首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, we studied some qualitative and quantitative characteristics of mast cells located in the peritoneal cavity, submandibular and dorsal lymph nodes and ileum of Calomys callosus experimentally infected by Toxoplasma gondii. In uninfected animals, the majority of mast cells had similar ultra-structural characteristics, including several cytoplasmic granules with homogeneous and electron dense contents. However, after 1 h of infection, a significant influx of mast cells into peritoneal cavity was observed. The number of mast cells in this compartment decreased progressively in infected animals, and was significantly lower than the number of mast cells in control animals after 48 h of infection. Mast cells from infected animals or from purified suspensions that were infected in vitro presented significant morphological modifications, suggesting a degranulation process: cytoplasmic granules with electron dense content, fusion of the cytoplasmic granules, intracytoplasmic channels, cytoplasmic granules with flocculent material, plasma membrane rupture and granule contents in the extracellular environment. A remarkable increase in the influx of neutrophils toward the peritoneal cavity of the infected animals was observed after 12 h of infection. Moreover, this event occurred after the mast cell degranulation process took place. The relative increase in the number of mast cells and neutrophils was also followed by an increase in the number of macrophages, but there was a significant decrease in lymphocyte influx. After 48 h of infection, the parasite had spread from the peritoneal cavity to all organs examined. Also, mast cells from these organs showed evident morphological alterations, indicating the presence of the degranulation process. These results suggest that mast cells are deeply involved with the acute phase of the inflammatory response in this experimental model.  相似文献   

2.
Corticotropin-releasing factor (CRF), which activates the hypothalamic-pituitary- adrenal axis under stress, also has proinflammatory peripheral effects possibly through mast cells. The purpose of this study was to investigate the effect of urocortin (UCN), a 40-amino-acid CRF family peptide, on degranulation and intracellular calcium of rat lung mast cells. The activation and degranulation of mast cells were observed by Toluidine blue staining and transmission electron microscope. The intracellular calcium was investigated using confocal laser scanning microscopy and flow cytometry. The results indicated that all the three different concentrations of UCN (0.1, 1 and 10 microM) significantly induced the activation and degranulation of rat lung mast cells in vitro. This effect was markedly blocked by selective CRF receptor 1 (CRF-R1) antagonist antalarmin, but not by specific CRF receptor 2 (CRF-R2) antagonist antisauvagine-30 (anti-Svg-30). The results also showed that UCN caused a rapid peak increase in [Ca(2+)](i) at point of 300s after UCN treatment, followed by a decrease to a sustained plateau phase. The peak increase in [Ca(2+)](i) induced by UCN was significantly inhibited by antalarmin, but not by anti-Svg-30. This effect of UCN on [Ca(2+)](i) in rat lung mast cells was also found by flow cytometry. Regression analysis revealed a positive correlation between mast cells degranulation extent and the maximum value of [Ca(2+)](i) (P < 0.01). Taken together, our present study suggested that UCN induced the increase of [Ca(2+)](i) and degranulation of rat lung mast cells through CRF-R1. These findings may have implications for the pathophysiology of allergic and inflammatory lung disorders such as asthma, which is closely associated with mast cell activation and degranulation.  相似文献   

3.
Carnosine (beta-alanyl-histidine) is a naturally occurring dipeptide that has been characterized as a putative hydrophilic antioxidant. The protective function of carnosine has been demonstrated in neuronal cells under ischemic injury. The purpose of this study was to investigate the effects of carnosine on oxygen-glucose deprivation (OGD)-induced degranulation and histamine release from mast cells. Cultured mast cells were exposed to OGD for 4 h, and then the degranulation was observed immediately by microscopy. Histamine release was analyzed by high-performance liquid chromatography (HPLC). OGD caused degranulation of mast cells, and increased histamine and lactate dehydrogenase (LDH) release. Carnosine (at a concentration of 5 mM) alone did not produce any appreciable effect on degranulation, histamine, and LDH release from mast cells under normal condition, but significantly inhibited the degranulation, histamine, and LDH release of mast cells induced by OGD. These results indicate that carnosine can protect mast cells from degranulation and histamine release and it may be an endogenous mast cell stabilizer in the pathological processes induced by ischemia.  相似文献   

