首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R B Devlin  C P Emerson 《Cell》1978,13(4):599-611
The synthesis of contractile proteins has been studied during the differentiation of quail skeletal muscle myoblasts in culture. Myoblast differentiation was synchronized by transferring secondary cultures of rapidly dividing myoblasts into medium lacking cell division-promoting factors. Cultures at various stages of differentiation were then pulse-labeled with 35S-methionine, and cell extracts were resolved by electrophoresis on two-dimensional gels. Incorporation into specific proteins was quantitated by autoradiography and fluorography using a scanning densitometer. Contractile proteins synthesized by muscle cultures were identified by their co-electrophoresis on two-dimensional gels with contracile proteins purified from quail breast muscle. Our results show that the synthesis of myosin heavy chain, two myosin light chains, two subunits of troponin and two subunits of tropomyosin is first detected at the time of myoblast fusion and then rapidly increase at least 500 fold to maximum rates which remain constant in muscle fibers. Both the kinetics of activation and the molar rates of synthesis of these contractile proteins are virtually identical. Muscle-specific actin (alpha) synthesis also increases at the time of myoblast fusion, but this actin (alpha) is synthesized at 3 times the rate of other contractile proteins. The synthesis of 30 other muscle cell proteins was quantitated, and most of these are shown to follow different patterns of regulation. From these results, we conclude that the contractile proteins are regulated coordinately during myoblast differentiation.  相似文献   

2.
In the present study, we investigated the functional interaction between stress fibers (SFs) and stretch-activated channels (SACs) and its possible role in the regulation of myoblast differentiation induced by switch to differentiation culture in the presence or absence of sphingosine 1-phosphate. It was found that there was a clear temporal correlation between SF formation and SAC activation in differentiating C2C12 myoblasts. Inhibition of actin polymerization with the specific Rho kinase inhibitor Y-27632, significantly decreased SAC sensitivity in these cells, suggesting a role for Rho-dependent actin remodeling in the regulation of the channel opening. The alteration of cytoskeletal/SAC functional correlation had also deleterious effects on myogenic differentiation of C2C12 cells as judged by combined confocal immunofluorescence, biochemical and electrophysiological analyses. Indeed, the treatment with Y-27632 or with DHCB, an actin disrupting agent, inhibited the expression of the myogenic markers (myogenin and sarcomeric proteins) and myoblast-myotube transition. The treatment with the channel blocker, GdCl(3), also affected myogenesis in these cells. It impaired, in fact, myoblast phenotypic maturation (i.e., reduced the expression of alpha-sarcomeric actin and skeletal myosin and the activity of creatine kinase) but did not modify promoter activity and protein expression levels of myogenin. The results of this study, together with being in agreement with the general idea that cytoskeletal remodeling is essential for muscle differentiation, describe a novel pathway whereby the formation of SFs and their contraction, generate a mechanical tension to the plasma membrane, activate SACs and trigger Ca(2+)-dependent signals, thus influencing the phenotypic maturation of myoblasts.  相似文献   

3.
Adult human skeletal muscle-derived cells (HuSkMC) propagated in vitro are under investigation as a cell-based therapy for the treatment of myocardial infarction. We have characterized HuSkMC with respect to cell identity and state of differentiation as a prerequisite to their clinical use. Flow cytometric analysis of propagated HuSkMC revealed a population of cells that expressed the myoblast markers CD56 and desmin. The presence of myoblasts in these cultures was further confirmed by their capacity to form myotubes and increase creatine kinase activity when cultured in low serum conditions. The non-myoblast fraction of these propagated cells expressed TE7, a marker associated with the fibroblast phenotype. Spontaneous differentiation of myoblasts occurred during serial propagation of HuSkMC, as judged by myotube formation, thereby reducing the myoblast representative fraction with continued cell expansion. We examined transforming growth factor beta2 (TGF-beta2) for its utility in controlling this spontaneous differentiation of adult human myoblasts in vitro. Propagation of HuSkMC in the presence of 1 ng/ml TGF-beta2 for 5 days decreased desmin expression within the myoblast population and caused a parallel reduction of creatine kinase activity. CD56 expression was unaffected, indicating a differential regulation of these myoblast markers. The reduction in desmin expression and creatine kinase activity was, however, reversible upon the removal of TGF-beta. These data collectively indicate that TGF-beta2 restrained differentiation of adult human skeletal myoblasts during propagation without causing irreversible loss of the myoblast phenotype, demonstrating the potential utility of using TGF-beta2 during cultivation and expansion of HuSkMC intended for therapeutic implantation.  相似文献   

