首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Newly discovered TT virus (TTV) is widely distributed in human populations. To understand more about the relationship between TTV and its hosts, we tested 400 sera from various nonhuman primates for the presence of TTV DNA by PCR assay. We collected serum samples from 24 different species of nonhuman primates. TTV DNA was determined by PCR with primers designed from the 5'-end region of the TTV genome. Nucleotide sequencing and phylogenetic analysis of viral genomes were also performed. TTV DNA was detected in 87 of 98 (89%) chimpanzees and 3 of 21 (14%) crab-eating macaques. Nucleotide sequences of the PCR products obtained from both animals were 80 to 100% identical between two species. In contrast, the sequences differed from TTV isolates in humans by 24 to 33% at the nucleotide level and 36 to 50% at the amino acid level. Phylogenetic analysis demonstrated that all TTV isolates obtained from simians were distinct from the human TTV isolates. Furthermore, TTV in simians, but not in humans, was classified into three different genotypes. Our results indicate that TTV in simians represents a group different from, but closely related to, TTV in humans. From these results, we tentatively named this TTV simian TTV (s-TTV). The existence of the s-TTV will be important in determining the origin, nature, and transmission of human TTV and may provide useful animal models for studies of the infection and pathogenesis of this new DNA virus.  相似文献   

2.
Recombination may be an important mechanism for increasing variation in retroviral populations. Retroviral recombination has been demonstrated in tissue culture systems by artificially creating doubly infected cells. Evidence for retroviral recombination in vivo is indirect and is based principally on the identification of apparently mosaic human immunodeficiency virus type 1 genomes from phylogenetic analyses of viral sequences. We infected a rhesus monkey with two different molecularly cloned strains of simian immunodeficiency virus. One strain of virus had a deletion in vpx and vpr, and the other strain had a deletion in nef. Each strain on its own induced low virus loads and was nonpathogenic in rhesus monkeys. When injected simultaneously into separate legs of the same monkey, persistent high virus loads and declines in CD4+ lymphocyte concentrations were observed. Analysis of proviral DNA isolated directly from peripheral blood mononuclear cells showed that full-length, nondeleted SIVmac239 predominated by 2 weeks after infection. These results provide direct experimental evidence for genetic recombination between two different retroviral strains in an infected host. The results illustrate the ease and rapidity with which recombination can occur in an infected animal and the selection that can occur for variants generated by genetic recombination.  相似文献   

3.
Recent studies of varicella-zoster virus (VZV) DNA sequence variation, involving large numbers of globally distributed clinical isolates, suggest that this virus has diverged into at least three distinct genotypes designated European (E), Japanese (J), and mosaic (M). In the present study, we determined and analyzed the complete genomic sequences of two M VZV strains and compared them to the sequences of three E strains and two J strains retrieved from GenBank (including the Oka vaccine preparation, V-Oka). Except for a few polymorphic tandem repeat regions, the whole genome, representing approximately 125,000 nucleotides, is highly conserved, presenting a genetic similarity between the E and J genotypes of approximately 99.85%. These analyses revealed that VZV strains distinctly segregate into at least four genotypes (E, J, M1, and M2) in phylogenetic trees supported by high bootstrap values. Separate analyses of informative sites revealed that the tree topology was dependent on the region of the VZV genome used to determine the phylogeny; collectively, these results indicate the observed strain variation is likely to have resulted, at least in part, from interstrain recombination. Recombination analyses suggest that strains belonging to the M1 and M2 genotypes are mosaic recombinant strains that originated from ancestral isolates belonging to the E and J genotypes through recombination on multiple occasions. Furthermore, evidence of more recent recombination events between M1 and M2 strains is present in six segments of the VZV genome. As such, interstrain recombination in dually infected cells seems to figure prominently in the evolutionary history of VZV, a feature it has in common with other herpesviruses. In addition, we report here six novel genomic targets located in open reading frames 51 to 58 suitable for genotyping of clinical VZV isolates.  相似文献   

