首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrastructural studies of the chloroplasts of zoospores and developing zoospores of Oedogonium carcliacum have disclosed the occurrence of numerous incipient pyrenoids. A single developing zoospore may possess several score of these structures which appear to arise de novo in the chloroplast stroma and seem to lack any direct association with mature pyrenoids which are also present in the cells. The incipient pyrenoids lack the associated starch grains and the membrane-limited channels characteristic of mature pyrenoids, but they are readily recognized in the chloroplasts since they demonstrate a greater granularity and electron density than the surrounding chloroplast stroma. The granularity and electron density of the incipient pyrenoids match the ultra-structural appearance of the matrix of mature pyrenoids. The smallest of the incipient pyrenoids examined from serial sections had a maximum diameter of less than 0.3 μ. This may be compared with the size of mature pyrenoids, many with a maximum diameter of over 5.0 μ. In all the zoospores and developing zoospores examined, only one mature pyrenoid was observed in an apparent stage of division.  相似文献   

2.
Gloeomonas is a peculiar unicellular volvocalean genus because it lacks pyrenoids in the chloroplasts under the light microscope and has two flagellar bases that are remote from each other. However, ultrastructural features of chloroplasts are very limited, and no molecular phylogenetic analyses have been carried out in Gloeomonas. In this study, we observed ultrastructural features of chloroplasts of three species of Gloeomonas and Chloromonas rubrifilum (Korshikov ex Pascher) Pröschold, B. Marin, U. Schlösser et Melkonian SAG 3.85, and phylogenetic analyses were carried out based on the combined data set from 18S rRNA, ATP synthase beta‐subunit, and P700 chl a–apoprotein A2 gene sequences to deduce the natural phylogenetic positions of the genus Gloeomonas. The present EM demonstrated that the chloroplasts of the three Gloeomonas species and C. rubrifilum SAG 3.85 did not have typical pyrenoids with associated starch grains, but they possessed pyrenoid matrices that protruded interiorly within the stroma regions of the chloroplast. The pyrenoid matrices were large and broad in C. rubrifilum, whereas those of the three Gloeomonas species were recognized in only the small protruded regions of the chloroplast lobes. The present multigene phylogenetic analyses resolved that the three species of Gloeomonas belong to the Chloromonas lineage or Chloromonadinia of the Volvocales, and Chloromonas insignis (Anakhin) Gerloff et H. Ettl NIES‐447 and C. rubrifilum SAG 3.85, both of which have pyrenoids without associated starch grains, were positioned basally to the clade composed of the three species of Gloeomonas. Therefore, Gloeomonas might have evolved from such a Chloromonas species through reduction in pyrenoid matrix size within the chloroplast and by separating their two flagellar bases.  相似文献   

3.
A strain of Chloromonas pseudoplatyrhyncha (Pascher) P. C. Silva, which has not been studied previously using cultured material, was established from a soil sample collected in Japan and examined by light microscopy, transmission electron microscopy, and molecular phylogenetic analyses. The chloroplasts of this species showed no pyrenoids under light microscopy. However, transmission electron microscopy and the staining methods with carmine after fixation in an acidified hypochlorite solution revealed that Chloromonas pseudoplatyrhyncha actually had multiple, atypical pyrenoids (pyrenoid matrices without associated starch grains) that were angular in shape and distributed in the interior regions of the lobes of the chloroplasts. Although some other species of Chloromonas have atypical pyrenoids in the chloroplast, such angular pyrenoids have not previously been reported within the Volvocales. The present molecular phylogenetic analysis, based on 18S ribosomal RNA, adenosine triphosphate synthase β‐subunit, and P700 chlorophyll a‐apoprotein A2 gene sequences, demonstrated that Chloromonas pseudoplatyrhyncha belonged to the Chloromonas lineage or Chloromonadinia, in which it occupied a basal position outside a robust, large monophyletic group consisting of 13 species of Chloromonas and Gloeomonas.  相似文献   

