首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Filter feeding in mussels is a secondary adaptation where the gills have become W‐shaped and greatly enlarged, acting as the mussel filter–pump. Water pumping and particle capture in the blue mussel, Mytilus edulis, have been studied over many years. Here, we give a short status of the present understanding of ciliary structure and function of the mussel filter–pump, supplemented with new photo‐microscope and scanning electron microscopy (SEM) pictures of gill preparations. Pumping rate (filtration) and pressure to maintain flow have been extensively studied so the power delivered by the mussel pump to the water flow is known (1.1% of total respiratory power), but the actual cost based on gill respiration is much higher (19%), implying that the cost of maintaining of the large gill pump is considerable and that only relatively little energy can be saved by stopping or reducing the activity of the water‐pumping cilia so that continuous feeding with a ‘minimal scaled’ pump is cheaper than discontinuous feeding with a correspondingly larger pump. According to the present view, the pump proper is the beating lateral cilia (lc) on the gill filaments and particle capture is accomplished by the action of laterofrontal cirri (lfc) transferring particles from the main water current to the frontal gill filament currents driven by frontal cilia (fc). Unexplained aspects include retention efficiency according to particle size and the role of pro‐laterofrontal cilia (p‐lfc) placed between the lfc and fc. The structure of cilia and the mode of ciliary beating have been re‐examined in this study by new high‐resolution light and scanning electron microscopy of isolated gill preparations exposed to serotonin (5‐HT) stimulation which can activate the lc and lfc at low concentrations (10?6 M), but removes the lfc from the interfilament canals at higher concentrations (10?5 M).  相似文献   

2.
Serotonin (5-HT) and dopamine (DA), but not several other putative neurotransmitters, stimulate cyclic adenosine-3',5'-monophosphate (cAMP) production in slices of Aplysia gill. Furthermore, 5-HT but not DA increases cAMP in slices of the heart of Aplysia. Several lines of evidence indicate that the receptors are distinct entities; however, no drugs were found to block one receptor without affecting the other.  相似文献   

3.
The activities of both the lateral and frontal cilia of Mercenaria mercenaria were unaffected, either by the two endogenous SCP-related peptides AMSFYFPRMamide and YFAFPRQamide, or by FMRFamide (all at 10(-6) M). Dopamine (DA) inhibited the lateral cilia; the mean EC50 was 2 x 10(-6) M. The peptide YFAFPRQamide--but neither AMSFYFPRMamide nor FMRFamide--antagonized the inhibition induced by DA; this effect was dependent on both time and dose. At a DA concentration of 5 x 10(-7) M, the effect of YFAFPRQamide appeared within 20 min and became maximal within 40-60 min; the mean EC50 at these times was 4.7 x 10(-11) M. If the concentration of DA was increased to 10(-6) M, the maximal effect of the peptide was delayed to 50 min, and the mean EC50 increased to 1.1 x 10(-7) M. Particle transport by the frontal cilia was inhibited by 5-hydroxytryptamine (5HT); the mean EC50 was 5.7 x 10(-7) M. Again, only YFAFPRQamide had an antagonistic effect on the 5HT-induced inhibition. At a 5HT concentration of 10(-6) M, the effects of YFAFPRQamide did not appear until 45 min; the mean EC50 was 10(-6) M. When radioimmunoassayed with an SCP antiserum, the elution profile of a gill extract overlapped those of the SCP-related peptides that had previously been identified in extracts of whole animals. These data suggest that all three SCP analogs occur in the gill. Immunohistochemistry of the gill, carried out with a monoclonal antibody raised to SCPB, stained many varicose neuronal fibers. Most of these were associated with the gill musculature, but a sparse innervation of the filaments underlying the cilia was also observed. Some fluorescent nerve cell bodies were also seen in the gill tissue. Our results are consistent with the hypothesis that YFAFPRQamide modulates branchial activities--muscular as well as ciliary--that are associated with feeding.  相似文献   

