首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three 1AR subtypes have been cloned so far and are designated as 1a, 1b, and 1d. Organspecific distribution pattern and subtype-specific effects are known but not fully understood. To address a cell-type specific expression pattern in the heart we investigated expression pattern of 1AR subtypes on RNA and proteinlevel in heart tissue, cultured cardiomyocytes and nonmyocytes of the rat. Each 1ARsubtype mRNA was present in neonatal and adult rat heart culture but the relative distribution pattern was significantly different. While the 1aAR subtype is preferentially expressed in adult cardiomyocytes, the 1bAR subtype was preferentially expressed in the nonmyocyte cell fraction. The RTPCR results were confirmed by Westernblotting (1b) and immunocytochemical studies. Incubation with an 1agonist (phenylephrine) for 72 h led to a significant reduction of the 1bAR in neonatal heart cell culture on both mRNA and protein level. In contrast, incubation with an 1antagonist (prazosin) induced a 1.6 fold upregulation of the 1aAR mRNA without significant effects on radioligand binding and functional assay. The results indicate a distribution pattern of the 1AR subtype which is specific for cell type and ontogeny of the rat heart and may be regulated by adrenergic agents.  相似文献   

2.
Adrenergic receptors are integral membrane proteins involved in cellular signalling that belong to the G protein-coupled receptors. Synthetic peptides resembling the putative transmembrane (TM) segments TM4, TM6 and TM7, of the human α2-adrenergic receptor subtype C10 (P08913) and defined lipid vesicles were used to assess protein-lipid interactions that might be relevant to receptor structure/function. P6 peptide contains the hydrophobic core of TM6 plus the N-terminal hydrophilic motif REKR, while peptides P4 and P7 contained just the hydrophobic stretches of TM4 and TM7, respectively. All the peptides increase their helical tendency at moderate concentrations of TFE (30–50%) and in presence of 1,2-dielaidoyl-sn-glycero-3-phosphatidylethanolamine (DEPE) lipids. However, only P6 displays up to 19% of α-helix in the presence of just the DEPE lipids, evidences a transmembrane orientation and stabilizes the Lα lipid phase. Conversely, P4 and P7 peptides form only stable β-sheet structures in DEPE and favour the non-lamellar, inverted hexagonal (HII) phase of DEPE by lowering its phase transition temperature. This study highlights the potential of using synthetic peptides derived from the amino acid sequence in the native proteins as templates to understand the behaviour of the transmembrane segments and underline the importance of interfacial anchoring interactions to meet hydrophobic matching requirements and define membrane organization.  相似文献   

3.
Goral V  Jin Y  Sun H  Ferrie AM  Wu Q  Fang Y 《PloS one》2011,6(4):e19282
The β(2)-adrenergic receptor (β(2)AR) agonists with reduced tachyphylaxis may offer new therapeutic agents with improved tolerance profile. However, receptor desensitization assays are often inferred at the single signaling molecule level, thus ligand-directed desensitization is poorly understood. Here we report a label-free biosensor whole cell assay with microfluidics to determine ligand-directed desensitization of the β(2)AR. Together with mechanistic deconvolution using small molecule inhibitors, the receptor desensitization and resensitization patterns under the short-term agonist exposure manifested the long-acting agonism of salmeterol, and differentiated the mechanisms of agonist-directed desensitization between a full agonist epinephrine and a partial agonist pindolol. This study reveals the cellular mechanisms of agonist-selective β(2)AR desensitization at the whole cell level.  相似文献   

4.
5.
Seven-transmembrane receptors (7TMRs), also called G protein-coupled receptors (GPCRs), represent the largest class of drug targets, and they can signal through several distinct mechanisms including those mediated by G proteins and the multifunctional adaptor proteins β-arrestins. Moreover, several receptor ligands with differential efficacies toward these distinct signaling pathways have been identified. However, the structural basis and mechanism underlying this 'biased agonism' remains largely unknown. Here, we develop a quantitative mass spectrometry strategy that measures specific reactivities of individual side chains to investigate dynamic conformational changes in the β(2)-adrenergic receptor occupied by nine functionally distinct ligands. Unexpectedly, only a minority of residues showed reactivity patterns consistent with classical agonism, whereas the majority showed distinct patterns of reactivity even between functionally similar ligands. These findings demonstrate, contrary to two-state models for receptor activity, that there is significant variability in receptor conformations induced by different ligands, which has significant implications for the design of new therapeutic agents.  相似文献   

