共查询到20条相似文献,搜索用时 15 毫秒
1.
The characteristics of phosphate uptake and photosynthetic capacity were studied in P-limited populations of Euglena gracilis Klebs (Z), using both P-limited batch cultures in stationary phase and cyclostat cultures grown on 14:10 LD. P uptake obeyed Michaelis-Menten kinetics between 0 and 150 μM PO4 under both growth conditions. The value of Vmax was 35% lower in the dark than in the light in the stationary phase cells. The value of K8 was not affected by light conditions, and uptake was completely inhibited in the presence of 1 mm KCN. P uptake (at 2.0 μM PO4) and photosynthetic capacity showed diel periodicity with peak rates occurring just before the beginning of the dark period for P uptake, and 8 h into the light period for photosynthetic capacity. Vmax for P uptake increased by a factor of 1.5 over the light period, whereas K8 remained constant at 1.4 μM PO4. These patterns were displayed by both nondividing stationary phase cells and populations in which less than a third of the cells divided each day, indicating that the rhythmicity is not coupled to cell division. 相似文献
2.
Eugene gracilis Klebs (Z) was grown in a cyclostat (continuous culture on a light/dark cycle) at growth limiting levels of phosphate. Cell division was restricted to the dark period regardless of the proportion of the cells dividing during each 24 h period. Growth rate, as reflected by the amplitude of the cell density oscillation, was correlated with dilution rate. The width of the division gate was analyzed using a phasing index and found to be narrowest at dilution rates where the mean generation time of the cell population was an even multiple of 24 h. The effect was attributed to enhanced phasing of the cell division process by the biological clock of Euglena. Residual phosphate levels in the cyclostat were less than 0.3 μM PO4 at all submaximal growth rates. Cellular phosphorus concentration increased with dilution rate as described by a hyperbola saturating at Dmax= 0.74 day−1 with 8 × 10−8μM P/cell as the minimum intracellular phosphorus concentration for growth. The results are discussed, in terms of the inherent similarities and differences between a cyclostat and a steady state chemostat, and the advantages of the cyclostat for studies in phytoplankton ecology. 相似文献
3.
The aim of this study was to isolate and characterize a trehalose‐synthesizing enzyme from Euglena gracilis Klebs. After purification by anion exchange chromatography, gel filtration, isoelectric focusing, and native electrophoresis, trehalose‐6‐phosphate synthase (TPS, EC 2.4.1.15) and trehalose‐6‐phosphate phosphatase (TPP, EC 3.1.3.12) activities could not be separated. Consequently, a TPS/TPP enzyme complex of about 250 kDa was suggested as responsible for trehalose synthesis in E. gracilis. The TPS activity was shown to be highly specific for glucose‐6‐P, and UDP‐Glc was the preferred glucose donor, but GDP‐Glc and CDP‐Glc could also act as TPS substrates. The TPP activity was highly specific for trehalose‐6‐P. In vitro phosphorylation assays revealed rapid decreases in TPS and TPP activities. These changes corresponded to variations in the elution profile of gel filtration chromatography after the phosphorylation treatment. Taken together, these results suggest that the proposed TPS/TPP complex might be regulated through a protein phosphorylation/dephosphorylation‐mediated mechanism that could affect the association state of the complex. Such a regulatory mechanism might lead to a rapid change in trehalose synthesis in response to variations in environmental conditions. 相似文献
4.
Richard E. Triemer 《Journal of phycology》1980,16(1):46-52
Dark grown cells of Euglena gracilis Klebs (strain Z Pringsheim) encyst when placed in minus nitrogen media for 48–72 h in the dark. The number of cisternae per dictyosome decreases from 10–20 to 6–12 during encystment. Cisternae dilate and fill with mucilage within 12–18 h after induction. The material is secreted into the reservoir and deposited onto the cell surface. The encysting cells rotate as they develop resulting in the deposition of a thick mucilaginous layer over the cell surface. The secretion product has been identified as polysaccharide with the periodic acid-silver methenamine reaction. Mucilage has not been observed in the endoplasmic reticulum adjacent to the pellicle. The product present in the dictyosornes and on the cell surface react identically to the silver reagent. 相似文献
5.