4.
(1) In order to assess the possible role of 3′,5′-(cyclic)adenosine monophosphate (cAMP) in the control of glucose transport, the effect of the nucleotide or agents known to increase its intracellular concentration on sugar transport or 45Ca2+ washout were characterized in epididymal fat pads, free fat cells and soleus muscles of the rat. (2) When added to the incubation medium, cAMP (0.1–2.0 mM) stimulated 3-O-[14C]methylglucose washout from fat pads. This effect was abolished by cytochalasin B, and additive to that induced by submaximal (10–25 μU/ml), but not by supramaximal (10 mU/ml) concentrations of insulin. (3) cAMP (2 mM) stimulated the conversion of [U-14C]glucose into CO2 and triacylglycerols. This effect was additive to that of insulin (100 μU/ml). (4) ACTH, glucagon, adrenaline, noradrenaline and salbutamol, which are all known to increase the cAMP content of adipose tissue, stimulated the washout of 3-O-[14C]methylglucose and 45Ca2+ from preloaded fat pads. The fractional losses of the two isotopes were significantly correlated (P < 0.001, r = 0.73). (5) In free fat cells, adrenaline (10?6 M) and salbutamol (10?5 M) stimulated the uptake of 3-O-[14C]methylglucose, and salbutamol (10?5 M) did not interfere with the stimulating effect of insulin (25 μU/ml) on sugar uptake. (6) In rat soleus muscles, adrenaline and salbutamol produced a dose-dependent stimulation of the washout of 3-O-[14C]methylglucose and 45Ca2+. The effect of adrenaline on sugar efflux was abolished by propranolol. (7) It is concluded that the activation of the glucose transport system by insulin is unlikely to be mediated by a drop in the cellular concentration of cAMP. An increase in cAMP brought about by β-adrenoceptor agonists or lipolytic hormones may induce a mobilization of calcium ions from cellular pools into the cytoplasm, which in turn leads to the activation of the glucose transport system demonstrated in the present as well as in several earlier studies.  相似文献   

5.
6.
Vasoactive intestinal peptide (VIP), secretin, catecholamines and prostaglandin E1 (PGE1) in the presence of a cyclic nucleotide phosphodiesterase inhibitor stimulate the accumulation of cyclic AMP in two colorectal carcinoma cell lines (HT 29 and HRT 18) with subsequent activation of the cyclic AMP-dependent protein kinases. In HT 29 cells incubated without phosphodiesterase inhibitor, 10?9 M VIP promotes a rapid and specific activation of the low Km cyclic AMP phosphodiesterase (1.7-fold); at 25°C the effect is maintained for more than 15 min, while at 37°C the activity returns to basal value within 15 min. As shown by dose-response studies, VIP is by far the most effective inducer (Ka = 4 · 10?10M) of the cyclic AMP phosphodiesterase activity; partial activation of the enzyme is obtained by 3 · 10?7 M secretin, 10?5 M isoproterenol and 10?5 M PGE1; PGE2 and epinephrine are without effect. In HRT 18 cells VIP is less active (Ka = 2 · 10?9M) whereas 10?6 M PGE1, 10?6 M PGE2 and 10?5 M epinephrine are potent inducers of the phosphodiesterase activity. The positive cell response to dibutyryl-cyclic AMP further indicates that cyclic AMP is a mediator in the phosphodiesterase activation process. The incubation kinetics and dose response effects of the various agonists on the cyclic AMP-dependent protein kinase activity determined for both cell types in the same conditions show a striking similarity to those of phosphodiesterase. Thus coordinate regulation of both enzymes by cyclic AMP was observed in all incubation conditions.  相似文献   

7.
Isoproterenol increases net uptake of potassium in whole pigeon erythrocytes in vitro; effect of 10?5 M isoproterenol is blocked by 10?4 M propranolol. Pentifylline, a potent inhibitor of cAMP-phosphodiesterase, significantly amplifies effect of isoproterenol, indicating that isoproterenol-effect is mediated by cAMP. cAMP alone has no direct influence on net potassium uptake, while dibuturyl-cAMP has a very weak effect. Isoproterenol-effects are also mediated by the cell membrane protein-phosphorylation.  相似文献   