6.
Intestinal epithelial cell damage is frequently seen in the mucosal lesions of inflammatory bowel diseases such as ulcerative colitis or Crohn's disease. Complete remission of these diseases requires both the cessation of inflammation and the migration of enterocytes to repair the damaged epithelium. Lyophilized Saccharomyces boulardii (Sb, Biocodex) is a nonpathogenic yeast widely used as a therapeutic agent for the treatment and prevention of diarrhea and other gastrointestinal disorders. In this study, we determined whether Sb could accelerate enterocyte migration. Cell migration was determined in Sb force-fed C57BL6J mice and in an in vitro wound model. The impact on α2β1 integrin activity was assessed using adhesion assays and the analysis of α2β1 mediated signaling pathways both in vitro and in vivo. We demonstrated that Sb secretes compounds that enhance the migration of enterocytes independently of cell proliferation. This enhanced migration was associated with the ability of Sb to favor cell-extracellular matrix interaction. Indeed, the yeast activates α2β1 integrin collagen receptors. This leads to an increase in tyrosine phosphorylation of cytoplasmic molecules, including focal adhesion kinase and paxillin, involved in the integrin signaling pathway. These changes are associated with the reorganization of focal adhesion structures. In conclusion Sb secretes motogenic factors that enhance cell restitution through the dynamic regulation of α2β1 integrin activity. This could be of major importance in the development of novel therapies targeting diseases characterized by severe mucosal injury, such as inflammatory and infectious bowel diseases.  相似文献   

7.
The important and diverse biological functions of adrenergic receptors, a subclass of G protein-coupled receptors (GPCRs), have made the search for compounds that selectively stimulate or inhibit the activity of different adrenergic receptor subtypes an important area of medicinal chemistry. We previously synthesized 2-, 5-, and 6-fluoronorepinehprine (FNE) and 2-, 5-, and 6-fluoroepinephrine (FEPI) and found that 2FNE and 2FEPI were selective β-adrenergic agonists and that 6FNE and 6FEPI were selective α-adrenergic agonists, while 5FNE and 5FEPI were unselective. Agonist potencies correlated well with receptor binding affinities. Here, through a combination of molecular modeling and site-directed mutagenesis, we have identified N293 in the β2-adrenergic receptor as a crucial residue for the selectivity of the receptor for catecholamines fluorinated at different positions.  相似文献   

8.
Sympathetic nervous system regulation by the α1-adrenergic receptor (AR) subtypes (α1A, α1B, α1D) is complex, whereby chronic activity can be either detrimental or protective for both heart and brain function. This review will summarize the evidence that this dual regulation can be mediated through the different α1-AR subtypes in the context of cardiac hypertrophy, heart failure, apoptosis, ischemic preconditioning, neurogenesis, locomotion, neurodegeneration, cognition, neuroplasticity, depression, anxiety, epilepsy, and mental illness.  相似文献   

9.
The fluorescein arsenical hairpin binder (FlAsH) shows much promise to determine the relative orientations of protein regions and structures even in living cells and in the plasma membrane. In this study, we characterized FlAsH's photophysical properties by steady-state anisotropy and time-resolved single photon counting for further applications with G-protein coupled receptors. We find that FlAsH has a relatively high initial anisotropy of 0.31 ± 0.01 and a three-component fluorescence lifetime with an average of 4.1 ± 0.1 ns. We characterized the FlAsH fluorophore orientation in the α(2A) adrenergic receptor revealing rigid orientations of FlAsH in the membrane plane for rotational correlation times of ~50 ns in living cells. To elucidate the fluorophore-membrane orientation and rotational correlation time, an anisotropy treatment similar to that of another researcher (Axelrod, D. 1979. Biophys. J. 26:557-573) was developed. The rotational correlation times were observed to increase by up to 16 ns after agonist addition. The rotational correlation time also allowed for a comparison to the theoretical relationship between translational and rotational diffusion (originally proposed by Saffman, P. G., and M. Delbrück. 1975. Proc. Natl. Acad. Sci. USA. 72:3111-3113) and revealed a discrepancy of a factor between 10 and 100.  相似文献   