4.
5.
By means of histological and morphological methods reaction of mast cells has been studied in the thymus and inguinal lymph nodes of mature non-inbred white male rats, subjected to systematic physical loadings (daily swimming) with increasing time from 5 up to 100 min during 5 months. Morphological changes in the organs studied and manifestation of the mast cell reaction essentially depend on the degree of the animals' adaptation to the loading. In the animals adapted to swimming, decreasing area, occupied by the connective tissue elements, in comparison to that in the control--increasing cortical area, increasing number of lymphoid cells, decreasing number of the mast cells in the inguinal lymph nodes--are noted. When the adaptation of the animals to the loading is insufficient, outgrowth of the connective tissue elements, decreasing cortical zone, impoverishment of the parenchyma with lymphocytes occur. The number of the mast cells increases, many of them are at the state of degranulation.  相似文献   

6.
Microcirculatory dysfunction during intestinal ischemia-reperfusion   总被引:2,自引:0,他引:2  
Oxido-reductive stress is a crucial factor of the tissue response during ischemia-reoxygenation injuries. Reperfusion affects primarily the microvasculature in a manner consistent with an acute inflammatory reaction. In this respect, the salient data suggest an important connection between endothelial cell-derived humoral mediators and the perivascular mast cell system. Increased endothelin-1 and decreased nitric oxide formation, mast cell degranulation and leukocyte accumulation coexist in gastrointestinal ischemia-reperfusion syndromes too. Constitutively produced nitric oxide inhibits, while increasingly formed endothelin-1 significantly enhances the degranulation of the intestinal mast cells. The endothelin-A receptor-dependent mast cell degranulation per se plays a secondary role in reperfusion-induced structural injury, but contributes significantly to leukocyte recruitment into the reperfused intestinal mucosa. It is conceivable therefore, that the nitric oxide--endothelin-1--mast cell cycle is involved in the mechanism of ischemia-reperfusion-induced endothelial cell-leukocyte interactions, where mast cells act to amplify the process of leukocyte sequestration. The alteration in the balance between endothelial cell-derived proadhesive vasoconstrictor and antiadhesive vasodilator factors exerts a significant influence on the mucosal integrity, and the antagonism of endothelin-A receptor activation in this setting tips the equilibrium toward tissue salvage.  相似文献   

7.
Reasons for the increased prevalence of allergies observed in recent decades remain elusive. Here, we used a murine model to investigate the effect of nutrition on ovalbumin-induced allergic peritonitis. Compared to the organs of mice kept on a standard diet, mice exposed to a low quality diet during the growth period showed a decrease in the mass of metabolic (liver and heart) and, to a much larger extent, in lymphatic (thymus and spleen) organs, but not in testes or intestine mass. Moreover, diet manipulation affected the number ofpolymorphonuclear granulocytes as well as mast cell number and/or their responsiveness. During allergic peritonitis, mast cells from animals kept on the standard diet reacted to an allergen with degranulation, while the reaction in mice kept on the low quality diet was significantly weaker. However, the immunomodulators of this process remain unidentified as diet quality affected neither anti-ovalbumin IgE level nor synthesis/release of anti-inflammatory IL-10. Further work is needed to identify underlying immunomodulators.  相似文献   

8.
Ovaries from hamsters on each day of the oestrous cycle at 09.00 h were observed for the number of mast cells, the pattern of mast cell degranulation, histamine concentration and blood flow. On day 4 (pro-oestrus), ovaries were also observed at 9.00, 15.00 and 21.00 h. Mast cell degranulation was evaluated by 3 criteria: (1) no degranulation = less than 5 granules dispersed from the cell; (2) moderate degranulation = 5 or more granules dispersed but less than 15, and (3) extensive degranulation = 15 or more granules released. Blood flow was determined using radio-active microspheres in anaesthetized animals. Mast cells were observed in fat pad (beyond 2 mm of the bursal mesothelium), bursa (within 2 mm of the bursal mesothelium), hilum and near ovarian blood vessels (these 4 regions are collectively called the ovarian complex). The distribution of ovarian mast cells was not uniform. Most mast cells were near ovarian blood vessels (42.2%) and in the fat pad (37.2%). A moderate number of cells were in the bursal wall (20%) and only a few cells were observed in the hilum (0.64%). Mast cell number remained unchanged on days 1-4 of the cycle in each ovarian compartment. However, summation of the number of mast cells in the entire ovarian complex revealed a significant decline in number at 15.00 h on pro-oestrus. Alterations in mast cell degranulation were primarily restricted to 2 periods of the cycle (pro-oestrus and di-oestrus). An increase in moderate but not extensive degranulation was observed in only the fat pad and bursa on day 2 when compared with day 1 values. In most ovarian compartments on pro-oestrus, degranulation was higher than on any other day of the cycle. At 15.00 h on pro-oestrus, extensive degranulation in bursa, fat pad and blood vessel regions (but not hilum) coincided with an increase in ovarian histamine and decline in number of mast cells; ovarian blood flow also increased at the time but remained unchanged the remainder of the cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
LOCAL MITOGENIC EFFECT OF TISSUE MAST CELL SECRETION   总被引:5,自引:0,他引:5  
The effect of drug-induced mast cell secretion on proliferation was studied in fibroblast-like and mesothelial-like cells in organ-cultured rat mesentery. Mast cell degranulation achieved by Compound 48/80 was followed by a marked mitogenic reaction in the surrounding tissue cells. The drug itself lacked mitogenic effect on cultured guinea-pig mesentery, the mast cells of which are unresponsive to the drug, and on a human normal fibroblast-like cell line. In contrast, histamine at about 10?10 M, a major mast cell component, induced marked mitogenesis in guinea-pig mesentery without causing degranulation of mast cells. It is concluded that secreting rat-tissue mast cells release a mitogenic factor or factors acting locally on nearby tissue cells.  相似文献   

