首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The replication of the phage MS2 in the presence of either hydroxylamine (HA) or O-methylhydroxylamine (OMHA) (mutagenesis in vivo) results in an increase in the reversion frequency of two amber mutations in the maturation protein. When acting on the extracellular phage (mutagenesis in vitro) the mutagens do not affect the reversion frequency. The most probable mode of mutagenic action of the hydroxylamines on the vegetative MS2 phage involves the enzymic formation of modified precursors and their incorporation into RNA.  相似文献   

2.
3.
rII mutations of bacteriophage T4 were induced by in vivo treatment with N-methyl-N′-nitro-N-nitrosoguanidine (NG) and in vitro treatment with hydroxylamine (HA). All the NG induced mutations were mappable to small segments of the rIIA cistron and all except one were also highly revertible by 2-aminopurine (AP) treatment. From these observations, it is concluded that treatment of T4 with NG induces only transitions and contrary to its effects on E. coli, in T4, NG does not induce any deletions. Spectra of HA and NG induced mutants of the rIIA cistron were compared. Both mutagens seem to be more effective in inducing mutations nearer the two extremities of this cistron and very few in the middle. This asymmetric effect has been seen to be more pronounced in case of NG than in the case of HA.  相似文献   

4.
5.
6.
Phage ? treated extracellularly with hydroxylamine (HA) was preadsorbed to hcr, exr or wild-type (HY) host cells and plated with HY indicator. 5 plaque mutation types were scored. The frequency distributions of the 5 mutation types (mutation spectra) differed with the hosts, the spectrum in exr especially deviating significantly from those in hcr and HY. This indicates electiveness of repair of certain (pre-) mutations within different genomic regions. HA treatment time (dose) influenced the spectra, too, owing to three mutation types giving linear (one-hit) dose curves and two giving parabolic (about two-hit) curves. The host type did not influence these curve shapes. These findings show that the number of HA hits depends on the genomic region where (pre-) mutations occur.Inactivation of phages as well as cells was strongest in exr compared with hcr and HY hosts (factor 1.3). In contrast, induction of all 5 mutation types was lower in exr (factor about 0.5) and hcr (factor about 0.8) than in HY. This indicates that both repair types (probably post- and pre-replicative) are needed for perfecting part of the HA-induced mutations. The part lacking in repair-defective hosts may be caused by lethality within these hosts of certain premutative lesions. The frequency of mixed compared with pure mutant clones was small. Its dose dependence may be due to recessive lethal lesions within the non-premutated DNA strand.  相似文献   

7.
After mutagenesis with nitrosoguanidine or ultraviolet light, 298 streptomycin high-resistant and 98 streptomycin high-dependent mutants were isolated from HfrC Su. They were tested for their ability to phenotypically suppress five different amber ribonucleic acid (RNA) bacteriophage mutants in the presence of streptomycin. The phage mutants are all in the coat protein, which is 129 amino acids long; the uracil-adenine-guanine codons were at the following positions: sus3 and amB2, 6; amB11, 50; amB21, 54; sus11, 70. Only sus3 and amB2 could be phenotypically suppressed by streptomycin; this was clearly demonstrated in nine mutant strains, seven str-HR and two str-HD. The suppression was always dependent upon added streptomycin and was dose-dependent in all cases. None of the mutants showed measurable suppression in absence of the drug. Among revertants to streptomycin independence from streptomycin-dependent strains that could show phenotypic suppression, most of those that were still resistant to streptomycin (10 μg or more) retained the capacity to show phenotypic suppression; whereas among those revertants sensitive to 10 μg of streptomycin or less, none retained the capacity. Eight different amber polar mutants (strong and weak) in gene 34 of phage T4 were also tested for pleiotypic suppression by streptomycin in all the streptomycin-resistant and -dependent strains isolated. No suppression was found in any of the 396 strains tested.  相似文献   

