首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, the intracellular reactive oxygen species (ROS) levels have gained increasing attention as a critical regulator of cellular proliferation. We investigated the hypothesis that manganese superoxide dismutase (MnSOD) activity regulates proliferative and quiescent growth by modulating cellular ROS levels. Decreasing MnSOD activity favored proliferation in mouse embryonic fibroblasts (MEF), while increasing MnSOD activity facilitated proliferating cells' transitions into quiescence. MnSOD +/- and -/- MEFs demonstrated increased superoxide steady-state levels; these fibroblasts failed to exit from the proliferative cycle, and showed increasing cyclin D1 and cyclin B1 protein levels. MnSOD +/- MEFs exhibited an increase in the percentage of G(2) cells compared to MnSOD +/+ MEFs. Overexpression of MnSOD in MnSOD +/- MEFs suppressed superoxide levels and G(2) accumulation, decreased cyclin B1 protein levels, and facilitated cells' transit into quiescence. While ROS are known to regulate differentiation and cell death pathways, both of which are irreversible processes, our results show MnSOD activity and, therefore, mitochondria-derived ROS levels regulate cellular proliferation and quiescence, which are reversible processes essential to prevent aberrant proliferation and subsequent exhaustion of normal cell proliferative capacity. These results support the hypothesis that MnSOD activity regulates a mitochondrial 'ROS-switch' favoring a superoxide-signaling regulating proliferation and a hydrogen peroxide-signaling supporting quiescence.  相似文献   

2.
The ubiquitin protein ligase SCF(Skp2) is composed of Skp1, Cul1, Roc1/Rbx1 and the F-box protein Skp2, the substrate-recognition subunit. Levels of Skp2 decrease as cells exit the cell cycle and increase as cells re-enter the cycle. Ectopic expression of Skp2 in quiescent fibroblasts causes mitogen-independent S-phase entry. Hence, mechanisms must exist for limiting Skp2 protein expression during the G(0)/G(1) phases. Here we show that Skp2 is degraded by the proteasome in G(0)/G(1) and is stabilized when cells re-enter the cell cycle. Rapid degradation of Skp2 in quiescent cells depends on Skp2 sequences that contribute to Cul1 binding and interference with endogenous Cul1 function in serum-deprived cells induces Skp2 expression. Furthermore, recombinant Cul1-Roc1/Rbx1-Skp1 complexes can catalyse Skp2 ubiquitylation in vitro. These results suggest that degradation of Skp2 in G(0)/G(1) is mediated, at least in part, by an autocatalytic mechanism involving a Skp2-bound Cul1-based core ubiquitin ligase and imply a role for this mechanism in the suppression of SCF(Skp2) ubiquitin protein ligase function during the G(0)/G(1) phases of the cell cycle.  相似文献   

3.
In the present study, we examined the role of PLC delta 1 (phospholipase C delta 1) in the regulation of cellular proliferation. We demonstrate that RNAi (RNA interference)-mediated knockdown of endogenous PLC delta 1, but not PLC beta 3 or PLC epsilon, induces a proliferation defect in Rat-1 and NIH 3T3 fibroblasts. The decreased proliferation was not due to an induction of apoptosis or senescence, but was associated with an approx. 60% inhibition of [(3)H]thymidine incorporation. Analysis of the cell cycle with BrdU (bromodeoxyuridine)/propidium iodide-labelled FACS (fluorescence-activated cell sorting) demonstrated an accumulation of cells in G(0)/G(1)-phase and a corresponding decrease in cells in S-phase. Further examination of the cell cycle after synchronization by serum-starvation demonstrated normal movement through G(1)-phase but delayed entry into S-phase. Consistent with these findings, G(1) cyclin (D2 and D3) and CDK4 (cyclin-dependent kinase 4) levels and associated kinase activity were not affected. However, cyclin E-associated CDK2 activity, responsible for G(1)-to-S-phase progression, was inhibited. This decreased activity was accompanied by unchanged CDK2 protein levels and paradoxically elevated cyclin E and cyclin E-associated CDK2 levels, suggesting inhibition of the cyclin E-CDK2 complex. This inhibition was not due to altered stimulatory or inhibitory phosphorylation of CDK2. However, p27, a Cip/Kip family CKI (CDK inhibitor)-binding partner, was elevated and showed increased association with CDK2 in PLC delta 1-knockdown cells. The result of the present study demonstrate a novel and critical role for PLC delta 1 in cell-cycle progression from G(1)-to-S-phase through regulation of cyclin E-CDK2 activity and p27 levels.  相似文献   