10.
Mast cells are the principal effector cells involved in the allergic response, through the release of histamine. We investigated the effect of eriodictyol, derived from the painted maple and yerba santa, on mast cell degranulation and on an allergic response in an animal model. We also investigated its effect on the expression of the ceramide kinase (CERK) involved in calcium-dependent degranulation, and on ceramide activation by multiple cytokines. Eriodictyol suppressed the release of beta-hexosaminidase, a marker of degranulation, and the expression of interleukin (IL)-4 mRNA. It inhibited the expression of CERK mRNA, reduced the ceramide concentration in antigen-stimulated mast cells, and suppressed the passive cutaneous anaphylaxis (PCA) reaction in mice in a dose-dependent manner. These results suggest that eriodictyol can inhibit mast cell degranulation through inhibition of ceramide kinase, and that it might potentially serve as an anti-allergic agent.  相似文献   

11.
Mast cells are the principal effector cells involved in the allergic response, through the release of histamine. We investigated the effect of eriodictyol, derived from the painted maple and yerba santa, on mast cell degranulation and on an allergic response in an animal model. We also investigated its effect on the expression of the ceramide kinase (CERK) involved in calcium-dependent degranulation, and on ceramide activation by multiple cytokines. Eriodictyol suppressed the release of beta-hexosaminidase, a marker of degranulation, and the expression of interleukin (IL)-4 mRNA. It inhibited the expression of CERK mRNA, reduced the ceramide concentration in antigen-stimulated mast cells, and suppressed the passive cutaneous anaphylaxis (PCA) reaction in mice in a dose-dependent manner. These results suggest that eriodictyol can inhibit mast cell degranulation through inhibition of ceramide kinase, and that it might potentially serve as an anti-allergic agent.  相似文献   

12.
Mast cells play a primary role in allergic diseases. During an allergic reaction, mast cell activation is initiated by cross-linking IgE-FcεRI complex by multivalent antigen resulting in degranulation. Additionally, G protein-coupled receptors also induce degranulation upon activation. However, the spatio-temporal relationship between Ca2+ mobilization and mast cell degranulation is not well understood. We investigated the relationship between oscillations in Ca2+ level and mast cell degranulation upon stimulation in rat RBL-2H3 cells. Nile red and Fluo-4 were used as probes for monitoring histamine and intracellular Ca2+ levels, respectively. Histamine release and Ca2+ oscillations in real-time were monitored using total internal reflection fluorescence microscopy (TIRFM). Mast cell degranulation followed immediately after FcεRI and GPCR-mediated Ca2+ increase. FcεRI-induced Ca2+ increase was higher and more sustained than that induced by GPCRs. However, no significant difference in mast cell degranulation rates was observed. Although intracellular Ca2+ release was both necessary and sufficient for mast cell degranulation, extracellular Ca2+ influx enhanced the process. Furthermore, cytosolic Ca2+ levels and mast cell degranulation were significantly decreased by downregulation of store-operated Ca2+ entry (SOCE) via Orai1 knockdown, 2-aminoethyl diphenylborinate (2-APB) or tubastatin A (TSA) treatment. Collectively, this study has demonstrated the role of Ca2+ signaling in regulating histamine degranulation.  相似文献   