8.
High-dose carbachol (10?3 M) has previously been shown to cause NaCl absorption in short-circuited rabbit ileum. The mechanism of this effect may be norepinephrine release induced by carbachol activation of presynaptic nicotinic receptors on adrenergic neurons. Norepinephrine then interacts with postsynaptic α-adrenergic receptors on intestinal mucosal cells to stimulate neutral NaCl absorption and inhibit electrogenic bicarbonate secretion. The present paper examines the in vitro intestinal ion transport effects of DMPP an agent which is more specific than carbachol on nicotinic cholinergic receptors. DMPP (10?5 M) caused a transient increase followed by prolonged depression of the short-circuit current, increased NaCl absorption and increased tissue conductance. This effect was antagonized by hexamethonium and phentolamine. It is concluded that nicotinic cholinergic agents stimulate norepinephrine release from adrenergic nerves and effect intestinal ion transport just as norepinephrine does.  相似文献   

9.
Summary Autoradiography was used to examine the influence of lateral ciliary activity on the pattern of leucine uptake into isolated gill tissue from the mussel,Mytilus californianus. Metachronal activity of the lateral cilia, normally absent in the in vitro gill, was reestablished by application of 10 μM 5-hydroxytryptamine (5-HT). This treatment produced a 5–7 fold stimulation in the rate of leucine uptake into isolated gills. The treatment with 5-HT did not, however, affect the fractional incorporation of leucine into alcohol insoluble vs alcohol soluble material. Autoradiograms of gills treated with 5-HT showed extensive labelling of frontal, lateral, and abfrontal surfaces of gill filaments compared to the control condition in which label was largely confined to the frontal region of the gill. Quantitative analyses of the autoradiograms revealed a 4-fold increase in the number of silver grains over lateral and abfrontal surfaces compared to control gills. Autoradiograms of gills from intact mussels exposed to3H-leucine showed a pattern of silver grain deposition similar to that observed in in vitro gills treated with 5-HT. It is concluded that the capacity for amino acid transport exists in cells from the frontal, lateral, and abfrontal surfaces of gill filaments, butaccess to dissolved substrates by transport sites on lateral and abfrontal surfaces is dependent upon lateral ciliary activity.  相似文献   

10.
Enkephalins increase dopamine levels in the CNS of a marine mollusc.   总被引:2,自引:0,他引:2  
G B Stefano  E J Catapane 《Life sciences》1979,24(17):1617-1621
Intracardiac administration of methionine enkephalin and leucine enkephalin increased dopamine but not serotonin levels in the CNS of the marine mollusc Mytilusedulis. Naloxone blocked the effects of the enkephalins. These responses displayed a time dependent desensitization to methionine enkephalin. The study suggests the presence of an opiate receptor mechanism in this invertebrate species.  相似文献   

11.
An examination is made of the hypothesis that endogenous 5-hydroxytryptamine (5-HT) serves as a local hormone regulating ciliary activity in the lamellibranch gill. These cilia are sensitive to exogenous 5-HT and respond to it by a prompt, sustained, and reversible rise in beat frequency; at the same time the carbohydrate metabolism is stimulated, as described elsewhere. Control gill contains small but definite amounts of endogenous 5-HT according to bioassay, fluorometry, and chromatography. The amount can be increased markedly by exposing the isolated gill to the precursor substance 5-hydroxytryptophan but not l-tryptophan. As the tissue level of 5-HT rises, the spontaneous beat frequency also rises. Both remain elevated for hours and perhaps for days. The gill of Mytilus edulis is richer than the gill of Modiolus demissus in both endogenous 5-HT and effective 5-hydroxytryptophan decarboxylase activity. Modiolus gill lacks the 5-hydroxyindole oxidase by which Mytilus gill destroys 5-HT. What if any mechanism exists in Modiolus for degrading 5-HT is not known, but monoamine oxidase is not present. The 5-HT content of Mytilus and Modiolus gill cannot be modified by treatment with reserpine or α-methyl-dopa. Which cells of the gill synthesize and destroy 5-HT has not been established, but these observations support the concept that the physiological activity of lamellibranch gill cilia is controlled by a serotonergic mechanism.  相似文献   