4.
Torque teno virus (TTV) is a single-stranded DNA virus highly prevalent in the world. It has been detected in eastern Taiwan indigenes with a low prevalence of 11% by using N22 region of which known to underestimate TTV prevalence excessively. In order to clarify their realistic epidemiology, we re-analyzed TTV prevalence with UTR region. One hundred and forty serum samples from eastern Taiwanese indigenous population were collected and TTV DNA was detected in 133 (95%) samples. Direct sequencing revealed an extensive mix-infection of different TTV strains within the infected individual. Entire TTV open reading frame 1 was amplified and cloned from a TTV positive individual to distinguish mix-infected strains. Phylogenetic analysis showed eleven isolates were clustered into a monophyletic group that is distinct from all known groups. In addition, another our isolate was clustered with recently described Hebei-1 strain and formed an independent clade. Based on the distribution pattern of pairwise distances, both new clusters were placed at phylogenetic group level, designed as the 6th and 7th phylogenetic group. In present study, we showed a very high prevalence of TTV infection in eastern Taiwan indigenes and indentified new phylogenetic groups from the infected individual. Both intra- and inter-phylogenetic group mix-infections can be found from one healthy person. Our study has further broadened the field of human TTVs and proposed a robust criterion for classification of the major TTV phylogenetic groups.  相似文献   

5.
Sequence heterogeneity of TT virus and closely related viruses   总被引:4,自引:0,他引:4       下载免费PDF全文
TT virus (TTV) is a recently discovered infectious agent originally obtained from transfusion-related hepatitis. However, the causative link between the TTV infection and liver disease remains uncertain. Recent studies demonstrated that genome sequences of different TTV strains are significantly divergent. To assess genetic heterogeneity of the TTV genome in more detail, a sequence analysis of PCR fragments (271 bp) amplified from open reading frame 1 (ORF1) was performed. PCR fragments were amplified from 5 to 40% of serum specimens obtained from patients with different forms of hepatitis who reside in different countries (e.g., China, Egypt, Vietnam, and the United States) and from normal human specimens obtained from U.S. residents. A total of 170 PCR fragments were sequenced and compared to sequences derived from the corresponding TTV genome region deposited in GenBank. Genotypes 2 and 3 were found to be significantly more genetically related than any other TTV genotype. Moreover, three sequences were shown to be almost equally related to both genotypes 2 and 3. These observations suggest a merger of genotypes 2 and 3 into one genotype, 2/3. Additionally, five new groups of TTV sequences were identified. One group represents a new genotype, whereas the other four groups were shown to be more evolutionary distant from all known TTV sequences. The evolutionary distances between these four groups were also shown to be greater than between TTV genotypes. The phylogenetic analysis suggested that these four new genetic groups represent closely related yet different viral species. Thus, TTV exists as a "swarm" of at least five closely related but different viruses. These observations suggest a high degree of genetic complexity within the TTV population. The finding of the additional TTV-related species should be taken into consideration when the association between TTV infections and human diseases of unknown etiology is studied.  相似文献   

6.
Through routine and nested PCR amplifications, four complete genome sequences of porcine Torque teno virus (TTV) type II were obtained from swine herds. By comparison with the TTV genome sequences deposited in GenBank, we found the most divergent types so far described. The level of genetic diversity between these genomes is higher than would be expected within a single virus species. A nucleotide and amino acid phylogenetic tree was constructed.  相似文献   

7.
Canine parvovirus (CPV), a fast-evolving single-stranded DNA virus, comprises three antigenic variants (2a, 2b, and 2c) with different frequencies and genetic variability among countries. The contribution of co-infection and recombination to the genetic variability of CPV is far from being fully elucidated. Here we took advantage of a natural CPV population, recently formed by the convergence of divergent CPV-2c and CPV-2a strains, to study co-infection and recombination. Complete sequences of the viral coding region of CPV-2a and CPV-2c strains from 40 samples were generated and analyzed using phylogenetic tools. Two samples showed co-infection and were further analyzed by deep sequencing. The sequence profile of one of the samples revealed the presence of CPV-2c and CPV-2a strains that differed at 29 nucleotides. The other sample included a minor CPV-2a strain (13.3% of the viral population) and a major recombinant strain (86.7%). The recombinant strain arose from inter-genotypic recombination between CPV-2c and CPV-2a strains within the VP1/VP2 gene boundary. Our findings highlight the importance of deep-sequencing analysis to provide a better understanding of CPV molecular diversity.  相似文献   