4.
Ionizing radiation has been reported to cause an irreversible cell cycle arrest in normal human diploid fibroblasts. However, colony survival assays show that even at high doses of gamma radiation, human diploid fibroblasts do not irreversibly arrest, and that a dose-dependent fraction is capable of continued cycling. In this study, we resolve the apparent discrepancy between colony survival assays and the observed radiation-induced prolonged arrest. Using flow cytometry analysis, we have confirmed that human diploid fibroblasts do exhibit a prolonged cell cycle arrest in both G(1) and G(2)/M phases of the cell cycle. However, a single replacement of fresh growth medium stimulated a fraction of the arrested population of cells to transiently re-enter the cell cycle. Daily medium changes stimulated these irradiated human diploid fibroblasts to continue cycling until they were contact-inhibited. Thus the fraction of human diploid fibroblasts which survive radiation exposure and are capable of cycling appears to permanently arrest as a result of nutrient insufficiency. Western blot analysis demonstrated a radiation-induced elevation in TP53 (formerly known as p53) protein levels within 2 h postirradiation, followed by a decrease to levels comparable to those in unirradiated controls. The TP53 and CDKN1A (formerly known as p21) protein levels were indistinguishable after 24 h and remained elevated for a 6-day period of observation in both control and irradiated cultures. Our studies indicate that human diploid fibroblasts are capable of re-entering the cell cycle after exposure to ionizing radiation and that this re-entry is dependent on a constant supply of nutrients provided by fresh medium changes. The fraction of cells capable of resuming cell cycling is consistent with the surviving fraction of cells in colony assays.  相似文献   

5.
The human cytomegalovirus (HCMV) IE86 protein induces the human fibroblast cell cycle from G(0)/G(1) to G(1)/S, where cell cycle progression stops. Cells with a wild-type, mutated, or null p53 or cells with null p21 protein were transduced with replication-deficient adenoviruses expressing HCMV IE86 protein or cellular p53 or p21. Even though S-phase genes were activated in a p53 wild-type cell, IE86 protein also induced phospho-Ser(15) p53 and p21 independent of p14ARF but dependent on ATM kinase. These cells did not enter the S phase. In human p53 mutant, p53 null, or p21 null cells, IE86 protein did not up-regulate p21, cellular DNA synthesis was not inhibited, but cell division was inhibited. Cells accumulated in the G(2)/M phase, and there was increased cyclin-dependent kinase 1/cyclin B1 activity. Although the HCMV IE86 protein increases cellular E2F activity, it also blocks cell division in both p53(+/+) and p53(-/-) cells.  相似文献   

6.
Ribonucleotide reductase (RNR) provides the cell with a balanced supply of deoxyribonucleoside triphosphates (dNTP) for DNA synthesis. In budding yeast DNA damage leads to an up-regulation of RNR activity and an increase in dNTP pools, which are essential for survival. Mammalian cells contain three non-identical subunits of RNR; that is, one homodimeric large subunit, R1, carrying the catalytic site and two variants of the homodimeric small subunit, R2 and the p53-inducible p53R2, each containing a tyrosyl free radical essential for catalysis. S-phase-specific DNA replication is supported by an RNR consisting of the R1 and R2 subunits. In contrast, DNA damage induces expression of the R1 and the p53R2 subunits. We now show that neither logarithmically growing nor G(o)/G1-synchronized mammalian cells show any major increase in their dNTP pools after DNA damage. However, non-dividing fibroblasts expressing the p53R2 protein, but not the R2 protein, have reduced dNTP levels if exposed to the RNR-specific inhibitor hydroxyurea, strongly indicating that there is ribonucleotide reduction in resting cells. The slow, 4-fold increase in p53R2 protein expression after DNA damage results in a less than 2-fold increase in the dNTP pools in G(o)/G1 cells, where the pools are about 5% that of the size of the pools in S-phase cells. Our results emphasize the importance of the low constitutive levels of p53R2 in mammalian cells, which together with low levels of R1 protein may be essential for the supply of dNTPs for basal levels of DNA repair and mitochondrial DNA synthesis in G(o)/G1 cells.  相似文献   