10.
α1-Adrenergic-stimulated calcium efflux from rat parotid cell aggregates declines approx. 40% between 3 and 24 months of age, with the bulk of the reduction occurring between 12 and 24 months. Intracellular free calcium levels following α1-adrenoceptor stimulation are also reduced about 40% between 3 and 24 months. No significant age differences in stimulation of inositol mono-, bis- or trisphosphate production are observed. However, the ability of inositol trisphosphate to directly stimulate calcium efflux is reduced by about 50% with increasing age. Concentrations of this inositol phosphate required for maximal calcium release do not change between 3 and 24 months. Differences in response are not due to a reduction in uptake of inositol trisphosphate into older cells, but suggest an age-related defect in the ability of inositol trisphosphate to liberate calcium from intracellular stores. Such dysfunction may be at least partially responsible for impaired α1-adrenergic responsiveness during aging.  相似文献   

11.
The cDNAs encoding for three subtypes of adrenergic receptors, α1A-, α1B- and α1D-ARs, were cloned and expressed in HEK 293 cells. Expression of α1A- and α1B-AR subtypes in HEK 293 cells was stable even with increased passages but that of α1D-AR was not. Cellular localization studies using immunofluorescence and flow cytometry revealed that expression of α1A- and α1B-ARs was primarily localized on the cell membrane whereas expression of α1D-AR was␣predominantly intracellular. Our studies clearly demonstrated that the culturing of the recombinant cell lines expressing α1D-AR in charcoal/dextran treated fetal bovine serum (FBS) resulted in targeting of α1D-AR to the cell membrane and thus, significantly improving its stability and availability for ligand binding studies.Sunil M. Khattar, Roop Singh Bora and Priyanka Priyadarsiny contributed equally to this work.  相似文献   

12.
Very little is understood about the trafficking of G protein-coupled receptors (GPCRs) from the endoplasmic reticulum (ER) to the plasma membrane. Rab guanosine triphosphatases (GTPases) are known to participate in the trafficking of various GPCRs via a direct interaction during the endocytic pathway, but whether this occurs in the anterograde pathway is unknown. We evaluated the potential interaction of Rab1, a GTPase known to regulate β2-adrenergic receptor (β2AR) trafficking, and its effect on export from the ER. Our results show that GTP-bound Rab1 interacts with the F(x)(6)LL motif of β2AR. Receptors lacking the interaction motif fail to traffic properly, suggesting that a direct interaction with Rab1 is required for β2AR anterograde trafficking.  相似文献   

13.
Human 2(C2)-adrenergic receptor was expressed in Escherichia coli as a fusion protein with Bacillus circulans var. alcalophilus cyclomaltodextrin glucanotransferase. For the determination of the expression level (0.6 mg of solubilized fusion protein l–1 of E. coli culture), a two-site immunometric assay based on two monoclonal antibodies with different epitopes was developed.  相似文献   

