首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The effects on human platelets of two synthetic analogues of prostaglandin endoperoxides were examined in order to explore the relationship between aggregation and prostaglandin and cyclic nucleotide metabolism, and to help elucidate the role of the natural endoperoxide intermediates in regulating platelet function.Both analogues (Compound I, (15S)-hydroxy-9α,11α-(epoxymethano)-prosta-(5Z,13E)-dienoic acid, and Compound II, (15S)-hydroxy-11α,9α-(epoxymethano)-prosta-(5Z,13E)-dienoic acid) caused platelets to aggregate, an effect which could be inhibited by prostaglandin E1 but not by indomethacin. Compound II produced primary, reversible aggregation at concentrations which did not induce release of 5-hydroxytryptamine. Production of thromboxane B2 and malonyldialdehyde was monitored as an index of endogenous production of prostaglandin endoperoxides and thromboxane A2 and were increased after incubation of human platelets with thrombin, collagen or arachidonic acid. However, neither malonydialdehyde nor thromboxane B2 levels were significantly influenced by the endoperoxide analogues. Both analogues produced a small elevation of adenylate cyclase activity in platelet membranes and of cyclic AMP content in intact platelets, but neither had any modifying effect on the much greater stimulation of adenylate cyclase and cyclic AMP levels by prostaglandin E1. Of all the aggregating agents tested, only arachidonic acid produced any significant increase in platelet cyclic GMP levels.These results suggest that the epoxymethano analogues of prostaglandin endoperoxides induce platelet aggregation independently of thromboxane biosynthesis and without inhibiting adenylate cyclase or lowerin platelet cyclic AMP levels. They therefore differ from better known aggregating agents such as ADP, epinephrine and collagen, which increase thromboxane A2 production and reduce cyclic AMP levels, at least in platelets previously exposed to prostaglandin E1.  相似文献   

2.
Fresh arterial tissue generates an unstable substance (prostaglandin X) which relaxes vascular smooth muscle and potently inhibits platelet aggregation. The release of prostaglandin (PG) X can be stimulated by incubation with arachidonic acid or prostaglandin endoperoxides PGG2 or PGH2. The basal release of PGX or the release stimulated with arachidonic acid can be inhibited by previous treatment with indomethacin or by washing the tissue with a solution containing indomethacin. The formation of PGX from prostaglandin endoperoxides PGG2 or PGH2 is not inhibited by indomethacin. 15-hydro-peroxy arachidonic acid (15-HPAA) inhibits the basal release of PGX as well as the release stimulated by arachidonic acid or prostaglandin endoperoxides (PGG2 or PGH2). Fresh arterial tissue obtained from control or indomethacin treated rabbits, when incubated with platelet rich plasma (PRP) generates PGX. This generation is inhibited by treating the tissue with 15-HPAA. A biochemical interaction between platelets and vessel wall is postulated by which platelets feed the vessel wall with prostaglandin endoperoxides which are utilized to form PGX. Formation of PGX could be the underlying mechanism which actively prevents, under normal conditions, the accumulation of platelets on the vessel wall.  相似文献   

3.
The effect on human platelet functions of 9,11-dithio analogues of prostaglandin endoperoxide was investigated. Methyl (5Z, 9alpha, 11alpha, 13E, 15S)-9,11-epidithio-15-hydroxyprosta-5,13-dienoate induced platelet aggregation, while the 9beta,11beta-epimer was inactive. The platelet aggregation caused by the 9alpha,11alpha-dithio analogue was associated with serotonin release from platelets, and was inhibited by methyl ester of prostaglandin I2 (prostacyclin) but not by indomethacin.  相似文献   