12.
Both intact cortical tissue and isolated cortical cells from the adrenal gland of the rat were analyzed for 6-keto-PGF, the hydrolysis metabolite of PGI2, using high-performance liquid chromatography and gas chromatography-mass spectrometry. 6-Keto-PGF was present in both incubations of intact tissue and isolated cells of the adrenal cortex, at higher concentrations than either PGF or PGE2. Thus, the cortex does not depend upon vascular components for the synthesis of the PGI2 metabolite. Studies in vitro, using isolated cortical cells exposed to 6-keto-PGF (10?6-10?4M), show that this PG does not alter cAMP levels or steroidogenesis. Cells exposed to PGI2 (10?6-10?4M), however, show a concentration-dependent increase of up to 4-fold in the levels of cAMP without altering corticosterone production. ACTH (5–200 μU/ml) increased cAMP levels up to 14-fold, and corticosterone levels up to 6-fold, in isolated cells. ACTH plus PGI2 produced an additive increase in levels of cAMP, however, the steroidogenic response was equal to that elicited by ACTH alone. Adrenal glands of the rat perfused in situ with PGI2 showed a small decrease in corticosterone production, whereas ACTH greatly stimulated steroid release. Thus, while 6-keto-PGF is present in the rat adrenal cortex, its precursor, PGI2, is not a steroidogenic agent in this tissue although it does stimulate the accumulation of cAMP.  相似文献   

13.
Acute caffeine injection (100 mg/kg) elevates brain levels of tryptophan (TRP), serotonin (5HT), and 5-hydroxyindoleacetic acid (5HIAA). Experiments were performed to determine if the increases in 5HT and 5HIAA result from a stimulation of the rate of 5HT synthesis. Both the rate of 5-hydroxytryptophan (5HTP) accumulation following NSD-1015 injection, and the rate of 3H-5-hydroxyindole synthesis from 3H-tryptophan were measured in vivo following caffeine administration and found to be normal. Tryptophan hydroxylase activity, as measured in vitro in brain homogenates, was also unaffected by caffeine. The results suggest that the elevations in brain 5HT and 5HIAA levels produced by caffeine do not reflect enhanced 5HT synthesis, despite significant elevations in brain TRP level. Some other mechanism(s) must therefore be responsible for these elevations in brain 5-hydroxyindole levels.  相似文献   

14.
Reduced glucose transport across the plasma membrane and reduced phosphorylation may both be responsible for the early inhibitory effect of physiological concentrations of glucocorticoids on glucose uptake by rat thymocytes.The early inhibitory effects of glucocorticoids (5 · 10?7 M dexamethasone) on glucose consumption and 14CO2 formation from d-[U-14C]glucose were reproduced.The total uptake curve of 4.8 μM 3-O-[14C]methyl-d-glucose was biexponential with t12 of 1.1 min and 36 min, respectively, the rapid part comprising about 50% of the equilibrated intracellular water space. The latency of the effect of 5 · 10?7 M dexamethasone on 3-O-[14C]methyl-d-glucose uptake ranged from 15 to 100 min and the inhibition varied from 15 to 55% independently of the lag period. The effect of 3-O-methylglucose concentration on the initial uptake by steroid-responsive cell preparations was tested after 45 min of preincubation with or without 5 · 10?7 M dexamethasone. In 12 experiments dexamethasone reduced V from 1.36 ± 0.16 mmol · min?1 · l?1 cell water to 0.81 ± 0.10 mmol · min?1 · l?1 cell water with insignificant change of Km (6.0 mM versus 5.9 mM). Dexamethasone had similar effect after 90 or 120 min.The variabilities of control cell transport capacity, the lag period and the magnitude of the dexamethasone effect could not be accounted for by changes in pH, effects of cell density, concentrations of albumin, ethanol, nucleosides, pyruvate or correlated to age and sex of the rats. In conclusion the inhibition of glucocorticoids on glucose consumption by thymocytes appears to be an inhibited plasma membrane transport capacity.  相似文献   