14.
The purines ATP and adenosine play an important role in the communication between the photoreceptors and the retinal pigment epithelium (RPE). While the RPE is known to release ATP into subretinal space, the source of extracellular adenosine is unclear. In other tissues, ecto-nucleotidases mediate the consecutive dephosphorylation of ATP to AMP, and AMP is converted to adenosine by ecto-5′ nucleotidase (CD73). This study identifies ecto-5′ nucleotidase on RPE cells and investigates modulation of enzyme activity. The RPE was the most active site of 5′AMP dephosphorylation in the posterior rat eye. The ecto-5′ nucleotidase inhibitor αβmADP prevented the production adenosine by the apical membrane of the bovine RPE. Cultured human ARPE-19 cells expressed mRNA and protein for ecto-5′ nucleotidase. The production of phosphate from 5′AMP by ARPE-19 cells was inhibited by αβmADP, but the ecto-alkaline phosphatase inhibitor levamisole had no effect. Degradation of 5′AMP was blocked by norepinephrine, epinephrine and phenylephrine, with inhibition by antagonists prazosin and corynanthine implicating the α1 adrenergic receptor. The block of enzyme activity by norepinephrine was rapid, occurring within 1 min, and was similar at both 4 and 37°C, consistent with cleavage of the enzyme from its GPI anchor. HPLC measurements indicated norepinephrine reduced levels of adenosine in the bath. In the apical face of the bovine-RPE eyecup, norepinephrine reduced the production of phosphate from 5′AMP, suggesting that both receptor and enzyme face sub-retinal space. In conclusion, RPE cells express ecto-5′ nucleotidase, with activity on the apical membrane, and stimulation of α-1 adrenergic receptors downregulates activity. As epinephrine is released at light onset, and adenosine can inhibit phagocytosis, the corresponding decrease in subretinal adenosine levels may contribute to the enhanced the phagocytosis of rod outer segments that occurs at this time.  相似文献   

15.
The oxytocin receptor (OTR) and the β2-adrenergic receptor (β2AR) are key regulators of uterine contraction. These two receptors are targets of tocolytic agents used to inhibit pre-term labor. Our recent study on the nature of OTR- and β2AR-mediated ERK1/2 activation in human hTERT-C3 myometrial cells suggested the presence of an OTR/β2AR hetero-oligomeric complex (see companion article). The goal of this study was to investigate potential allosteric interactions between OTR and β2AR and establish the nature of the interactions between these receptors in myometrial cells. We found that OTR-mediated ERK1/2 activation was attenuated significantly when cells were pretreated with the β2AR agonist isoproterenol or two antagonists, propranolol or timolol. In contrast, pretreatment of cells with a third β2AR antagonist, atenolol resulted in an increase in OTR-mediated ERK1/2 activation. Similarly, β2AR-mediated ERK1/2 activation was strongly attenuated by pretreatment with the OTR antagonists, atosiban and OTA. Physical interactions between OTR and β2AR were demonstrated using co-immunoprecipitation, bioluminescence resonance energy transfer (BRET) and protein-fragment complementation (PCA) assays in HEK 293 cells, the latter experiments indicating the interactions between the two receptors were direct. Our analyses suggest physical interactions between OTR and β2AR in the context of a new heterodimer pair lie at the heart of the allosteric effects.  相似文献   

16.
1. A methyl-4-azidobenzimidyl (MAB) derivative of the alpha-scorpion toxin from Leiurus quinquestriatus (LqTx) specifically labels only the alpha subunit of the rat brain sodium channel in synaptosomes or in purified and reconstituted sodium-channel preparations. 2. Unlike previous photoreactive toxin derivaties, binding and photolabeling by MAB-LqTx are allosterically modulated by tetrodotoxin and batrachotoxin, as observed for native LqTx binding to sodium channels in synaptosomes. 3. Proteolytic cleavage of the alpha subunit photolabeled with MAB-LqTx shows that the label is located within a 60 to 70-kDa protease-resistant core structure in domain I of the sodium-channel alpha subunit. 4. MAB-LqTx will be valuable in further defining the structure-activity relationships at the alpha-scorpion toxin receptor site.  相似文献   