8.
9.
Summary Recombinant bacteria issuing from crosses between Hfr and F E. coli strains which differ in their amber and non-amber-suppressor sensitive phage mutant suppression patterns exhibit the two parental phage suppression patterns and five other patterns. Analysis of the suppression patterns and comparisons of the chromosomal marker frequencies among the seven different recombinant classes permit identification of five distinct chromosomal regions which are sites of suppressor genes for which the parental strains carry different alleles: 1. the str region of the Hfr chromosome, 2. the ()-gal region of the F chromosome, 3. the met-xyl region of the F chromosome, 4. the thr region of the Hfr chromosome, and 5. the his-try region of the Hfr chromosome.The suppressor in the str region is probably coincident with the gene(s) determining the str phenotype of the parental Hfr strains. The suppressor residing in the ()-gal region of the F chromosome appears to be the su II glutamine-inserting suppressor. The quantitative expression of su II appears to be reduced by the presence of the Strr mutation carried by the F parent, and this reduced efficiency of suppression can be counteracted progressively by the presence of the suppressor residing in the met-xyl region of the F chromosome and of the two suppressors residing in the thr and his-try regions of the Hfr chromosome.  相似文献   

10.
The effect of growth of Escherichia coli BE, prior to infection, on multiplication of double amber mutant amN54-amNG71 in gene 31, mutant amN131-amNG114 in gene 26 and T4D wild-type at different temperatures has been studied. In the case of gene 31 mutant the increase in phage burst size, along with increase in growth temperature, was only observed. And this dependence seems to have the same character as the known dependence of growth temperature on cellular levels of heat shock proteins. Possibly, the product of gene 31 might be substituted to some extent by some heat shock protein. An antiserum against gene 31 protein immunoprecipitates heat shock protein, the molecular weight of which is close to the molecular weight of gene 31 protein. So, it seems likely that, in addition to supposed ability of this heat shock protein for functional substitution of gene 31 protein, these proteins might have some structural homology as well.  相似文献   

11.
12.
The genetic effects of hydroxylamine (HA) on Neurospora crassa were studied in an effort to understand the difference between the results obtained on very simple prokaryotic systems and those obtained with mammalian systems. A 2-component heterokaryon was used to study the inactivation of conidia and the induction of recessive lethal mutations at specific loci and over the entire genome. The heterokaryon is heterozygous for 2 closely linked loci, ad-3A and ad-3B, in the ad-3 region. Specific locus mutations can result from either point mutation or chromosome deletion. The results were as follows: (1) Both homokaryotic and heterokaryotic conidia had multi-hit survival curves, and there was no difference between the survival levels of the two as a function of treatment time. (2) The frequency of recessive lethal mutations in the ad-3 region increased as the square of treatment time.  相似文献   

13.
Photosynthetic water oxidation proceeds by a four-step sequence of one-electron oxidations which is formally described by the transitions S0 S1, S1 S2, S2 S3, S3 (S4) S0. State S1 is most stable in the dark. Oxygen is released during S3 (S4) S0. Hydroxylamine and hydrazine interact with S1. They cause a two-digit shift in the oxidation sequence as observed from the dark equilibrium, i.e. from S1 S2 : S2 S3 : S3 (S4) S0 : S0 S1 :... in the absence of the agents, to S1 * S0 : S0 S1 : S1 S2 : S2 S3 :... in the presence of hydroxylamine or hydrazine.We measured the concentration dependence of this two-digit shift via the pattern of proton release which is associated with water oxidation. At saturating concentrations hydroxylamine and hydrazine shift the proton-release pattern from OH+(S1 S2) : 1H+(S2 S3) : 2H(S3 S0) : 1H+(S0 S1) :... to 2H+(S1 * S0) : 1H+(S0 S1) : OH+(S1 S2) : 1H+(S2 S3) : 2H+(S3 S0) :... The 2H+ were released upon the first excitation with a half-rise time of 3.1 ms, both with hydroxylamine and withydrazine. The concentration dependence of the shift was rather steep with an apparent Hill coefficient at half saturation of 2.43 with hydroxylamien (Förster and Junge (1985) FEBS Lett. 186, 53–57) and 1.48 with hydrazine. The concentration dependence could be explained by cooperative binding of n3 molecules of hydroxylamine and of n2 molecules of hydrazine, respectively. Tentatively, we explain the interaction of hydroxylamine and hydrazine with the water-oxidizing complex (WOC) as follows: Two bridging ligands, possible Cl- or OH-, which normally connect two Mn nuclei, can be substituted by either 4 molecules of hydroxylamine or 2 molecules of hydrazine when the WOC resides in state S1.Abbreviations DNP-INT dinitrophenylether of iodonitrothymol - FWHM full width at half maximum - NR neutral red (3-amino-7-dimethylamino-2-methylphenazine-HCI) - PS II photosystem II - WOC or (in formulas:) W water-oxidizing complex Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement.  相似文献   