7.
p53 and the retinoblastoma (RB) pocket proteins are central to the control of progression through the G1 phase of the cell cycle. The RB pocket protein family is downstream of p53 and controls S-phase entry. Disruption of actin assembly arrests nontransformed mammalian fibroblasts in G1. We show that this arrest requires intact RB pocket protein function, but surprisingly does not require p53. Thus, mammalian fibroblasts with normal pocket protein function reversibly arrest in G1 on exposure to actin inhibitors regardless of their p53 status. By contrast, pocket protein triple knockout mouse embryo fibroblasts and T antigen-transformed rat embryo fibroblasts lacking both p53 and RB pocket protein function do not arrest in G1. Fibroblasts are very sensitive to actin inhibition in G1 and arrest at drug concentrations that do not affect cell adhesion or cell cleavage. Interestingly, G1 arrest is accompanied by inhibition of surface ruffling and by induction of NF2/merlin. The combination of failure of G1 control and of tetraploid checkpoint control can cause RB pocket protein-suppressed cells to rapidly become aneuploid and die after exposure to actin inhibitors, whereas pocket protein-competent cells are spared. Our results thus establish that RB pocket proteins can be uniquely targeted for tumor chemotherapy.  相似文献   

8.
4-Hydroxynonenal (HNE), a product of lipid peroxidation, inhibits proliferation of several tumor cells. The p53 tumor suppressor protein plays a critical role in cell cycle control, by inducing p21 expression, and in apoptosis, by inducing bax expression. Recently, two other proteins with many p53-like properties, TAp73 (p73) and TAp63 (p63), have been discovered. SK-N-BE human neuroblastoma cells express the three p53 family proteins and can be used for the study of their induction. We investigated HNE action in the control of proliferation, differentiation, and apoptosis in SK-N-BE cells and the HNE effect on the expression of p53, p63, p73, p21, bax, and G1 cyclins. Retinoic acid (RA) was used as a positive control. HNE inhibited cell proliferation without inducing differentiation; it decreased S-phase cells and increased the number of apoptotic cells. RA reduced the proportion of S-phase cells and did not induce apoptosis. HNE increased p53, p73, p63, p21, and bax expression at different time points. HNE reduced cyclin D2 expression and the phosphorylation of pRb protein. Our results demonstrated that HNE inhibits SK-N-BE cell proliferation by increasing the expression of p53 family proteins and p53 target proteins which modulate cell cycle progression and apoptosis.  相似文献   

9.
Cooperation between p53 and p130(Rb2) in induction of cellular senescence   总被引:1,自引:0,他引:1  
To determine pathways cooperating with p53 in cellular senescence when the retinoblastoma protein (pRb)/p16INK4a pathway is defunct, we stably transfected the p16INK4a-negative C6 rat glioma cell line with a temperature-sensitive mutant p53. Activation of p53(Val-135) induces a switch in pocket protein expression from pRb and p107 to p130(Rb2) and stalls the cells in late G1, early S-phase at high levels of cyclin E. Maintenance of the arrest depends on the functions of p130(Rb2) repressing cyclin A. Inactivation of p53 in senescent cultures restores the pocket proteins to initial levels and initiates progression into S-phase, but the cells fail to resume proliferation, likely due to DNA damage becoming apparent in the arrest and activating apoptosis subsequent to the release from p53-dependent growth suppression. The data indicate that p53 can cooperate selectively with p130(Rb2) to induce cellular senescence, a pathway that may be relevant when the pRb/p16INK4a pathway is defunct.  相似文献   

10.
RB-dependent S-phase response to DNA damage   总被引:7,自引:0,他引:7       下载免费PDF全文
The retinoblastoma tumor suppressor protein (RB) is a potent inhibitor of cell proliferation. RB is expressed throughout the cell cycle, but its antiproliferative activity is neutralized by phosphorylation during the G(1)/S transition. RB plays an essential role in the G(1) arrest induced by a variety of growth inhibitory signals. In this report, RB is shown to also be required for an intra-S-phase response to DNA damage. Treatment with cisplatin, etoposide, or mitomycin C inhibited S-phase progression in Rb(+/+) but not in Rb(-/-) mouse embryo fibroblasts. Dephosphorylation of RB in S-phase cells temporally preceded the inhibition of DNA synthesis. This S-phase dephosphorylation of RB and subsequent inhibition of DNA replication was observed in p21(Cip1)-deficient cells. The induction of the RB-dependent intra-S-phase arrest persisted for days and correlated with a protection against DNA damage-induced cell death. These results demonstrate that RB plays a protective role in response to genotoxic stress by inhibiting cell cycle progression in G(1) and in S phase.  相似文献   