Information on the nutrient kinetics of Asterionella formosa Hass. and Cyclotella meneghiniana Kutz. under either phosphate or silicate limitation was obtained for use in a Monod model and in a variable internal stores model of growth. Short-term batch culture growth experiments were fit to the Monod model and long-term semicontinuous culture experiments and short-term uptake experiments were fit to the variable internal stores model. Mathematical analysis indicates that the parameters of the 2 models may be expressed in terms of each other at steady state. The qualitative results of both batch and steady state culture methods agree. For limiting phosphate experiments. A. formosa is better able to grow at low PO4-P concentrations than C. meneghiniana, as shown by its lower K for PO4-P limited growth. The kQ of A. formosa compared to C. meneghiniana found in long-term semicontinuous culture indicates that A. formosa is almost an order of magnitude more efficient at using internal phosphate for growth. The qualitative results under silicate-limited growth of C. meneghiniana is less than that of A. formosa. The kQ from semicontinuous culture experiments indicates that C. meneghiniana is the more efficient at using internal silicate for growth. Nutrient uptake experiments showed more variability from a Michaelis-Menten relationship than short-term growth experiments. There were no significant differences between the 2 species in half saturation constants for either phosphate or silicate uptake. We observed a marked dependence of the coefficient of luxury consumption (R) of phosphate on the steady state growth rate. A. formosa has a higher R than C. meneghiniana. 相似文献
6.
The aim of this study was to isolate and characterize the paramylon synthesizing enzyme from Euglena gracilis Klebs. A method for enzyme solubilization with high synthase activity using the zwitterionic detergent 3-[(3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate is presented. Fractionated purification showed that the main enzyme activity was associated with the paramylon granula fraction, isolated from heterotrophically grown cells of E. gracilis. Further purification by sucrose density centrifugation resulted in a large enzyme complex with an apparent molar mass of 670 kDa (native). The complex remained active throughout the isolation procedures and produced beta-1,3-glucan in vitro. Two polypeptides of 37 and 54 kDa could be identified by photoaffinity labeling with [32 P]-UDP-glucose as substrate after SDS-PAGE. 相似文献
7.
Cell division patterns in Thalassiosira fluviatilis grown in a cyclostat were analyzed as a function of temperature, photoperiod, nutrient limitation and average cell size of the population. Typical cell division patterns in populations doubling more than once per day had multiple peaks in division rate each day, with the lowest rates always being greater than zero. Division bursts occurred in both light and dark periods with relative intensities depending on growth conditions. Multiple peaks in division rate were also found, when population growth rates were reduced to less than one doubling per day by lowering temperature, nutrients, or photoperiod and the degree of division phasing was not enhanced. Temperature and nutrient limitation shifted the timing of the major division burst relative to the light/dark cycle. Average cell volume of the inoculum was found to be a significant determinant of the average population growth rate and the timing and magnitude of the peaks in division rate. The results are interpreted in the context of a cell cycle model in which generation times are “quantized” into values separated by a constant time interval. 相似文献
8.
Short-term (1–9 min) nitrate uptake kinetics were measured in Thalassiosira pseudonana (Hust.) Hasle & Heimdal grown in nitrate-limited, ammonium-limited, and nitrate-sufficient continuous cultures. For all cultures, maximal nitrate uptake rates did not develop until approximately 3 min after nitrate addition; thereafter, nitrate uptake rates remained constant or declined slightly. The Ks and Vmax for the nitrate-limited cultures were higher at any growth rate than those for the ammonium-limited or nitrate-sufficient cultures. Thus, much higher nitrate concentrations would be required to saturate nitrate uptake in nitrate-limited Thalassiosira pseudonana than is usually considered necessary. The lack of data for other species grown under a range of environmental conditions makes it difficult to generalize about the effect of preconditioning on nitrate uptake kinetics. 相似文献
9.
The N and P uptake responses were studied in a northern Spanish population of the edible red seaweed Palmaria palmata (Linnaeus) Kuntze. The fronds were incubated at different concentrations, and the nutrient depletion in the medium was measured at successive times to calculate uptake rates. Palmaria palmata uptake response was biphasic and nonsaturable for inorganic P. This would allow the species to exploit transient pulses of high P concentration in natural and fertilized conditions. Such a response is a common feature of algae avoiding nutrient deficiency. At average concentrations measured in the ocean, the response was nonsaturable for inorganic N sources, except for ammonium in autumn and winter when it is not the major N source. In contrast to the general rule of ammonium being taken at a higher rate than nitrate, we found similar affinity for both nutrients corresponding to the minor role of ammonium as N source for field populations over the year. 相似文献
10.
