K(+) channel KvAP (VSD, 4TM); and bacteriorhodopsin from Exiguobacterium sibiricum (ESR, 7TM). Structural and/or functional properties of the synthesized proteins were analyzed. LPNs significantly enhanced synthesis of the IMPs in a soluble form regardless of the lipid composition. A partial disintegration of LPNs composed of unsaturated lipids was observed upon co-translational IMP incorporation. Contrary to detergents the nanodiscs resulted in the synthesis of ~80% active ESR and promoted correct folding of the TM-ErbB3. None of the tested membrane mimetics supported CF synthesis of correctly folded VSD, and the protocol of the domain refolding was developed. The use of LPNs appears to be the most promising approach to CF production of IMPs in a folded state. NMR analysis of (15)N-Ile-TM-ErbB3 co-translationally incorporated into LPNs shows the great prospects of this membrane mimetics for structural studies of IMPs produced by CF systems.  相似文献   

19.
Recent studies identified YidC as a novel membrane factor that may play a key role in membrane insertion of inner membrane proteins (IMPs), both in conjunction with the Sec-translocase and as a separate entity. Here, we show that the type II IMP FtsQ requires both the translocase and, to a lesser extent, YidC in vivo. Using photo-crosslinking we demonstrate that the transmembrane (TM) domain of the nascent IMP FtsQ inserts into the membrane close to SecY and lipids, and moves to a combined YidC/lipid environment upon elongation. These data are consistent with a crucial role for YidC in the lateral transfer of TM domains from the Sec translocase into the lipid bilayer.  相似文献   

20.
The structural relationships between intramembraneous particles (IMPs) and surface carbohydrates has been studied in uterine epithelial cells with a colloidal iron hydroxide (CIH) technique. To aggregate IMPs, glycerol treatment of unfixed cells was used and this treatment also caused some patching of CIH deposits on the cell surface. We conclude that some of the CIH receptors may be the surface expression of the IMPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号