8.
Hepatitis C virus (HCV) is a major cause of liver disease worldwide and a potential cause of substantial morbidity and mortality in the future. HCV is characterized by a high level of genetic heterogeneity. Although homologous recombination has been demonstrated in many members of the family Flaviviridae, to which HCV belongs, there are only a few studies reporting recombination on natural populations of HCV, suggesting that these events are rare in vivo. Furthermore, these few studies have focused on recombination between different HCV genotypes/subtypes but there are no reports on the extent of intra-genotype or intra-subtype recombination between viral strains infecting the same patient. Given the important implications of recombination for RNA virus evolution, our aim in this study has been to assess the existence and eventually the frequency of intragenic recombination on HCV. For this, we retrospectively have analyzed two regions of the HCV genome (NS5A and E1-E2) in samples from two different groups: (i) patients infected only with HCV (either treated with interferon plus ribavirin or treatment naïve), and (ii) HCV-HIV co-infected patients (with and without treatment against HIV). The complete data set comprised 17712 sequences from 136 serum samples derived from 111 patients. Recombination analyses were performed using 6 different methods implemented in the program RDP3. Recombination events were considered when detected by at least 3 of the 6 methods used and were identified in 10.7% of the amplified samples, distributed throughout all the groups described and the two genomic regions studied. The resulting recombination events were further verified by detailed phylogenetic analyses. The complete experimental procedure was applied to an artificial mixture of relatively closely viral populations and the ensuing analyses failed to reveal artifactual recombination. From these results we conclude that recombination should be considered as a potentially relevant mechanism generating genetic variation in HCV and with important implications for the treatment of this infection.  相似文献   

9.
Conventional phylogenetic tree estimation methods assume that all sites in a DNA multiple alignment have the same evolutionary history. This assumption is violated in data sets from certain bacteria and viruses due to recombination, a process that leads to the creation of mosaic sequences from different strains and, if undetected, causes systematic errors in phylogenetic tree estimation. In the current work, a hidden Markov model (HMM) is employed to detect recombination events in multiple alignments of DNA sequences. The emission probabilities in a given state are determined by the branching order (topology) and the branch lengths of the respective phylogenetic tree, while the transition probabilities depend on the global recombination probability. The present study improves on an earlier heuristic parameter optimization scheme and shows how the branch lengths and the recombination probability can be optimized in a maximum likelihood sense by applying the expectation maximization (EM) algorithm. The novel algorithm is tested on a synthetic benchmark problem and is found to clearly outperform the earlier heuristic approach. The paper concludes with an application of this scheme to a DNA sequence alignment of the argF gene from four Neisseria strains, where a likely recombination event is clearly detected.  相似文献   

10.
Recombinant human immunodeficiency virus type 1 (HIV-1) strains containing sequences from different viral genetic subtypes (intersubtype) and different lineages from within the same subtype (intrasubtype) have been observed. A consequence of recombination can be the distortion of the phylogenetic signal. Several intersubtype recombinants have been identified; however, less is known about the frequency of intrasubtype recombination. For this study, near-full-length HIV-1 subtype C genomes from 270 individuals were evaluated for the presence of intrasubtype recombination. A sliding window schema (window, 2 kb; step, 385 bp) was used to partition the aligned sequences. The Shimodaira-Hasegawa test detected significant topological incongruence in 99.6% of the comparisons of the maximum-likelihood trees generated from each sequence partition, a result that could be explained by recombination. Using RECOMBINE, we detected significant levels of recombination using five random subsets of the sequences. With a set of 23 topologically consistent sequences used as references, bootscanning followed by the interactive informative site test defined recombination breakpoints. Using two multiple-comparison correction methods, 47% of the sequences showed significant evidence of recombination in both analyses. Estimated evolutionary rates were revised from 0.51%/year (95% confidence interval [CI], 0.39 to 0.53%) with all sequences to 0.46%/year (95% CI, 0.38 to 0.48%) with the putative recombinants removed. The timing of the subtype C epidemic origin was revised from 1961 (95% CI, 1947 to 1962) with all sequences to 1958 (95% CI, 1949 to 1960) with the putative recombinants removed. Thus, intrasubtype recombinants are common within the subtype C epidemic and these impact analyses of HIV-1 evolution.  相似文献   