4.
A potent platelet aggregation inducer (platelet aggregoserpentin) was purified from Trimeresurus gramineus snake venom by DEAE-Sephadex A-50 and Sephacryl S-300 column chromatography. It was homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It elicited dose-dependently platelet aggregation and serotonin release reaction in rabbit platelet-rich plasma and platelet suspension. Exogenous calcium was required for its activity. Creatine phosphate/creatine phosphokinase and apyrase showed no significant inhibitory effect on aggregoserpentin-induced platelet aggregation in platelet suspension. Aggregoserpentin induced aggregation in ADP-refractory platelet-rich plasma. It caused no detectable malonic dialdehyde formation in the process of platelet aggregation. Indomethacin did not inhibit aggregoserpentin-induced platelet aggregation. Mepacrine abolished preferentially its aggregating activity, while prostaglandin E1 completely blocked both aggregoserpentin-induced aggregation and release reaction. Furthermore, platelet aggregoserpentin lowered basal and prostaglandin E1-stimulated cAMP levels in platelet suspension. Nitroprusside inhibited both its aggregating and releasing activity, while verapamil preferentially blocked its aggregating activity. It is concluded that aggregoserpentin activated platelets through lowering cAMP levels or the activation of endogenous phospholipase A2, resulting in the formation of platelet activating factor, but not of prostaglandins.  相似文献   

5.
Whereas adenosine itself exerted independent stimulatory and inhibitory effects on the adenylate cyclase activity of a platelet particulate fraction at low and high concentrations respectively, 2-substituted and N6-monosubstituted adenosines had stimulatory but greatly decreased inhibitory effects. Deoxyadenosines, on the other hand, had enhanced inhibitory but no stimulatory effects. The most potent inhibitors found were, in order of increasing activity, 9-(tetrahydro-2-furyl)adenine (SQ 22536), 2',5'-dideoxyadenosine and 2'-deoxyadenosine 3'-monophosphate. Kinetic studies on prostaglandin E1-activated adenylate cyclase showed that the inhibition caused by either 2',5'-dideoxyadenosine or compound SQ 22536 was non-competitive with MgATP and that the former compound, at least, showed negative co-operativity; 50% inhibition was observed with 4 micron-2',5'-dideoxyadenosine or 13 micron-SQ 22536. These two compounds also inhibited both the basal and prostaglandin E1-activated adenylate cyclase activities of intact platelets, when these were measured as the increases in cyclic [3H]AMP in platelets that had been labelled with [3H]adenine and were then incubated briefly with papaverine or papaverine and prostaglandin E1. Both compounds, but particularly 2',5'-dideoxyadenosine, markedly decreased the inhibition by prostaglandin E1 of platelet aggregation induced by ADP or [arginine]vasopressin as well as the associated increases in platelet cyclic AMP, so providing further evidence that the effects of prostaglandin E1 on platelet aggregation are mediated by cyclic AMP. 2'-Deoxyadenosine 3'-monophosphate did not affect the inhibition of aggregation by prostaglandin E1, suggesting that the site of action of deoxyadenosine derivatives on adenylate cyclase is intracellular. Neither 2',5'-dideoxyadenosine nor compound SQ 22536 alone induced platelet aggregation. Moreover, neither compound potentiated platelet aggregation or the platelet release reaction when suboptimal concentrations of ADP, [arginine]vasopressin, collagen or arachidonate were added to heparinized or citrated platelet-rich plasma in the absence of prostaglandin E1. These results show that cyclic AMP plays no significant role in the responses of platelets to aggregating agents in the absence of compounds that increase the platelet cyclic AMP concentration above the resting value.  相似文献   

6.
The comparative effects of three so called "thromboxane-synthetase-inhibitors" (imidazole, N-0164, and U-51605) on arachidonate metabolism and on platelet aggregation were studied. All three compounds blocked platelet microsomal thromboxane synthesis from prostaglandin endoperoxides without affecting platelet adenyl cyclase. Imidazole, blocked thromboxane synthesis in intact platelets either from arachidonic acid or PGH2, without affecting aggregation. U-51605 simultaneously inhibited thromboxane synthesis and platelet suspension aggregation. N-0164 inhibited aggregation probably at extracellular sites, at concentrations that did not alter arachidonate or PGH2 metabolism. High concentrations of N-0164 simultaneously inhibited PG cyclo-oxygenase and thromboxane synthetase. The lack of specificity of these compounds requires that other actions of these compound must be considered when they are used as pharmacological tools to inhibit thromboxane synthetase.  相似文献   