The influence of metallic, cations (added at 10 μM-1 mM) on the uptake of orthophosphate from 0.2–10 μM solution by Synechococcus leopoliensis (Racib.) Komarek was investigated. All cations tested except Mg2+ and Zn2+ stimulated phosphate uptake. The most pronounced stimulation of phosphate uptake was caused by Ca2+·Ca2+ markedly decreased the half-saturation concentration for orthophosphate uptake, apparently by acting upon the metabolic processes of phosphate transport into the cell. Phosphate did not influence Ca2+ fluxes across the cell-surface. 相似文献
11.
James E. Cloern 《Journal of phycology》1977,13(4):389-395
Specific growth rate of Cryptomonas ovata var. palustris Pringsheim was measured in batch culture at 14 light-temperature combinations. Both the maximum growth rate (μm) and optimum light intensity (Iopt) fit an empirical function that increases exponentially with temperature up to an optimum (Topt), then declines rapidly as temperature exceeds Topt. Incorporation of these functions into Steele's growth equation gives a good estimate of specific growth rate over a wide range of temperature and light intensity. Rates of phosphate, ammonium and nitrate uptake were measured separately at 16 combinations of irradiance and temperature and following a spike addition of all starved cells initially took up nutrient at a rapid rate. This transitory surge was followed by a period of steady, substrate-saturated uptake that persisted until external nutrient concentration fell. Substrate-saturated NO3?-uptake proceeded at very slow rates in the dark and was stimulated by both increased temperature and irradiance; NH4+-uptake apparently proceeded at a basal rate at 8 and l4 C and was also stimulated by increased temperature and irradiance. Rates of NH4?-uptake were much higher than NO3?-uptake at all light-temperature combinations. Below 20 C, PO4?3-uptake was more rapid in dark than in light, but was light enhanced at 26 C. 相似文献
12.
Oscillations in the phosphate (Pi) uptake rates for three species of green algae were examined in a P‐limited cyclostat. For Ankistrodesmus convolutus Corda and Chlorella vulgaris Beyerinck, the Pi uptake rates increased during the daytime and decreased at night. In contrast, Chlamydomonas sp. exhibited the opposite uptake pattern. Cell densities also oscillated under a light:dark cycle, dividing at a species‐specific timing rather than continuously. In general, the cell densities exhibited an inverse relationship with the Pi uptake rates. A competition experiment between A. convolutus and C. vulgaris in a P‐limited cyclostat resulted in the dominance of C. vulgaris, regardless of the relative initial cell concentrations. Chlorella vulgaris also dominated in a mixed culture with Chlamydomonas sp., irrespective of the initial seeding ratio and dilution rate. However, Chlamydomonas sp. and A. convolutus coexisted in the competition experiment with gradual decrease of Chlamydomonas sp. when equally inoculated. Mathematical expressions of the oscillations in the Pi uptake rate and species‐specific cell division gate were used to develop a simulation model based on the Droop equation. The simulation results for each of the species conformed reasonably well to the experimental data. The results of the competition experiments also matched the competition simulation predictions quite well, although the experimental competition was generally more delayed than the simulations. In conclusion, the model simulation that incorporated the effect of diel rhythms in nutrient uptake clearly demonstrated that species diversity could be enhanced by different oscillation patterns in resource uptake, even under the condition of limitation by the same resource. 相似文献
13.
Cell division in most eukaryotic algae grown on alternating periods of light and dark (LD) is synchronized or phased so that cell division occurs only during a restricted portion of the LD cycle. However, the phase angle of the cell division gate, the time of division relative to the beginning of the light period, is known to be affected by growth conditions such as nutrient status and temperature. In this study, it is shown that the phase angle of cell division in a diatom, Cylindrotheca fusiformis Reimann and Lewin, is affected by the N-limited growth rate; cell division occurred later in the dark period (12:12 h LD cycle) when the growth rate was infradian (D = 0.42 d?1) than when it was ultradian (D = 1.0 d?1). Nitrogen-pulses did not affect the phase angle of the division gate, but could shift the time of peak cell division activity within the division gate. The effects, if any, of N-pulses were dependent upon the growth rate and the time of day that the pulses were administered. These responses indicate that the timing of cell division in this diatom is not determined solely by the zeitgeber from the LD cycle, but rather that a LD cycle control mechanism and a N-mediated control mechanism are both involved and are somewhat interdependent. In addition, an increase in protein was observed immediately after administering a N-pulse to C. fusiformis in the ultradian growth mode indicating that the accumulation of protein can be uncoupled from the cell division cycle. 相似文献
14.