15.
The transport of sucrose by selected mutant and wild-type cells of Streptococcus mutans was studied using washed cocci harvested at appropriate phases of growth, incubated in the presence of fluoride and appropriately labelled substrates. The rapid sucrose uptake observed cannot be ascribed to possible extracellular formation of hexoses from sucrose and their subsequent transport, formation of intracellular glycogen-like polysaccharide, or binding of sucrose or extracellular glucans to the cocci. Rather, there are at least three discrete transport systems for sucrose, two of which are phosphoenolpyruvate-dependent phosphotransferases with relatively low apparent Km values and the other a non-phosphotransferase (non-PTS) third transport system (termed TTS) with a relatively high apparent Km. For strain 6715-13 mutant 33, the Km values are 6.25·10?5 M, 2.4·10?4 M, and 3.0·10?3 M, respectively; for strain NCTC-10449, the Km values are 7.1·10?5 M, 2.5·10?4 M and 3.3·10?3 M, respectively. The two lower Km systems could not be demonstrated in mid-log phase glucose-adapted cocci, a condition known to repress sucrose-specific phosphotransferase activity, but under these conditions the highest Km system persists. Also, a mutant devoid of sucrose-specific phosphotransferase activity fails to evidence the two high affinity (low apparent Km) systems, but still has the lowest affinity (highest Km) system. There was essentially no uptake at 4°C indicating these processes are energy dependent. The third transport system, whose nature is unknown, appears to function under conditions of sucrose abundance and rapid growth which are known to repress phosphoenolpyruvate-dependent sucrose-specific phosphotransferase activity in S. mutans. These multiple transport systems seem well-adapted to S. mutans which is faced with fluctuating supplies of sucrose in its natural habitat on the surfaces of teeth.  相似文献   

16.
Hormonal regulation of macrophage collagenase activity.   总被引:3,自引:0,他引:3  
Whereas peritoneal macrophages from nonpregnant guinea pigs were stimulated in vitro by endotoxin to produce collagenase on the second day of culture, those from pregnant guinea pigs were incapable of this response. However, if the cells from pregnant animals were preincubated for one day prior to endotoxin stimulation, collagenase activity could be detected. Injection of either estrogen or progesterone into guinea pigs at doses comparable to those found during pregnancy prior to removal of the peritoneal cells also inhibited the in vitro stimulation of collagenase production. The addition of these hormones in vitro revealed that at 5 × 10?6 M estrogen and progesterone inhibited 53% and 100% respectively of the collagenase activity. Addition of both hormones at a final concentration of 5 × 10?7 M of each inhibited 87% of the activity indicating a synergistic effect since this concentration of either hormone alone was ineffective.  相似文献   

17.
Cultured epithelial monolayers of MDCK cells grown upon Millipore filter supports and mounted in Ussing chambers for transport studies respond to addition of 5 · 10?7M adrenalin from only the basal bathing solution by an increased short-circuit current, due both to an increased transmonolayer potential difference (basal solution electropositive) and an increased transmonolayer conductance. Measurement of tracer Na+, K+ and Cl? fluxes demonstrate that the adrenalin-stimulated short-circuit current results primarily from basal to apical net Cl? secretion. Half-maximal stimulation of the short-circuit current was observed at (3.1 ± 0.3) · 10?8M adrenalin; the order of potency of adrenergic agonists for short-circuit current stimulation was isoprenalin >adrenalin >noradrenalin, consistent with adrenalin action being mediated by a β-adrenergic receptor. The adrenalin-stimulated short-circuit current was sensitive to inhibition (75%) by basal additions of furosemide (1 · 10?4M); phloretin inhibition (54%, 57%) was observed from both epithelial surfaces. Amiloride (10?4 M) and 4-acetamido-4-isothiocyanostilbene-2, 2′-disulphonic acid (SITS) (10 μM) were ineffective as inhibitors of the adrenalin response. The increased short-circuit current was sensitive to replacement of medium Na+ by choline (87%) and Tris (93%). Li+ was a partially effective substitute cation for Na+ · NO3?, and isethionate were ineffective substitutes for Cl? whereas Br? was partially effective. Partial replacement of medium Na+ by choline gave an upward-curving non-saturable dependence of the adrenalin-stimulated short-circuit current upon [Na]; partial replacement of Cl? by NO3? in contrast gave a saturable increase with a K12 of approx. 65 mM Cl?.  相似文献   