4.
The single, basal pyrenoids of Gonium quadratum Pringsheim ex Nozaki and G. pectorale Müller (Goniaceae, Chlorophyta) differed in appearance when vegetative colonies were cultured photoheterotrophically in medium containing sodium acetate. Chloroplasts of G. quadratum had distinct pyrenoids when grown in medium without major carbon compounds. However, the pyrenoids degenerated and were markedly reduced in size when such cells were inoculated into a medium containing 400 mg·L?1 of sodium acetate. No pyrenoids were visible under the light microscope; however, with electron microscopy small pyrenoids and electron-dense bodies were visible within the degenerating chloroplasts, which had only single layers of thylakoid lamellae at the periphery. The chloroplasts subsequently developed distinct pyrenoids and several layers of thylakoid lamellae as the culture aged. In contrast, vegetative cells of G. pectorale always showed distinct pyrenoids when cells were inoculated into medium containing sodium acetate, sodium pyruvic acid, sodium lactate, and/or yeast extract. Therefore, we propose two terms, “unstable pyrenoids” and “stable pyrenoids,” for pyrenoids of G. quadratum and G. pectorale, respectively. Chloroplasts of the colonial green flagellates should thus be examined under various culture conditions in order to determine whether their pyrenoids are unstable or stable when pyrenoids are used as taxonomic indicators. Immunogold electron microscopy showed that the ratios of gold particle density of ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCO) between pyrenoid matrix and chloroplast stroma in G. quadratum grown in medium with or without sodium acetate were lower than those of G. pectorale. Heavy labeling by anti-RuBisCO was observed in both the electron-dense bodies and pyrenoid matrix of G. quadratum. This is the first electron microscopic demonstration of degeneration and development of both pyrenoids and thylakoid lamellae in the chloroplast as a function of culture condition in green algae.  相似文献   

5.
S. sphagnicola resembles other species of Synura previously described by electron microscopy in most features of structure but differs in possessing pyrenoids and up to five cylindrical stacks of smooth cisternae which occur between the pyrenoids and leucosin vesicles. Each stack is surrounded by a tubular cisterna which bears ribosomes on its distal face but there are no clear permanent connections between this and the chloroplast ER. Other features apparently unique to this species previously known from light microscopy are described. These include the axial position of the chloroplasts; the peripheral position of the leucosin vesicles; and the loose attachment of the scales. The structure of the body scales is described for the first time from sections. The flagellar scales are formed in the swollen edges of the Golgi cisternae and appear to pass to the cell surface in large vesicles.  相似文献   

6.
Summary Chloroplasts of many species of hornworts (Anthocerotae) have a structure that resembles the pyrenoid of green algae but whether these two structures are homologous has not been determined. We utilized immunogold labelling on thin sections to determine the distribution of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO), the major protein of algal pyrenoids, in sixteen hornwort species with and without pyrenoids. Several species (Phaeoceros laevis, Anthoceros punctatus, A. formosae, A. laminiferus, Folioceros fuciformis, Folioceros sp.,Dendroceros tubercularis, D. japonicus, D. validus, Notothylas orbicularis, N. temperata, andSpaerosporoceros adscendens) have uniplastidic (or primarily uniplastidic) cells with large prominent multiple pyrenoids. In all of these species, the labelling is found exclusively in the pyrenoid and, with the exception of theFolioceros, Dendroceros, andNotothylas species, the labelling is randomly distributed throughout the pyrenoid. In the exceptional species, the pyrenoids have prominent pyrenoglobuli or other inclusions that are unlabelled. InMegaceros flagellaris andM. longispirus, the cells are multiplastidic (with the exception of the apical cell and some epidermal cells) and the chloroplasts lack pyrenoids.Anthoceros fusiformis andPhaeoceros coriaceus have primarily uniplastidic cells but the chloroplasts lack pyrenoids; only an area of stroma in the center of the plastid devoid of starch, reminiscent of a pyrenoid, is found. In all of the species lacking pyrenoids, RuBisCo is found throughout the stroma, including the stromal spaces made by the so-called channel thylakoids. No preferential accumulation of RuBisCo is found in the pyrenoid-like region inA. fusiformis andP. coriaceus. These data indicate that 1) the hornwort pyrenoid is homologous to algal pyrenoids in the presence of RuBisCo; 2) that at least some of the RuBisCo in the pyrenoid must represent an active form of the enzyme; and 3) that, in the absence of pyrenoids, the RuBisCo is distributed throughout the stroma, as in higher plants.Abbreviations RuBisCo ribulose 1,5-bisphosphate carboxylase/oxygenase  相似文献   