17.
18.
The main product of the reaction of fluorescein isothiocyanate (FITC) and bungarotoxin (Bgt) under near stoichiometric conditions is a monofluorescein derivative preferentially labeled at Lys 26, a highly conserved residue known to be involved in the binding (McDaniel, C. S., Manshouri, T., and Atassi, M. Z. (1987)J. Prot. Chem. 6, 455–461; Garcia-Borron, J. C., Bieber, A. L., and Martinez-Carrion, M. (1987)Biochemistry 26, 4295–4303) of postsynaptic neurotoxins specific for the nicotinic acetylcholine receptor (AcChR). The fluorescently labeled toxin retains a high affinity for the AcChR, and an unaltered specificity. Binding of FITC-Bgt to AcChR results in a significant decrease in the fluorescence intensity of the probe. This AcChR-mediated quenching of FITC-Bgt fluorescence allows for a continuous monitoring of the binding process. The quenching of free and bound FITC-Bgt by charged and neutral quenchers shows few fluorophore accessibility changes as induced by the toxin-bound state. The results are consistent with a model in which the positively charged concave surface of the toxin interacts with a negatively charged complementary surface in the receptor molecule.  相似文献   

19.

Background

Protein phosphorylation of G-protein-coupled receptors (GPCR) is central to the myriad of functions that these ubiquitous receptors perform in biology. Although readily addressable with the use of phospho-specific antibodies, analysis phosphorylation at the level of stoichiometry requires receptor isolation and advanced proteomics. We chose two key sites of potential phosphorylation of human beta2-adrenergic receptor (β2AR residues S355 and S356) to ascertain the feasibility of applying targeted mass spectrometry to establishing the stoichiometry of the phosphorylation.

Method

We stimulated HEK293 cells stably expressing Flag-tagged β2AR-eGFP with 10 μM beta-adrenergic agonist (isoproterenol) and made use of proteomics and targeted mass spectrometry (MS) to quantify the molar ration of phosphorylation on S355 and S356 versus non-phosphorylated receptor in agonist-treated cells.

Results

Phosphorylation of either S355 or S356 residue occurred only for agonist-occupied β2AR. The results demonstrated that pS356 is the dominant site of protein phosphorylation. The abundance of the p356 was 8.6-fold more than that of pS355. Calculation of the molar ratio of phosphorylated (pS355 plus pS356) versus non-phosphorylated receptor reveals that at high occupancy of the receptor only 12.4% of the β2AR is phosphorylated at these sites.

Conclusions

Application of advanced proteomics and use of the most sensitive targeted MS strategy makes possible the detection and quantification of phosphorylation of very low abundance peptide digests of β2AR. Establishing the stoichiometry of two key sites of agonist-stimulated phosphorylation with β2AR is an essential first-step to global analysis of the stoichiometry of GPCR phosphorylation.  相似文献   

20.
G-protein-coupled receptors have extraordinary therapeutic potential as targets for a broad spectrum of diseases. Understanding their function at the molecular level is therefore essential. A variety of crystal structures have made the investigation of the inactive receptor state possible. Recently released X-ray structures of opsin and the β2-adrenergic receptor (β2AR) have provided insight into the active receptor state. In addition, we have contributed to the crystal structure of an irreversible agonist-β2 adrenoceptor complex. These extensive studies and biophysical investigations have revealed that agonist binding leads to a low-affinity conformation of the active state that is suggested to facilitate G-protein binding. The high-affinity receptor state, which promotes signal transduction, is only formed in the presence of both agonist and G-protein. Despite numerous crystal structures, it is not yet clear how ligands tune receptor dynamics and G-protein binding. We have now used molecular dynamics simulations to elucidate the distinct impact of agonist and inverse agonist on receptor conformation and G-protein binding by investigating the influence of the ligands on the structure and dynamics of a complex composed of β2AR and the C-terminal end of the Gαs subunit (GαCT). The simulations clearly showed that the agonist isoprenaline and the inverse agonist carazolol influence the ligand-binding site and the interaction between β2AR and GαCT differently. Isoprenaline induced an inward motion of helix 5, whereas carazolol blocked the rearrangement of the extracellular part of the receptor. Moreover, in the presence of isoprenaline, β2AR and GαCT form a stable interaction that is destabilized by carazolol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号