18.
The characterization of cytochalasin B binding and the resulting effect on hexose transport in rat liver parenchymal cells in primary culture were studied. The cells were isolated from adult rats by perfusing the liver in situ with collagenase and separating the hepatocytes from the other cell types by differential centrifugation. The cells were established in primary culture on collagen-coated dishes. The binding of [4-3H]cytochalasin B and transport of 3-O-methyl-D-[14C]glucose into cells were investigated in monolayer culture followed by digestion of cells and scintillation counting of radioactivity. The binding of cytochalasin B to cells was rapid and reversible with association and dissociation being essentially complete within 2 min. Analysis of the kinetics of cytochalasin B binding by Scatchard plots revealed that binding was biphasic, with the parenchymal cell being extremely rich in high-affinity binding sites. The high-affinity site, thought to be the glucose-transport carrier, exhibited a KD of 2.86 · 10?7 M, while the low-affinity site had a KD of 1.13 · 10?5M. Sugar transport was monitored by 3-O-methyl-D-glucose uptake and it was found that cytochalasin B (10?5M) drastically inhibited transport. However, D-glucose (10?5M) did not displace cytochalasin B, and cytochalasin E, which does not inhibit transport, was competitive for cytochalasin B at only the low-affinity site, demonstrating that the cytochalasin B inhibition of sugar transport occurs at the high-affinity site but that the inhibition is non-competitive in nature. Therefore, the liver parenchymal cells may represent an unusually rich source of glucose-transport system which may be useful in the isolation of this important membrane carrier.  相似文献   

19.
The 1-benzyl and 1-methyl congeners of trimetoquinol were tested for antagonism of receptors which mediate inotropy and chronotropy in the isolated perfused rabbit heart. 1-Benzyltrimetoquinol was found to be a blocker of resting, isoproterenol- and dobutamine-stimulated inotropy at concentrations (10?7?10?5M) which did not significantly affect chronotropy ( > 10?5M). 1-Methyltrimetoquinol was found to be a partial agonist in the resting myocardium, weakly blocking inotropy and chronotropy at doses of 10?7?10?5M. At a concentration of 10?4M, 1-methyltrimetoquinol was an agonist of both chronotropy and inotropy. These stimulatory properties appear to be direct (not affected by prior reserpinization) and antagonized by propranolol. In the isoproterenol-stimulated heart, 1-methyltrimetoquinol was a specific negative inotropic agent at doses (10?7?10?5M) above which agonist properties were manifest. At 10?4M, 1-methyltrimetoquinol acted synergistically with isoproterenol to produce positive inotropy and chronotropy significantly greater than that of isoproterenol alone. Currently, it is believed that the receptors which mediate inotropy and chronotropy are beta adrenergic in nature. Thus, it would appear that 1-benzyltrimetoquinol is a specific antagonist of those beta-receptors which mediate inotropy, while 1-methyltrimetoquinol is a partial agonist of both inotropic and chronotropic beta-receptors. Further, the response to these compounds does not appear to be proportionate in various regions of the myocardium.  相似文献   

20.
The lethal action of streptonigrin on strains of Escherichiacoli is greatly enhanced by citrate (10?2 M). Desferrioxamine (2×10?4 M), when added with streptonigrin and citrate, eliminates the citrate enhancement. These observations point to a role for iron in the bactericidal mechanism of streptonigrin. Extracellular citrate is known to promote the acquisition of iron by E.coli by delivering it as a ferric citrate complex to a specific transport apparatus on the cell envelope. Therefore, it may promote action of streptonigrin by increasing the intracellular concentration of available iron. Desferrioxamine, which forms a much stronger complex with ferric ion than does citrate, would be expected to suppress the ferric citrate effect, and this was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号