7.
We studied the uterine venous plasma concentrations of prostaglandins E2, F2 alpha, 15 keto 13,14 dihydro E2 and 15 keto 13,14 dihydro F2 alpha in late pregnant dogs in order to evaluate the rates of production and metabolism of prostaglandin E2 and F2 alpha in pregnancy in vivo. We used a very specific and sensitive gas chromatography-mass spectrometry assay to measure these prostaglandins. The uterine venous concentrations of prostaglandin E2 and 15 keto 13,14 dihydro E2 were 1.35 +/- .27 ng/ml and 1.89 +/- .37 ng/ml, respectively; however, we could not find any prostaglandin F2 alpha and very little of its plasma metabolite in uterine venous plasma. Since uterine microsomes can generate prostaglandin F2 alpha and E2 from endoperoxides, prostaglandin F2 alpha production in vivo must be regulated through an enzymatic step after endoperoxide formation. Prostaglandin E2 is produced by pregnant canine uterus in quantities high enough to have a biological effect in late pregnancy; however, prostaglandin F2 alpha does not appear to play a role at this stage of pregnancy.  相似文献   

8.
The effect of human platelet functions of 9,11-dithio analogues of prostaglandin endoperoxide was investigated. Methyl (5z,9α,11α,13e,15S)-9,11-epidithio-15-hydroxyprosta- 5,13-dienoate induced platelet aggregation, while the 9β,11β-epimer was inactive. The platelet aggregation caused by the 9α,11α-dithio analogue was associated with serotonin release from platelets, and was inhibited by methyl ester of prostaglandin I2 (prostacyclin) but not by indomethacin.  相似文献   

9.
Prostaglandin (PG) endoperoxides (PGG2 and PGH2) contract arterial smooth muscle and cause platelet aggregation. Microsomes from pig aorta, pig mesenteric arteries, rabbit aorta and rat stomach fundus enzymically transform PG endoperoxides to an unstable product (PGX) which relaxes arterial strips and prevents platelet aggregation. Microsomes from rat stomach corpus, rat liver, rabbit lungs, rabbit spleen, rabbit brain, rabbit kidney medulla, ram seminal vesicles as well as particulate fractions of rat skin homogenates transform PG endoperoxides to PGE- and PGF- rather than to PGX-like activity.PGX differs from the products of enzymic transformation of prostaglandin endoperoxides so far identified, including PGE2, F, D2, thromboxane A2 and their metabolites.PGX is less active in contracting rat fundic strip, chick rectum, guinea pig ileum and guinea pig trachea than are PGG2 and PGH2. PGX does not contract the rat colon.PGX is unstable in aqueous solution and its anti-aggregating activity disappears within 0.25 min on boiling or within 10 min at 37° C.As an inhibitor of human platelet aggregation induced in vitro by arachidonic acid PGX was 30 times more potent than PGE1. The enzymic formation of PGX is inhibited by 15-hydroperoxy arachidonic acid (IC50 = 0.48 μg/ml), by spontaneously oxidised arachidonic acid (IC50 <100 μg/ml) and by tranylcypromine (IC50 = 160 μg/ml).We conclude that a balance between formation by arterial walls of PGX which prevents platelet aggregation and release by blood platelets of prostaglandin endoperoxides which induce aggregation is of the utmost importance for the control of thrombus formation in vessels.  相似文献   