11.
The mechanism of nonhomologous recombination in murine cells infected with the parvovirus minute virus of mice (MVM) has been investigated by analysis of DNA sequences at recombination junctions in naturally occurring deletion variants of the virus. We report here that nonhomologous recombination in the MVM chromosome is characterized by short homologies, by insertion at recombination junctions of foreign DNA sequences that are enriched for preferred eucaryotic topoisomerase I cleavage sites, and by an association with a common DNA sequence motif of the type 5'-CTATTTCT-3'. Additional analyses of broken MVM chromosomes provided evidence for specific enzymatic cleavage within 5'-CTTATC-3' and 5'-CTATTC-3' sequences. The results indicate that the 5'-CTATTTCT-3' motif is an important genetic element for nonhomologous recombination in the parvovirus chromosome.  相似文献   

12.
Recombination between RNA sequences plays a role in the fast evolution of a few viruses. There has been no report on hepatitis D virus (HDV) recombination. In this study, we analyzed genetic recombination of HDV and its possible impact on evolution and clinical course. The aligned HDV sequences allowed us to construct a phylogenetic tree which supported the notion of distinct lineages of HDV. The tree was also used in the analysis of recombination using partial likelihoods assessed through optimization. Nine segments of the HDV genome with significant levels of genetic recombination were detected. Five segments were in the hypervariable region, and four were in the delta-antigen- coding region. None could be found in the well-conserved autocleavage region that is essential for replication. Recombination occurred both between and within types. The results of this study indicated that the remarkable variation in HDV genomic sequences, particularly in the hypervariable region, among different genotypes may at least partly result from multiple episodes of genetic recombination during evolution. Genetic recombination may play a significant role in increasing genetic diversity. Importantly, a genetic recombination (nt 1082-1093) occurred in one of the immunogenic domains of hepatitis delta virus antigen recognized by human and woodchuck antibodies (amino acids 174-195). Genetic recombination also occurred at another segment between nt 1517 and 1535, which was close to one of the predicted T-cell epitopes (amino acids 26-41). In longitudinal analysis of HDV genomes at different time points during chronic infection, novel dominant HDV strains with amino acid changes at these epitopes usually emerged after severe hepatitis attacks. In the comparison of HDV clones during or shortly after flare-up of liver disease, Ka/Ks ratios of > 1 were frequently found, suggesting Darwinian positive selection. Therefore, recombination in these two segments may play an important role for HDV in the evasion of immunity.  相似文献   

13.
Human immunodeficiency virus type 1 (HIV-1) M group strains have been assigned to date to nine distinct genetic subtypes, designated A through I, according to phylogenetic analyses of nucleotide sequences of their env or gag genes. Whether there is any relationship between phylogenetic subtypes and the neutralization serotypes is not clear, yet defining the nature of any such relationship by mathematical means would be of major importance for the development of globally effective HIV-1 vaccines. We have therefore developed a quantitative method to analyze serum neutralization of HIV-1 isolates and to identify HIV-1 neutralization serotypes. This method involves calculations of the neutralization index, N(i), a newly defined parameter derived from plots generated from in vitro neutralization assays, calculations of pairwise serum-virus vector distances, and cluster analyses. We have applied this approach to analyze three independent neutralization matrices involving primary HIV-1 strains and sera from genetic subtypes A, B, C, D, E, F, and I. Detailed serum and HIV-1 isolate cluster analyses have shown that in general, the identified neutralization serotypes do not directly correlate with HIV-1 genetic subtypes. These results suggest that neutralization serotypes do not during natural HIV-1 infection are not governed by antibodies directed against simple epitopes within gp120 monomers. A significant proportion (28%) of 1,213 combinations of sera and HIV-1 isolates caused serum-dependent infectivity enhancement [negative N(i) values] rather than neutralization. We also noted that negative N(i) values tended to correlate better with certain HIV-1 isolates rather than with HIV-1-positive sera. Syncytium-inducing variants of HIV-1 were slightly more likely than non-syncytium-inducing variants to undergo serum-dependent infectivity enhancement, although the latter variants could clearly be susceptible to enhancement.  相似文献   