11.
p53 can play a key role in response to DNA damage by activating a G1 cell cycle arrest. However, the importance of p53 in the cell cycle response to UV radiation is unclear. In this study, we used normal and repair-deficient cells to examine the role and regulation of p53 in response to UV radiation. A dose-dependent G1 arrest was observed in normal and repair-deficient cells exposed to UV. Expression of HPV16-E6, or a dominant-negative p53 mutant that inactivates wildtype p53, caused cells to become resistant to this UV-induced G1 arrest. However, a G1 to S-phase delay was still observed after UV treatment of cells in which p53 was inactivated. These results indicate that UV can inhibit G1 to S-phase progression through p53-dependent and independent mechanisms. Cells deficient in the repair of UV-induced DNA damage were more susceptible to a G1 arrest after UV treatment than cells with normal repair capacity. Moreover, no G1 arrest was observed in cells that had completed DNA repair prior to monitoring their movement from G1 into S-phase. Finally, p53 was stabilized under conditions of a UV-induced G1 arrest and unstable when cells had completed DNA repair and progressed from G1 into S-phase. These results suggest that unrepaired DNA damage is the signal for the stabilization of p53, and a subsequent G1 phase cell cycle arrest in UV-irradiated cells.  相似文献   

12.
Cyclin Dependent Kinase-2 Associated Protein-1 (CDK2AP1) is known to be a tumor suppressor that plays a role in cell cycle regulation by sequestering monomeric CDK2, and targeting it for proteolysis. A reduction of CDK2AP1 expression is considered to be a negative prognostic indicator in patients with oral squamous cell carcinoma and also associated with increased invasion in human gastric cancer tissue. CDK2AP1 overexpression was shown to inhibit growth, reduce invasion and increase apoptosis in prostate cancer cell lines. In this study, we investigated the effect of CDK2AP1 downregulation in primary human dermal fibroblasts. Using a short-hairpin RNA to reduce its expression, we found that knockdown of CDK2AP1in primary human fibroblasts resulted in reduced proliferation and in the induction of senescence associated beta-galactosidase activity. CDK2AP1 knockdown also resulted in a significant reduction in the percentage of cells in the S phase and an accumulation of cells in the G1 phase of the cell cycle. Immunocytochemical analysis also revealed that the CDK2AP1 knockdown significantly increased the percentage of cells that exhibited γ-H2AX foci, which could indicate presence of DNA damage. CDK2AP1 knockdown also resulted in increased mRNA levels of p53, p21, BAX and PUMA and p53 protein levels. In primary human fibroblasts in which p53 and CDK2AP1 were simultaneously downregulated, there was: (a) no increase in senescence associated beta-galactosidase activity, (b) decrease in the number of cells in the G1-phase and increase in number of cells in the S-phase of the cell cycle, and (c) decrease in the mRNA levels of p21, BAX and PUMA when compared with CDK2AP1 knockdown only fibroblasts. Taken together, this suggests that the observed phenotype is p53 dependent. We also observed a prominent increase in the levels of ARF protein in the CDK2AP1 knockdown cells, which suggests a possible role of ARF in p53 stabilization following CDK2AP1 knockdown. Altogether, our results show that knockdown of CDK2AP1 in primary human fibroblasts reduced proliferation and induced premature senescence, with the observed phenotype being p53 dependent.  相似文献   

13.
Human fibroblasts, capable of expressing a kinase-dead form of ATR (ATRkd), can be sensitized to the cytotoxic effects of methyl methanesulfonate (MMS) by the PARP inhibitor 4-amino-1,8-naphthalimide (4-AN). The combination of MMS+4-AN results in accumulation of cells in S-phase of the cell cycle and activation of Chk1. Inhibition of ATR activity by expression of ATRkd suppresses the S-phase accumulation and partially reverses the Chk1 phosphorylation. The results confirm involvement of an ATR-mediated damage response pathway in the MMS+4-AN-induced S-phase cell cycle checkpoint in human fibroblasts. Consistent with this hypothesis, the inhibitors caffeine and UCN-01 also abrogate the ATR- and Chk1-mediated delay in progression through S-phase. In the absence of ATR-mediated signaling, MMS+4-AN exposure results in a G(2)/M arrest, rather than an S-phase checkpoint. Thus, whereas ATR mediates the S-phase response, it is not critical for arrest of cells in G(2)/M.  相似文献   