10.
1. A heat labile, cold-stable, stannous chloride-reducible intermediate of prostaglandin biosynthesis was formed in good yield (greater than 60%) from 3H-labeled arachidonic acid during brief incubations (30--90 s, 37 degrees C) with sheep seminal vesicle microsomes in the presence of p-hydroxymercuribenzoate (4 mM). This intermediate appears to have properties similar to one of the endoperoxides (15-hydroxyprostaglandin-9,11-endoperoxide) recently isolated by Hamberg and Samuelsson (Proc. Natl. Acad. Sci. U.S. (1973) 70, 889-903) AND Nugteren and Hazelhof (Biochem. Biophys. Acta. (1973) 326, 448-461). 2. Treatment of the purified intermediate with homogenates of rat kidney cortex, medulla and papilla resulted within 2 min (37 degrees C) in complete conversion into several compounds including prostaglandins E2 and F2alpha. The main product (40-50% yield formed by papilla homogenates was prostaglandin E2. The conversion into prostaglandin E2 was largely abolished by previous bo9ling of the homogenate whereas the conversion into prostaglandin F2alpha was not. The intermediate was stable in buffer for the same period of incubation. 3. The ratio of tritiated prostaglandins E2: F2alpha obtained were: papilla, 1.90; medulla, 0.76; cortex, 0.48. 4. These observations indicate that both types of prostaglandins can be formed by all three regions of the rat kidney and that regional differences exist in the proportion of E2 : F2alpha that is formed. Whereas prostaglandin E2 is mostly formed by an enzymatic process, prostaglandin F2alpha is not.  相似文献   

11.
Effects and the mechanism of the antiplatelet actions of beclobrinic acid, free acid form of a new hypolipidemic agent beclobrate [(+)-2-[d-(P-chlorophenyl)p-tolyl)oxy)-2-methyl-butyrate), were examined using human platelets. Platelet-rich plasma (PRP) which has been prelabeled with (14C)-serotonin was incubated with beclobrinic acid (BBA) for one minute before the addition of various agonists. BBA (0.1-1.5 mM) inhibited platelet aggregation and serotonin secretion induced by ADP, epinephrine, arachidonic acid and collagen in a concentration dependent manner. BBA also inhibited arachidonic acid-induced production of malondialdehyde (MDA), a byproduct of prostaglandins, in a concentration dependent manner. However, up to 1.0 mM BBA did not inhibit platelet aggregation induced by U46619, a stable analog of prostaglandin H2. In other experiments BBA also blocked thrombin-induced release of (3H)-arachidonic acid from platelet phospholipids. These findings suggest that: (a) BBA inhibits platelet aggregation and serotonin secretion by inhibiting prostaglandin synthesis at two steps. First by interfering in the release of arachidonic acid from platelet phospholipids and second by inhibiting its conversion into prostaglandins; and (b) BBA does not inhibit the action of prostaglandins on human platelets.  相似文献   

12.
The present study has evaluated the influence of semi-synthetic platelet-aggregating factor, (PAF) i.e., alkylacetylglycerophosphocholine, on human platelet morphology, biochemistry and function in order to determine if PAF serves as the corrective factor restoring sensitivity to refractory platelets after treatment with epinephrine. Threshold concentrations of PAF caused irreversible platelet aggregation which could be blocked by agents elevating endogenous levels or cyclic AMP or inhibited by antagonists of platelet prostaglandin synthesis and secretion. PAF did not stimulate platelets through α-adrenergic receptors or receptors for arachidonate, endoperoxides or thromboxanes. 24 h after aspirin ingestion, platelets could be aggregated irreversibly by high concentrations, but not by threshold amounts of PAF, even though they were still insensitive to arachidonate. Another less potent PAF derivative, alkenylacetylglycerophosphocholine, blocked aggregation of 24-h aspirin platelets by PAF, but did not inhibit restoration of arachidonate sensitivity and irreversible aggregation when the samples were treated first with epinephrine. Our findings indicate that threshold amounts of PAF activate human platelets in a physiologic manner and cause irreversible aggregation which is dependent on prostaglandin synthesis and the release reaction. The results do not support the concept that PAF is the mediator of the mechanism of membrane modulation through which epinephrine induces correction of the refractory state in prostaglandin I2-treated or dissociated platelets, or cells obtained from individuals following aspirin ingestion. Thus, the mechanism of platelet membrane modulation is capable of securing irreversible aggregation of secretion, prostaglandin synthesis or PAF formation.  相似文献   