7.
Abstract

Audouinella botryocarpa is reported for the first time from the British Isles. On the west and south coasts of Ireland and in the Isle of Man it grows in the intertidal on wave-splashed limpet shells and rock surfaces. Populations examined monthly in Galway Bay formed monosporangia throughout the year and tetrasporangia from December to March and May but no gametangial plants were found. Plants isolated into culture from monospores formed monosporangia at daylengths of 8, 10, 12, 14 and 16 h at 6.5, 8, 10, 11 and 15°C; the same plants formed tetrasporangia at daylengths ≤10 h at 8, 10 and 11°C but not at 6.5 and 15°C. Spores isolated from these plants gave rise to further monosporangial plants that also formed tetrasporangia under inductive conditions. Night-breaks of 1 h in a 16 h night prevented tetrasporangial reproduction and a critical daylength of ~10 h was found at 10°C. British Isles Audouinella botryocarpa typically has 6 rounded or irregularly-shaped chloroplasts per cell, each of which has a single, centrally-placed pyrenoid. The chloroplasts grow together in mature cells, typically giving the appearance of a single plate-like chloroplast with 6 pyrenoids. The implications of these observations for the generic classification of acrochaetioid algae is discussed and it is concluded that chloroplast morphology, number and the presence or absence of pyrenoids may provide the basis for a future generic realignment of acrochaetioid algae.  相似文献   

8.
The morphology and fine structure of a small marine dinoflagellate Aureodinium pigmentosum gen. et sp. nov. is described. In the motile state this organism possesses a delicate theca and two typically dinoflagellate flagella. The fine structure is similar in many respects to that of Woloszynskia micra Leadbeater & Dodge, which has already been described in detail. However, the new genus differs from Woloszynskia in having stalked pyrenoids and not having trichocysts. Peridinin is the main xanthophyll pigment. A non-motile athecate phase of the organism is also described.  相似文献   

9.
A new flagellate of the Raphidophyceae, Chlorinimonas sublosa gen. et sp. nov., collected from Wakayama Prefecture, Japan is described based on morphological observations, microspectrophotometry of chloroplasts, and phylogenetic analysis of SSU rDNA sequences. The cell was usually elliptical, sometimes spherical, oval or slender, and possessed two subequal heterodynamic flagella emerging from a subapical pit. Greenish yellow discoidal chloroplasts, 15–25 per cell, were situated at the periphery of the cell. The alga is very similar to the genus Heterosigma, but distinct in that there is no invagination of thylakoids into the pyrenoids and no typical girdle lamella in the chloroplast, and the chloroplasts are greenish yellow. Phylogenetic analysis of SSU rDNA revealed that this alga forms a sister clade with the clade of Chattonella and Heterosigma. Based on these results, we propose a new genus Chlorinimonas with Chlorinimonas sublosa as the type species. In addition, this paper is the first report of molecular data covering all genera of the Raphidophyceae. The phylogenetic analysis suggests that the intrusion to freshwater habitat has occurred only once in the Raphidophyceae.  相似文献   

10.
A simple procedure that yields highly purified intact chloroplasts from Chlamydomonas reinhardtii is described. This procedure involves breakage of cell wall-deficient cells by passing them through a narrow bore syringe needle. The intact chloroplasts are then purified from the crude homogenate by differential centrifugation and Percoll gradient centrifugation. This procedure generates relatively high yields of chloroplasts capable of CO2 fixation. These chloroplasts were characterized by electron microscopy, marker enzyme analysis, and ferricyanide exclusion. Transmission electron microscopy indicates that these chloroplasts retain their pyrenoids and eyespots. Scanning electron microscopy confirms that the characteristic cup shape of C. reinhardtii chloroplasts persists in vitro. This rapid, inexpensive procedure produces chloroplasts that should be useful for researchers studying the biochemistry and cell biology of C. reinhardtii chloroplasts.  相似文献   

11.
Some taxa of brown algae have a so‐called ‘stellate’ chloroplast arrangement composed of multiple chloroplasts arranged in a stellate configuration, or else a single chloroplast with radiating lobes. The fine structures of chloroplasts and pyrenoids have been studied, but the details of their membrane configurations as well as pyrenoid ontogeny have not been well understood. The ultrastructure of the single stellate chloroplast in Splachnidium rugosum and Scytothamnus australis were re‐examined in the present study, as well as the stellate arrangement of chloroplasts in Asteronema ferruginea and Asterocladon interjectum, using freeze‐substitution fixation. It was confirmed that the chloroplast envelope invaginated into the pyrenoid in Splachnidium rugosum, Scytothamnus australis and Asteronema ferruginea, but chloroplast endoplasmic reticulum (CER) remained on the surface of the chloroplast. The space between the invaginated chloroplast envelope and CER was filled with electron‐dense material. In Asteronema ferruginea, CER surrounding each pyrenoid was closely appressed to the neighboring CER over the pyrenoids, so that the chloroplasts formed a stellate configuration; however, in the apical cells chloroplasts formed two or more loose groups, or were completely dispersed. The pyrenoids of Asterocladon interjectum did not have any invagination of the chloroplast envelope, but a unique membranous sac surrounded the pyrenoid complex and occasionally other organelles (e.g. mitochondria). Immunolocalization of β‐1,3‐glucans showed that the membranous sac in Asterocladon interjectum did not contain photosynthetic products such as chrysolaminaran. Observations in the dividing cells of Splachnidium rugosum and Scytothamnus australis indicated that the pyrenoid in the center of the chloroplast enlarged and divided into two before or during chloroplast division.  相似文献   