14.
15.
16.
p53/56(lyn) is a member of the src family that is predominantly expressed in hematopoietic cells and is thought to play a role in cellular proliferation. In this study, we demonstrate the participation of p53/56(lyn) in 1,25-dihydroxyvitamin D(3) (1, 25D(3))-induced growth arrest in HL60 cells. We show that the mRNA and protein levels of p53/56(lyn) are markedly elevated after 1, 25D(3) treatment, which is accompanied by an increase of p53/56(lyn) kinase activity. We also demonstrate that treatment with p53/56(lyn) antisense oligodeoxynucleotides reverses the 1,25D(3)-induced G1/S block, and results in an accumulation of cells with S-phase DNA content. BrdU pulse-chase experiments reveal that this accumulation results from an increased proportion of cells actively synthesizing DNA, which are inhibited from exiting the S-phase compartment. These results indicate that upregulation of p53/56(lyn) contributes significantly to the G1/S growth arrest induced by 1,25D(3) in HL60 cells and thus its activation may be a desirable outcome of chemotherapeutic regimens.  相似文献   

17.
18.
Wen CJ  Xue B  Qin WX  Yu M  Zhang MY  Zhao DH  Gao X  Gu JR  Li CJ 《FEBS letters》2004,564(1-2):171-176
hNRAGE, a neurotrophin receptor p75 interacting MAGE homologue, is cloned from a human placenta cDNA library. hNRAGE can inhibit the colony formation of and arrest cell proliferation at the G1/S and G2/M stages in hNRAGE overexpressing cells. Interestingly, hNRAGE also increases the p53 protein level as well as its phosphorylation (Ser392). Further studies demonstrated that hNRAGE does not affect the proliferation of mouse p53-/- embryonic fibroblasts, suggesting that p53 function is required for hNRAGE induced cell cycle arrest. Moreover, the cell cycle inhibiting protein p21(WAF) is induced by hNRAGE in a p53 dependent manner. The data provide original evidence that hNRAGE arrests cell growth through a p53 dependent pathway.  相似文献   

19.
20.
BACKGROUND: Methylmercury (MeHg), a ubiquitous environmental contaminant, is a known potent teratogen selectively affecting the developing central nervous system. While a definitive mechanism for MeHg-induced developmental neurotoxicity remains elusive, in utero exposure has been associated with reduced brain weight and reduction in cell number. This suggests early toxicant interference with critical molecular signaling events controlling cell behavior, i.e., proliferation. METHODS: To examine the role of p53, a major regulator of the G(1)/S and G(2)/M cell cycle checkpoints, in MeHg toxicity, we isolated GD 14 primary embryonal fibroblasts from homozygous wild-type p53 (p53+/+) and homozygous null p53 (p53-/-) mice. Cells were treated at passages 4-7 for 24 or 48 hr with 0, 1.0, or 2.5 microM MeHg and analyzed for effects on viability, cell cycle progression (using BrdU-Hoechst flow cytometric analysis), and apoptosis via annexin V-FITC and propidium iodide (PI) staining. RESULTS: The p53+/+ cells are more sensitive than p53-/- cells to MeHg-induced cytotoxicity, cell cycle inhibition, and induction of apoptosis: at 24 hr, 2.5 microM MeHg reduced p53+/+ cell viability to 72.6% +/- 3.2%, while p53-/- viability was 94.6% +/- 0.4%. The p53-/- cells underwent less necrosis and less apoptosis following MeHg treatment. MeHg (2.5 microM) also halted all cycling in the p53+/+ cells, while 42.6% +/- 7.2% of p53-/- cells were able to reach a new G(0)/G(1) in 48 hr. Time- and dose-dependent accumulation of cells in G(2)/M phase (1.0 and 2.5 microM MeHg) was observed independent of the p53 genotype; however, the magnitude of change was p53-dependent. CONCLUSIONS: These studies suggest that MeHg-induced cell cycle arrest occurs via both p53-dependent and -independent pathways in our model system; however, cell death resulting from MeHg exposure is highly dependent on p53.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号