13.
Recently we have found that chemotactic factors stimulate neutrophils in suspension to aggregate. Because of an obvious analogy to platelet aggregation, we examined the influence of three prostaglandins on this process. Prostaglandins E1, E2 and F2alpha alone did not cause aggregation of the neutrophils but were able to partially inhibit the aggregation response induced by the synthetic chemotactic tripeptide, formyl-methionyl-leucyl-phenylalanine. The minimal inhibitory concentrations for prostaglandins E1, E2 and F2alpha were 10(-7), 10(-6) and 10(-5)M, respectively. These results are similar to those found for the prostaglandin-induced inhibition of platelet aggregation. It may be, therefore, that neutrophil aggregation, like platelet aggregation, is modulated by intracellular prostaglandins and other products of arachidonic acid metabolism.  相似文献   

14.
Radioimmunoassays of platelet prostaglandins E1 and F1 alpha in platelet rich plasma or platelet suspension, demonstrate that both PGE1 and PGF1 alpha are present at higher concentrations than prostaglandins E2 and F2 alpha. Gas chromatography--mass spectrometry determinations of prostaglandins E1 and E2 in resting washed platelets confirm this difference. Lastly, there is a greater incorporation of [1--14C] acetate into prostaglandins E1 and F1 alpha compared to that into prostaglandins E2 and F2 alpha.  相似文献   

15.
The effects of prostaglandin E1 and prostaglandin G2, the prostaglandin endoperoxide, on platelet cyclic nucleotide concentrations were measured in platelet rich plasma (PRP), and in washed intact platelets. PGE1 was found to be a potent stimulator of platelet cAMP levels in both PRP and washed cells, and to inhibit aggregation in both systems. PGE1 did not change platelet cGMP levels in either PRP or washed cells. PGG2 which is a potent inducer of platelet aggregation, did not affect either the basal cAMP or the basal cGMP concentration. However, PGG2 was found to antagonize the increases in cAMP content in response to PGE1 in both PRP and washed platelets. The addition to our system of a cyclic nucleotide phosphodiesterase inhbitor, theophylline, did not change our findings. It is suggested that PGG2 may induce platelet aggregation by inhibiting PGE1-stimulated cAMP accumulation.  相似文献   

16.
The results presented in this paper indicate that: 1. The prostaglandin synthesis inhibitor, indomethacin, increases noradrenaline turnover in a variety of rat organs. This observation increases the probability that prostaglandins are involved in the control of adrenergic neurotransmission in vivo. 2. Administration of endoperoxides inhibits the release of noradrenaline from adrenergic nerve terminals. The effect can be explained, however, at least in part, by formation of degradation products, presumably mainly prostaglandin E2. 3. Prostaglandin F2 alpha enhances smooth muscle responses to adrenergic nerve stimulation in rabbit heart and guinea pig vas deferens. These actions must be considered prostjunctional, since the release of noradrenaline is unchanged or depressed.  相似文献   

17.
Arachidonic acid- or collagen-induced aggregation was accompanied by a progressive elevation in the level of cyclic GMP in washed human platelets with no significant alteration in the concentration of cyclic AMP. The extent of the increase in cyclic GMP was proportional to the concentration of arachidonic acid added. Enhanced accumulation of cyclic GMP produced by arachidonic or collagen was prevented by prior exposure of platelets to aspirin or indomethacin. Prostaglandin endoperoxide G2 caused platelet aggregation and an increase in cyclic GMP concentration; neither event was blocked by prostaglandin synthesis inhibitors. These results indicate that the generation of prostaglandin endoperoxides is a step in the sequence of events in platelet aggregation leading to the enhanced accumulation of cyclic GMP.  相似文献   