14.
Examining the population structure and the influence of recombination and ecology on microbial populations makes great sense for understanding microbial evolution and speciation. Streptomycetes are a diverse group of bacteria that are widely distributed in nature and a rich source of useful bioactive compounds; however, they are rarely subjected to population genetic investigations. In this study, we applied a five-gene-based multilocus sequence analysis (MLSA) scheme to 41 strains of Streptomyces albidoflavus derived from diverse sources, mainly insects, sea, and soil. Frequent recombination was detected in S. albidoflavus, supported by multiple lines of evidence from the pairwise homoplasy index (Φw) test, phylogenetic discordance, the Shimodaira-Hasegawa (SH) test, and network analysis, underpinning the predominance of homologous recombination within Streptomyces species. A strong habitat signal was also observed in both phylogenetic and Structure 2.3.3 analyses, indicating the importance of ecological difference in shaping the population structure. Moreover, all three habitat-associated groups, particularly the entomic group, demonstrated significantly reduced levels of gene flow with one another, generally revealing habitat barriers to recombination. Therefore, a combined effect of homologous recombination and ecology is inferred for S. albidoflavus, where dynamic evolution is at least partly balanced by the extent that differential distributions of strains among habitats limit genetic exchange. Our study stresses the significance of ecology in microbial speciation and reveals the coexistence of homologous recombination and ecological divergence in the evolution of streptomycetes.  相似文献   

15.
Chloroplast DNA sequences and microsatellites are useful tools for phylogenetic as well as population genetic analyses of plants. Chloroplast microsatellites tend to be less variable than nuclear microsatellites and therefore they may not be as powerful as nuclear microsatellites for within-species population analysis. However, chloroplast microsatellites may be useful for phylogenetic analysis between closely related taxa when more conventional loci, such as ITS or chloroplast sequence data, are not variable enough to resolve phylogenetic relationships in all clades. To determine the limits of chloroplast microsatellites as tools in phylogenetic analyses, we need to understand their evolution. Thus, we examined and compared phylogenetic relationships of species within the genus Clusia, using both chloroplast sequence data and variation at seven chloroplast microsatellite loci. Neither ITS nor chloroplast sequences were variable enough to resolve relationships within some sections of the genus, yet chloroplast microsatellite loci were too variable to provide any useful phylogenetic information. Size homoplasy was apparent, caused by base substitutions within the microsatellite, base substitutions in the flanking regions, indels in the flanking regions, multiple microsatellites within a fragment, and forward/reverse mutations of repeat length resulting in microsatellites of identical base composition that were not identical by descent.  相似文献   

16.
Torque teno virus (TTV) has been found to be prevalent world-wide in healthy populations and in patients with various diseases, but its etiological role has not yet been determined. Using high-throughput unbiased sequencing to screen for viruses in the serum of a patient with persistent high fever who died of suspected viral infection and prolonged weakness, we identified the complete genome sequence of a TTV (isolate Hebei-1). The genome of TTV-Hebei-1 is 3649 bp in length, encoding four putative open reading frames, and it has a G+C content of 49%. Genomic comparison and a BLASTN search revealed that the assembled genome of TTV-Hebei-1 represented a novel isolate, with a genome sequence that was highly heterologous to the sequences of other reported TTV strains. A phylogenetic tree constructed using the complete genome sequence showed that TTV-Hebei-1 and an uncharacterized Taiwanese strain, TW53A37, constitute a new TTV genotype. The patient was strongly suspected of carrying a viral infection and died eventually without any other possible causes being apparent. No virus other than the novel TTV was identified in his serum sample. Although a direct causal link between the novel TTV genotype infection and the patient’s disease could not be confirmed, the findings suggest that surveillance of this novel TTV genotype is necessary and that its role in disease deserves to be explored.  相似文献   