John T. Lehman 《Journal of phycology》1976,12(2):190-193
When cells of Pediastrum duplex Meyen experience phosphorus depletion, their capacity for carbon fixation declines, but sizes and carbon contents of the cells increase several-fold, an apparent instance of “luxury uptake” of carbon. Maximum rates of uptake of phosphate increase during the same period, and are consequently correlated with the enlarged surface area of the cells. Thus the disadvantage of increased cell volume, which may accelerate sinking speed in nature, is offset by the increased capacity of the cells for nutrient uptake. 相似文献
15.
We compared inorganic phosphate (Pi) uptake and growth kinetics of two cultures of the diazotrophic cyanobacterium Trichodesmium isolated from the North Atlantic Ocean (IMS101) and from the Great Barrier Reef, Australia (GBRTRLI101). Phosphate‐limited cultures had up to six times higher maximum Pi uptake rates than P‐replete cultures in both strains. For strain GBRTRLI101, cell‐specific Pi uptake rates were nearly twice as high, due to larger cell size, but P‐specific maximum uptake rates were similar for both isolates. Half saturation constants were 0.4 and 0.6 μM for Pi uptake and 0.1 and 0.2 μM for growth in IMS101 and GBRTRLI101, respectively. Phosphate uptake in both strains was correlated to growth rates rather than to light or temperature. The cellular phosphorus quota for both strains increased with increasing Pi up to 1.0 μM. The C:P ratios were 340–390 and N:P ratios were 40–45 for both strains under severely P‐limited growth conditions, similar to reported values for natural populations from the tropical Atlantic and Pacific Oceans. The C:P and N:P ratios were near Redfield values in medium with >1.0 μM Pi. The North Atlantic strain IMS101 is better adapted to growing on Pi at low concentrations than is GBRTRLI101 from the more Pi‐enriched Great Barrier Reef. However, neither strain can achieve appreciable growth at the very low (nanomolar) Pi concentrations found in most oligotrophic regimes. Phosphate could be an important source of phosphorus for Trichodesmium on the Great Barrier Reef, but populations growing in the oligotrophic open ocean must rely primarily on dissolved organic phosphorus sources. 相似文献
16.
MasatMaka Watanabe Takejiro Takamatsu Kunio Kohata Masayuki Kunugi Munetsugu Kawashima Mutsuo Koyama 《Journal of phycology》1989,25(3):428-436
The effectr of phosphate starvation and subsequent uptake on distribution and concentration of phosphate metabolic intermediates and metals were studied in Heterosigma akashiwo (Hada) Hada by 31P-NMR spectroscopy, neutron activation analysis and ESR spectroscopy. Excess orthophosphate (4.5 μM Pi, as NaH2PO4) added to a medium with P-depleted H. akashiwo cells was rapidly taken up resulting in an increase in P cell quota (qp)from 68.2 to 99.6 fmol. cell-1in 2 h and to 156.3 fmol. cell-1in 6 h. After three days, qp approached about 190 fmol. cell?1. Polyphosphate (PPi) rapidly increased from 0 to 11.4 fmol· cell?1in 2 h and to 24.7 fmol·cell?1in 6 h. Diel variation of cell quota indicated that cellular Pi increase was synchronized with cellular PPi decrease and vice versa. The average chain length of PPi increased from ca. 0 to ca. 10.2 phosphate residues in 2 h after addition of Pi and one day later, from ca. 9.8 to ca. 12.5. The cell quota of Mn (qMn), and to a lesser extent Co, increased rapidly from 4.87 fg. cell?1in the P- starved condition to 50.48 fg·cell?12 h afer addition of Pi but decreased to 8.63 fg. Cell?1by 6 h. Concentrations of Zn, As, Hf, Cu and sometimes Al, Mg, K, and Ca changed in a manner opposite to that of Mn and Co. The excretion of these cations, which was synchronized with the uptake of Mn and Co, may be important for a charge balancing in the cells. The ESR spectra showed that the high cellular Mn observed at 2 h after P addition was Mn2+which was taken up by the cells rather than adsorbed on the cell surface. These data combined with PPi data suggested that the behavior of qMn is synchronized with the behavior of average chain length of PPi. 相似文献
17.
Two species of marine diatoms, Skeletonema costatum (Grev.) Cleve and Phaeodactylum tricornutum Bohlin were grown in batch and continuous cultures on four different nitrogen compounds (nitrate, nitrite, ammonium, urea). Carbon and nitrogen uptake were measured simultaneously with the stable isotopes 13C and 15N. Nitrogen uptake generally increased with N concentration in the medium, but no clear difference existed between the N sources. Carbon fixation was decreased for up to 5 h following the addition of the N compound. Nitrite generally had the greatest inhibitory effect on C uptake. Carbon-to-nitrogen uptake ratios decreased with increasing dissolved N concentration, becoming lower than one in nutrient-limited cultures. In contrast, batch cultures exhibited C:N uptake ratios greater than one. These effects are essentially short-term and differ from long-term influences of the N source on the cellular chemical composition. 相似文献
18.