12.
Parietochloris incisa comb. nov. (Trebouxiophyceae, Chlorophyta)   总被引:3,自引:0,他引:3  
A coccoid green alga, Myrmecia incisa Reisigl, was isolated from the soil of Mt Tateyama, Japan. Electronmicroscopy revealed that the organism has pyrenoids sparsely covered with starch segments and traversed by many parallel thylakoid membranes, and zoo-spores with counterclockwise basal body orientation. Due to the presence of these features, we have proposed a reclassification of M. incisa into the genus Parietochloris, Trebouxiophyceae.  相似文献   

13.
As the closest relatives of embryophytes, the charophycean green algae (sensu Mattox and Stewart) may reveal the evolutionary history of characters in this lineage. Recent molecular phylogenetic analysis indicates that the little‐known species Entransia fimbriata Hughes is a member of the charophycean order Klebsormidiales. In this study LM and EM were used to identify and describe additional structural characters of Entransia so that comparisons could be made with Klebsormidium and with other charophycean algae outside the order Klebsormidiales. Features that Entransia shares with various members of the genus Klebsormidium include cylindrical cells in unbranched filaments that may spiral, parietal chloroplasts that cover only part of the circumference of the cell, H‐shaped cross walls, and vegetative reproduction by both fragmentation and formation of zoospores or aplanospores. Among the characteristics that distinguish Entransia from Klebsormidium are a highly lobed chloroplast with multiple pyrenoids; a single large vacuole; short cells that die and collapse, apparently facilitating filament fragmentation; and germinating filaments with condensed adhesive at the base and a tapering spine at the tip. Although Entransia has sometimes been tentatively considered to be a member of the Zygnemataceae, the presence of a flagellate life history stage distinguishes Entransia from this group. The pyrenoids of Entransia are typical of those of charophycean algae in having traversing membranes and surrounding starch. Presence of multiple such pyrenoids in each chloroplast of Entransia supports the hypothesis that the common ancestor of charophycean algae and embryophytes had a single chloroplast with multiple pyrenoids.  相似文献   

14.
Wild and cultured material ofDonkinia recta (Donk.) Grun. has been examined using light microscopy, and both the structure of the living cell and its vegetative cell division are described. Unlike most naviculoid diatoms,D. recta has four chloroplasts per cell, each with four oblong pyrenoids, and division of the chloroplasts follows rather than precedes mitosis and cell division. These two unusual features are probably linked. The species is briefly discussed in relation to other naviculoid taxa in the light of these findings.  相似文献   

15.
The ultrastructure of chloroplasts from 28 of the 73 species of Caulerpa Lamouroux (Chlorophyta, Caulerpales) has been studied to aid in interpreting phylogenetic relationships among the 12 recognized sections. Variations of systematic value include pyrenoid occurrence and fine structure, thylakoid architecture and amount of photosynthate storage. Comparisons of field and culture specimens indicate these characters are consistent. Chloroplast thylakoids are grouped into bands, with the distribution of bands differing among species. In the most common arrangement, bands are evenly distributed throughout the chloroplast. A few species show lateral displacement of bands whereas others have a majority of bands arranged at one end of the chloroplast. Starch is stored cither as one or two large grains (> 1 μm diam.) or numerous small grains (< 0.5 μm diam.). Electron-transparent regions are common in other species in which chloroplasts rarely store starch. Simple, embedded pyrenoids are present in several species of section Sedoideae. An opaque region occurs in chloroplasts of C. elongata which may represent an intermediate stage in the evolutionary loss of the pyrenoid. It is suggested that the chloroplast of Caulerpa evolved, from a large, complex, pyrenoid-containing organelle housing both photosynthetic and amylogenic functions, to a small, structurally simpler one, specialized for photosynthesis alone. A phylogeny of the 12 sections of Caulerpa is constructed, based on chloroplast evolution which agrees with an earlier morphology-based hypothesis on the origin and evolution of Caulerpa.  相似文献   