14.
The article deals with determination of the spreading of the earlier discovered phenomenon of the temperature sensitivity of multiplication of T4 phage amber mutants. On the basis of the study of the dependence of multiplication of 50 amber mutants in 22 genes of T4 phage tail in the cells of non-permissive host on the incubation temperature in the range of 15-41 degrees C, the following conclusion is drawn: temperature sensitivity of multiplication of amber mutants appears to be gene-specific and is widely spread among T4 phage genes, i.e. in the case of amber mutants the burst size decreases, even for 14 tail genes, by several orders with the increase in incubation temperature. Temperature sensitivity of multiplication is typical of amber mutants in the genes whose proteins are either of small number in a phage particle (several molecules) or play the role of catalytic factors. Moreover, genes, amber mutants of which possess temperature sensitivity of multiplication, map in defined clusters.  相似文献   

15.
16.
The recent crystal structure determination of T7 DNA polymerase complexed to a deoxynucleoside triphosphate and primer—template DNA has provided the first glimpse of a replicative DNA polymerase in a catalytic complex. The structure complements many functional and structural studies of this and other DNA polymerases, allowing a detailed evaluation of proposals for the mechanism of nucleotidyl transfer and the exploration of the basis for the high fidelity of template-directed DNA synthesis.  相似文献   

17.
18.
We investigated the efficiency and the mechanism of action of a tetraphenyl porphyrin derivative in its photoreaction with T7 phage as surrogate of non-enveloped DNA viruses. TPFP was able to sensitize the photoinactivation of T7 phage in spite of the lack of its binding to the nucleoprotein complex. The efficiency of TPFP photosensitization was limited by the aggregation and by the photobleaching of porphyrin molecules. Addition of sodium azide or 1,3-dimethyl-2-thiourea (DMTU) to the reaction mixture moderated T7 inactivation, however, neither of them inhibited T7 inactivation completely. This result suggests that both Type I and Type II reaction play a role in the virus inactivation. Optical melting studies revealed structural changes in the protein part but not in the DNA of the photochemically treated nucleoprotein complex. Polymerase chain reaction (PCR) also failed to demonstrate any DNA damage. Circular dichroism (CD) spectra of photosensitized nucleoprotein complex indicated changes in the secondary structure of both the DNA and proteins. We suggest that damages in the protein capsid and/or loosening of protein-DNA interaction can be responsible for the photodynamic inactivation of T7 phage. The alterations in DNA secondary structure might be the result of photochemical damage in phage capsid proteins.  相似文献   

19.
V Iu Shalnene  R G Nivinskas 《Genetika》1987,23(7):1170-1178
Dependence of multiplication of 42 single and double amber mutants in 16 phage head genes on the incubation temperature was studied in the cells of non-permissive host. For amber mutants in 6 head genes the birst size decreases by several orders, with the increase of the incubation temperature. Among amber mutants of the above mentioned genes, mutants in genes 4 and 65 can be distinguished as those with considerably large burst size at low temperature. Phage head genes form the groups, according to temperature sensitivity of multiplication of amber mutants. These groups, together with corresponding groups of phage tail genes, constitute common temperature-sensitive and non-sensitive gene groups on the phage genomic map.  相似文献   

20.
Primary roots of a new karyotype of Vicia faba with all chromosomes inter-distinguishable have been used to study the induction by hydroxylamine hydrochloride (HA) of chromatid aberrations and their intrachromosomal distribution. HA induced both chromatid intra- and interchanges of the delayed type. The effectiveness of HA increased with increasing temperature and was dependent on the pH during treatment (more aberrations at pH 7.5 as compared with 4.8). The frequency of incomplete reunion was markedly higher after HA treatment than after treatment with maleic hydrazide (MH) or ethanol. In combined treatments, HA reduced the reunion involvement in HA-induced aberrations of certain chromosome segments was found and compared with distribution patterns of chromatid aberrations after treatment with MH and ethanol. Data and hypotheses concerning possible modes of action of HA eventually resulting in chromosome structural changes are discussed. It is concluded that alterations of the cytosine moiety in chromosomal DNA are not responsible for chromosomal damage induced by HA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号