13.
Mast cell degranulation can initiate an acute inflammatory response and contribute to the progression of chronic diseases. Alteration in the cellular programs that determine the requirement for mast cell degranulation would therefore have the potential to dramatically impact disease severity. Mast cells are exposed to increased levels of PGE2 during inflammation. We show that although PGE2 does not trigger the degranulation of dermal mast cells of young animals, in older mice, PGE2 is a potent mast cell stimulator. Intradermal administration of PGE2 leads to an EP3 receptor-dependent degranulation of mast cells, with the number of degranulated cells approaching levels observed in IgE- and Ag-treated controls. Taken together, these studies suggest that the ability of PGE2 to initiate mast cell degranulation changes in the aging animal. Therefore, elevated PGE2 levels might provide an important pathway by which mast cells are engaged to participate in inflammatory responses in the elderly patient.  相似文献   

14.
Mast cells are immune cells derived from hematopoietic progenitors. When they are activated by stimuli, they immediately release granule-associated mediators, leading to allergic inflammation. Several factors controlling mediator release have been identified; however, little is known whether microRNAs (miRNAs) are involved in this process. miRNAs are a small class of non-coding RNAs that negatively regulate gene expression. In this study, we investigated the relationship between miRNAs and degranulation in LAD2 cells, a human mast cell line. We demonstrated that silencing of Dicer, a key enzyme of miRNA biogenesis, attenuates degranulation, indicating that miRNAs are involved in mast cell degranulation. We furthermore discovered that the overexpression of miR-142-3p enhances FcεRI-mediated degranulation and that miR-142-3p rescues the reduction of degranulation by silencing Dicer. Similar effects were observed in bone marrow-derived mast cells obtained miR-142-3p-deficient mice. Our studies suggest that miR-142-3p is a potential therapeutic target in pathological conditions caused by mast cells, such as mastocytosis and allergies.  相似文献   

15.
In the course of a hemorrhagic shock, pathological changes occur, which result in intensifying the insufficiency of various vital organs. It can also lead to the development of the multiorgan dysfunction syndrome (MODS) that is the cause of high posthemorrhagic mortality. As a result of the ischemia in the lung there appear proinflammatory factors that mobilize and activate mast cells, inducing degranulation in them. The aim of the study was the analysis of cellular composition and cytomorphometric evaluation of mast cells present in the lavage fluid from the pleural cavity of rats in a sham operated group and in the group presenting hemorrhagic shock. The results revealed an increase of the total cell count in the lavage fluid from the pleural cavity. In the cytological smears a statistically significant accumulation of inflammatory cells was present, especially neutrophils. The increase in mast cells and eosinophils number was not statistically significant. There was not a change in the morphometric parameters of mast cells except the circularity index. A decline of the circularity index indirectly may suggest the degranulation of mast cells, which reflects an inflammatory process in the lungs.  相似文献   

16.
Effect of disodium cromoglycate on cutaneous basophil anaphylaxis   总被引:1,自引:0,他引:1  
Cutaneous basophil anaphylaxis (CBA) was elicited by intradermal rechallenge of cutaneous basophil hypersensitivity (CBH) sites in guinea pigs sensitized 7 days previously with keyhole limpet hemocyanin (KLH). The antiallergy agent disodium cromoglycate (DSCG), administered i.v. immediately before rechallenge, inhibited the increased vasopermeability (measured by tissue dye uptake) and basophil degranulation (measured by light microscopic counts of intact basophils) characteristic of the CBA reaction. The antihistamine mepyramine, administered orally, inhibited vasopermeability but not basophil degranulation. The component contributed by DSCG inhibition of mast cell degranulation to the overall inhibition of the reaction was found to be minimal, since intact mast cells were found to be depleted at CBH sites and totally absent at CBA sites from animals treated with DSCG. Electron microscopic examination of basophils at CBA sites from DSCG-treated animals revealed the presence of ruffled perigranular membranes and enlarged perigranular spaces, but both the formation of degranulation sacs and the subsequent fusion of granule sac membranes with the plasma membrane were inhibited. DSCG also inhibited the vasopermeability and basophil degranulation of the CBA reaction elicited by KLH at day 14 and by C5a at day 7. When a basophil-enriched leucocyte preparation from KLH-sensitized guinea pigs was studied in vitro, DSCG inhibited both antigen-induced and C5a-induced basophil degranulation at 10(-5) and 10(-4) M. DSCG failed to inhibit the vasopermeability and the mast cell degranulation produced by either intradermal C5a or intradermal compound 48/80. These results indicate that anaphylactic degranulation of basophils, but not mast cells, is inhibited by DSCG in the guinea pig. This inhibition appears to take place independent of stimulus at an early stage of granule membrane fusion.  相似文献   