16.
The chloroplasts of Vacuolaria virescens Cienkowsky are present in large numbers between the cell membrane and the layer of cytoplasm surrounding the nucleus; they are disc-shaped structures ca. 3–4 μM long by 2–3 μM wide. Chloroplast bands consist of 3 opposed thylakoids with adjacent bands frequently interconnected. External to the girdle band is a chloroplast envelope separated from the cytoplasm by endoplasmic reticulum; there is no immediately apparent continuity between this endoplasmic reticulum and the nuclear envelope. Small electron-dense spheres in the chloroplast stroma are thought to be lipid food reserve. Eyespots and pyrenoids are absent.  相似文献   

17.
A new monotypic genus of the Chlorophyceae isolated from brackish water of the Chesapeake Bay, Maryland, U.S.A. is described as Mychonastes ruminatus. The alga is compared with similar members of the Oocystaceae. Based on the presence of a thick ruminate cell wall, the lack of discernible pyrenoids, and other vegetative characters, Mychonastes can be delineated from other green coccoid unicells.

The cellular life cycle of Mychonastes was studied by electron microscopy and compared to published studies of Chlorella. The genera are differentiated by wall and chloroplast structure. Mychonastes cell wall is sculptured and changes during the life cycle from a highly irregular appearance when young, to a less irregular state when mature. Mychonastes chloroplast lacks pyrenoids at all times. Chlorella has a smooth wall and pyrenoids which are apparent just after release from the mother cell until division. Organelles of both genera migrate in a similar pattern throughout the life cycle, with Mychonastes producing two or four autospores, and Chlorella producing four or more (rarely two).  相似文献   

18.
Khawkinea quartana, a naturally occurring colorless homologue of Euglena, was examined with the electron microscope. The organism is biflagellate though only one of the 2 flagella emerges from the anterior reservoir. The pellicular strips covering the body of the organism are supported by microtubules which are continuous in part with microtubules bordering the reservoir. Additional rows of microtubules are found associated with the kinetosomes. An eyespot is located in the wall of the reservoir and, adjacent to it, the contractile vacuole. The nucleus, mitochondria, and Golgi complexes are similar to those described in other euglenoid flagellates. The food reserve is paramylon. The study supports the phylogenetic origin of Khawkinea from pigmented Euglena through the loss of chloroplasts.  相似文献   

19.
This study compares the ultrastructure of the inner, dark-habituated cells of the green ‘Cladophora-ball’, or Marimo, to that of similar cells at the surface. Cells not exposed to light possess fewer, but larger and more irregular, chloroplasts than do the outer cells. Unexposed chloroplasts have a pyrenoid matrix lacking starch sheaths and containing unusually thick granal stacks. Despite prolonged exposure to darkness, the chloroplasts contain small starch grains. After exposure to light, such chloroplasts divide, become smaller and take on the appearance of those in the outer layer cells. Within 48 h, all of the chloroplasts develop substantial starch grains and the pyrenoids are surrounded by starch sheaths. This response is consistent with previous reports of the recovery of photosynthetic activity in inner cells exposed to light.  相似文献   

20.
Chlorarachnion reptans Geitler shows affinities to both the Chlorophyceae and the chloroplast endoplasmic reticulum-containing chromophyte algae in possessing chlorophyll b and chloroplasts which are limited by four membranes, respectively. In the periplastidal compartment surrounding each of the four to eight chloroplasts of a C. reptans cell are putative eukaryotic-sized ribosomes, scattered tubules and vesicles, and a small double-membrane-limited nucleus-like organelle named the nucleomorph. The nucleomorphs display 4′-6-diamidino-2-phenylindole (DAPI)fluorescence which is sensitive to DNase digestion, but not to treatment with RNase. The nucleomorphs also contain a fibrillogranular body which resembles a nucleolus. Nucleomorph division occurs by the sequential infolding of the inner and outer envelope membranes and subsequent constriction in two, with no involvement of microtubules. In all these characteristics, the nucleomorphs of C. reptans are similar to the cryptomonad nucleomorph which has been hypothesized to be the vestigial nucleus of an ancestral red alga which gave rise to the chloroplasts of the Cryptophyceae. The presence of chlorophyll b and the contents and morphology of C. reptans chloroplast compartments suggest a green algal origin for the chloroplasts of these cells. The discovery of a second organism with a DNA-containing, nucleus-like organelle in its chloroplast compartment lends strong support to the hypothesis that the chloroplasts of many algae have evolved from eukaryotic endosymbionts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号