Charles D. Kopczak 《Journal of phycology》1994,30(4):573-580
The nitrate uptake capacity of mature blade tissue of the giant kelp, Macrocystis pyrifera (L.) C. Ag., was examined as a function of the availability of light and nitrate. Time course measurements indicated that nitrate uptake rate, as measured by the incorporation of 15N, was significantly increased by N starvation. The response was linear over the first hour of exposure regardless of the N status of the tissue indicating that surge uptake was not responsible for the increase. The Michaelis-Menten parameters Vmax and Ks, however, were not significantly changed by either growth nitrate concentration or growth irradiance as a result of high variability among blades. Similarly, the initial slope (α) of the nitrate uptake kinetics curves was unaffected. Concentration of photosynthetic pigments increased in response to increased nitrate availability but not to increased growth irradiance. Time course and pigment data demonstrated that mature blade tissue responds to increased N availability by decreasing its capacity to take up nitrate and by increasing its investment in photosynthetic pigments, perhaps for N storage or enhanced light-harvesting capabilities and the increase in reducing power available for N assimilation. This study provides evidence for a dynamic regulatory system that responds to changes in nitrate availability in an integrated manner. 相似文献
19.
Cécile Jauzein Yves Collos Esther Garcés Magda Vila Mercedes Maso 《Journal of phycology》2008,44(5):1136-1145
In batch cultures of four Mediterranean strains (from France, Italy, and Spain) of Alexandrium catenella (Whedon et Kof.) Balech growing on a daily light cycle, ammonium and urea uptake were estimated by the 15N tracer technique. Ammonium uptake could be described by Michaelis–Menten kinetics along a substrate gradient of 0.1–10 μgat N · L?1 for the four strains, while two different patterns were observed for urea uptake with Michaelis–Menten kinetics for one strain and linear kinetics for the others. In all cases, an increase in uptake rates with time was noted over the daylight period. This trend led to a net increase in the maximum uptake rate (Vmax; for saturable kinetics) and in the initial slope α. For ammonium, Vmax increased by a factor of 2–10 depending on the strain, and, for urea, the maximal uptake rates measured increased by a factor of 2–18. Temporal variations of half‐saturation constants (Ks) for both nutrients did not show a clear trend. Increases in Vmax and α showed an acclimation of the cells’ uptake system over time to a N pulse, which may be explained by the light periodicity. For two strains, extensive ammonium release was observed during urea assimilation. This mechanism removes urea from the medium, so it is no longer available to other potential competitors, but supplies N back to the medium in the form of ammonium. From a methodological point of view, the phenomenon leads to considerable underestimates of the contribution of urea to phytoplankton growth. 相似文献
20.
Catriona L. Hurd Robert S. Galvin Trevor A. Norton Matthew J. Dring 《Journal of phycology》1993,29(2):160-165
A field study to determine the precise times of year at which three intertidal species of Fucus start to produce hyaline hairs and cease producing such hairs was conducted on the Isle of Man, U.K. Hairs were first observed during February, and within 6 days of their initial appearance, all tagged plants of all species at all tidal heights on the shore possessed hairs. Hair production continued until the beginning of October, at which time Fucus plants growing at the lowest stations (+ 3.0 m) had glabrous apical growth. Hair production continued later into the year for plants growing higher on the shore, and it was not until mid-November that glabrous apical growth was observed in all plants. Phosphate uptake rates of pilose (hairy) and glabrous (hairless) apical sections were measured in November 1988 for F. spiralis L. and in January 1989 for F. spiralis and F. serratus L., at phosphate concentrations ranging from 0.8 μM (ambient seawater) to 9.0 μM. In ambient seawater, pilose plants of F. spiralis removed phosphate 2–3 times faster than glabrous plants, whereas the uptake rates of pilose plants of F. serratus were about 50% greater than those of glabrous plants. The differences between uptake rates of pilose and glabrous plants of both species were smaller or nonsignificant at higher phosphate concentrations. The field and laboratory data are consistent with the hypothesis that hairs are formed in Fucus as a response to increased nutrient demand and that hairs facilitate the uptake of nutrients from seawater at concentrations typical of natural situations. 相似文献