17.
Discovery of TT virus in 1997 gave raise to intensive subsequent studies to learn about its structure, features and, what is the most important, about its role in pathogenesis of liver disease. The aim of the work was to analyze prevalence of TTV DNA in patients with diagnosed hepatitis B, C, that of unknown etiology and in healthy blood donors as well. Additionally the divergence of TTV sequence was estimated in selected cases. TTV DNA was detected by PCR technique using specific oligonucleotide primers for coding regions. TT virus has been detected in 25.6% (32/125) HBsAg positive patients and in 23.9% (51/213) HCV infected patients. In healthy blood donors the frequency of TTV was 24.3% (34/140) similarly to that found in HCV and HBV infected patients. The frequency of TTV DNA among patients with hepatitis of unknown etiology was 9.1%. This result was statistically significant lower than in the other groups. When detected sequences have been compared to these from NCBI base the homology result was 71% to 95%, and among different patients and groups of patients identity was 46% to 73%. On the basis of the obtained results it can be concluded that it is very unlikely that TTV coinfection plays any significant role in HCV or HBV infection. The hypothetical role of TTV infection in the etiopathogenesis of cryptogenic chronic hepatitis has not been confirmed. The results obtained in the small group of patients with hepatitis of unknown etiology are not conclusive and should be taken with some precaution. The final conclusion is the TTV coinfection does not contribute to the liver pathology. The divergence of TTV sequences may explain the various frequency of TTV viremia reported by other authors.  相似文献   

18.
Characterization of Trichomonad Species and Strains by PCR Fingerprinting   总被引:9,自引:0,他引:9  
ABSTRACT. The random amplified polymorphic DNA (RAPD) technique was used for phylogenetic analysis of trichomonads, for intraspecies genealogical study of Trichomonas vaginalis strains, and for assessment of intrastrain polymorphism in Trichomonas vaginalis . The phylogenetic tree for 12 trichomonad species showed certain discrepancies with current models of trichomonad evolution. However, it shows that RAPD traits retain phylogenetically relevant information. The results of intraspecies analyses of 18 Trichomonas vaginalis strains suggested some concordance between the genetic relationship of strains and their geographic origin. They also suggested a concordance between the strain genetic relationships and the resistance to metronidazole. A concordance was also found with respect to the severity of disease observed in donor patients but not with the results of laboratory virulence assays. No concordance was found between genetic relationship of strains and strain infection with a dsRNA Trichomonas vaginalis virus (TVV). The latter suggests that TVV might be transmitted horizontally among Trichomonas vaginalis populations. The identity of RAPD patterns of clones isolated from in vitro cultures and those of the cultures reisolated independently from the same patient within a period of six weeks suggests that individual Trichomonas vaginalis strains are not polymorphic and that the RAPD patterns are stable. Therefore, the RAPD technique seems useful for addressing various clinically relevant issues.  相似文献   

19.
Dobrava virus (DOBV) occurs in two different rodent species, Apodemus flavicollis (DOBV-Af) and A. agrarius (DOBV-Aa). We sequenced the S and M genomic segments from sympatric DOBV-Af and DOBV-Aa strains which fell into two distinct genetic lineages. Molecular phylogenetic analyses gave evidence for genetic reassortment between S and M segments of DOBV-Af and DOBV-Aa and indicated homologous recombination events in DOBV evolution. DOBV-Af and DOBV-Aa are distinct but also subject to genetic exchanges that affect their evolutionary trajectories.  相似文献   

20.
We present the results of a 6-year study of 131 human immunodeficiency virus (HIV) type 2 (HIV-2)-infected individuals from a rural population in Guinea-Bissau. Proviral DNA sequences 1.3 kb in length were obtained from each individual and, together with clinical data, including proviral load and CD4 and CD8 levels, were used to assess whether viral genotype influences clinical outcome. With a phylogenetic model, a correlation was found between viral genotype and mortality; this correlation was not due to confounding factors, such as age-specific viral strains or cohabitation of patients. The data provide strong evidence for the involvement of viral genetic factors in determining HIV disease progression in vivo. The pattern of association found suggests that virulence factors are multiple and scattered throughout the HIV-2 genome and can be rapidly gained or lost by the virus through a combination of mutation and recombination. These findings may lead to the identification of viral determinants of HIV disease progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号