17.
Extract of gum resin of B. serrata containing 60% acetyl 11-keto beta boswellic acid (AKBA) along with other constituents such as 11-keto beta-boswellic acid (KBA), acetyl beta-boswellic acid and beta-boswellic acid has been evaluated for antianaphylactic and mast cell stabilizing activity using passive paw anaphylaxis and compound 48/80 induced degranulation of mast cell methods. The extract inhibited the passive paw anaphylaxis reaction in rats in dose-dependant manner (20, 40 and 80 mg/kg, po). However, the standard dexamethasone (0.27 mg/kg, po) revealed maximum inhibition of edema as compared to the extract. A significant inhibition in the compound 48/80 induced degranulation of mast cells in dose-dependant manner (20, 40 and 80 mg/kg, po) was observed thus showing mast cell stabilizing activity. The standard disodium cromoglycate (50 mg/kg, ip) was found to demonstrate maximum per cent protection against degranulation as compared to the extract containing 60% AKBA. The results suggest promising antianaphylactic and mast cell stabilizing activity of the extract.  相似文献   

18.
The influence of trophoblast-specific beta 1-glycoprotein (TSG) on the degranulation of mast cells and their saturation with heparin was studied. Introduction of the TSG into the population of mast cells of the rat peritoneal fluid practically does not change their degranulation, but lowers the degree of their saturation with heparin. An antibiotic alone increases the saturation of the cells with heparin. The serum of an allergic animal markedly stimulates the degranulation and lowers the degree of saturation of the mast cells with heparin. In an experimental model (antibiotic--the serum of the allergic mast cells) the mast cells transform into very clear (heparin-free) cells and the degree of saturation is at minimum. The TSG introduction into this system stabilizes the population of mast cells and markedly increases the degree of their saturation with heparin. Although the degranulation is rather intensive, it is less expressed, than in the experimental model. This suggests the presence of TSG receptors on the mast cells (targets of allergic reactions). The possibility to use TSG preparations in the therapy of allergic diseases is discussed.  相似文献   

19.
Helicobacter pylori (H. pylori) induces severe inflammation and plays a key role in gastric mucosal diseases. In general, mast cells have been believed to play an important role in inflammation. Although mast cells were detected in the gastric mucosa, the role of mast cells in the gastric mucosal inflammation caused by H. pylori is still unclear. Therefore, we examined the effects of H. pylori water extract on the degranulation of mast cells to clarify the role of these cells in gastric mucosal inflammation induced by H. pylori. Mast cells prepared from rat abdominal cavity were incubated with H. pylori for 30 min. The protein concentrations of H. pylori water extract used in this study were 0.5-3 mg/ml. The degranulation of mast cells were monitored morphologically by phase contrast microscopy equipped with time-lapse video recording system and biochemically by measuring histamine and beta-hexosaminidase. H. pylori water extract induced the degranulation of mast cells dose-dependently. The identical experiment was performed without extracellular calcium, and no significant degranulation was found. The data indicates that the degranulation of mast cells by H. pylori water extract depend on extracellular calcium. The present results indicate that H. pylori might be involved in the gastric mucosal inflammation as a trigger of mast cell degranulation for releasing chemical mediators.  相似文献   

20.
There is a growing need to understand the impact of environmental sulfhydryl group-reactive heavy metals on the immune system. Here we show that Ag(+) induces mast cell degranulation, as does the aggregation of the high affinity immunoglobulin E receptor (FcepsilonRI). Micromolar quantities of Ag(+) specifically induced degranulation of mast cell model rat basophilic leukemia (RBL-2H3) cells without showing cytotoxicity. The Ag(+)-mediated degranulation could be observed as rapidly as 5 min after the addition of the ions. Ag(+) also induced a rapid change in tyrosine phosphorylation of multiple cellular proteins including the focal adhesion kinase but not Syk kinase. The Syk-selective inhibitor piceatannol and the Src family-selective tyrosine kinase inhibitor PP1 dose-dependently inhibited FcepsilonRI-mediated degranulation, whereas neither compound inhibited the Ag(+)-mediated degranulation. Furthermore, likewise FcepsilonRI aggregation, Ag(+) also induced leukotriene secretion. These results show that Ag(+) activates RBL-2H3 mast cells through a tyrosine phosphorylation-linked mechanism, which is distinct from that involved in FcepsilonRI-mediated activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号