18.
The endogenous release of prostaglandins and free fatty acids from the isolated perfused rabbit kidney in the absence or presence of stimulation by bradykinin or angiotensin-II was investigated. Basal (nonstimulated) release of prostaglandin-precursor arachidonic acid was 15-20-fold higher than that of prostaglandin E2 indicating a low conversion of released arachidonate to prostaglandins. Addition of bovine serum albumin to the perfusion medium caused a substantial (50-250%) increase in the release of all fatty acids except myristic and arachidonic acids, and no significant change in prostaglandin E2 generation. In contrast, administration of bradykinin (0.5 microgram) or angiotensin-II (1 microgram) caused a 10-15-fold increase in prostaglandin E2 release, and with albumin present, also a 2-3-fold selective increase in arachidonic acid release. Thus, unlike what was observed under basal conditions, arachidonic acid released following hormone stimulation is efficiently converted to prostaglandin E2. We conclude that administration of bradykinin or angiotensin-II into the perfused kidney activates a lipase which selectively releases arachidonic acid, probably from a unique lipid entity. This lipase reaction is tightly coupled to a prostaglandin generating system so that the released arachidonate is first made available to the prostaglandin cyclooxygenase, resulting in its substantial conversion to prostaglandins.  相似文献   

19.
Recently two local hormones, thromboxane A2 (TXA2) and prostacyclin (PGI2) have been discovered. These hormones are labile metabolites of arachidonic acid. TXA2 is generated by blood platelets, while PGI2 is produced by vascular endothelium. TXA2 is a potent vasoconstrictor. It also initiates the release reaction, followed by platelet aggregation. PGI2 is a vasodilator, especially potent in coronary circulation. It also inhibits platelet aggregation by virtue of stimulation of platelet adenyl cyclase. Common precursors for both hormones are cyclic endoperoxides PGG2 and PGH2, being formed by cyclooxygenation of arachidonic acid. This last enzymic reaction is more efficient in platelets than in vascular endothelium, and therefore the generation of PGI2 by vasuclar wall is accelerated by an interaction between platelets and endothelial cells. During this interaction platelets supply the endothelial PGI2 synthetase with their cyclic endoperoxides. The newly formed PGI2 repels the platelets from the intima. When PGI2 synthetase is irreversibly inactivated by low concentration of lipid peroxides, then the platelets are not rejected but stick to the endothelium, generate TXA2 and mature thrombi are formed. A balance between formation and release of PGI2, TXA2 and/or cyclic endoperoxides in circulation is of utmost importance for the control of intra-arterial thrombi formation and possibly plays a role in the pathogenesis of atherosclerosis.  相似文献   

20.
Interactions between stimulated platelets and endothelial cells in vitro   总被引:1,自引:0,他引:1  
Prostaglandins and hydroxy acids are synthesized mainly from the essential polyunsaturated fatty acid arachidonate, and these substances have been identified in almost all mammalian tissues. Prostaglandins, thromboxane A2 (TXA2) and prostacyclin (PGI2) are autocoids that appear to function in the regulation of vascular tone, cell secretion and contractile processes. So far, hydroxy acids have been found to function as chemotactic agents and in the formation of slow-reacting substances. Other actions of hydroxy acids will certainly be defined in future research. The endoperoxides PGG2 and PGH2 represent common precursors of all prostaglandin end-products. In studying the prostaglandin metabolism of a specific tissue, the total profile of endoperoxide transformation should be determined. In platelets the endoperoxides are transformed mainly into TXA2, a potent vasoconstrictor and inducer of platelet aggregation. Endothelial cells convert endoperoxides to PGI2, a vasodilator and inhibitor of platelet aggregation. In addition, endothelial cells can utilize endoperoxides from stimulated plates to form PGI2. The concept that platelets and endothelial cells can share common precursors for the production of modulating substances may be applicable to other cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号