4.
In primary culture of chick embryo muscle cells myosin synthesis is detected in mononucleated cells and increases at the onset of fusion with a maximal increment of 20-fold per plate in differentiated myotube. The possibility that the myosin synthetized by duplicating myoblast could be different from that present in post-mitotic myoblast and myotube was evaluated by investigating the regulation of its synthesis and the turnover of the molecule. Following Actinomycin D treatment (0.05 μg/ml, 8 h), myosin synthesis is partially affected (about 50% inhibition) in pre-fusion myoblast while the synthesis is more sensitive to the drug at the onset of fusion (80% inhibition).
With the progress of the differentiative stage the half-life of the molecule increases from 30 h in duplicating myoblasts to 200 h in fibers. The half-life of myosin synthetized by duplicating myoblasts in the explanted embryonic muscle, is 12 h.
These data show different features of myosin heavy chains related to specific stages of differentiation and suggest the possibility that modulative changes of the molecule could induce its functional maturation during myogenesis.  相似文献   

5.
Human skeletal muscle precursor cells (myoblasts) have significant therapeutic potential and are a valuable research tool to study muscle cell biology. Oxygen is a critical factor in the successful culture of myoblasts with low (1–6%) oxygen culture conditions enhancing the proliferation, differentiation, and/or viability of mouse, rat, and bovine myoblasts. The specific effects of low oxygen depend on the myoblast source and oxygen concentration; however, variable oxygen conditions have not been tested in the culture of human myoblasts. In this study, muscle precursor cells were isolated from vastus lateralis muscle biopsies and myoblast cultures were established in 5% oxygen, before being divided into physiological (5%) or standard (20%) oxygen conditions for experimental analysis. Five percent oxygen increased proliferating myoblast numbers, and since low oxygen had no significant effect on myoblast viability, this increase in cell number was attributed to enhanced proliferation. The proportion of cells in the S (DNA synthesis) phase of the cell cycle was increased by 50%, and p21Cip1 gene and protein expression was decreased in 5 versus 20% oxygen. Unlike in rodent and bovine myoblasts, the increase in myoD, myogenin, creatine kinase, and myosin heavy chain IIa gene expression during differentiation was similar in 5 and 20% oxygen; as was myotube hypertrophy. These data indicate for the first time that low oxygen culture conditions stimulate proliferation, whilst maintaining (but not enhancing) the viability and the differentiation potential of human primary myoblasts and should be considered as optimum conditions for ex-vivo expansion of these cells.  相似文献   

6.
Under normal culture conditions, fusion of myoblasts was strictly coordinated with the accumulation of various characteristic muscle enzymes as well as of myosin and actin. Nevertheless, it was not clear whether these two events depended on one another, in other words: is fusion a trigger for myoblast differentiation? We have approached this problem by blocking morphological differentiation by the use of cytochalasin B at the moment when the cells become ‘committed’. It is shown that fusion and accumulation of creatine phosphokinase and phosphorylase can be uncoupled. In view of our results, it seems that fusion is not absolutely necessary for the onset of increased synthesis of muscle-specific enzymes.  相似文献   

7.
《The Journal of cell biology》1983,97(5):1348-1355
Heterokaryons derived from polyethylene glycol-mediated fusion of myoblasts at different stages of development were used to investigate the transition of cells in the skeletal muscle lineage from the determined to the differentiated state. Heterokaryons were analyzed by immunofluorescence, using rabbit antibodies against the skeletal muscle isoforms of chicken creatine kinase and myosin, and a mouse monoclonal antibody that cross-reacts with chicken and rat skeletal muscle myosin. When cytochalasin B-treated rat L8(E63) myocytes (Konieczny S.F., J. McKay, and J. R. Coleman, 1982, Dev. Biol., 91:11-26) served as the differentiated parental component and chicken limb myoblasts from stage 23-26 or 10-12-d embryos were used as the determined, undifferentiated parental cell, heterokaryons exhibited a progressive extinction of rat skeletal muscle myosin during a 4-6-d culture period, and no precocious expression of chicken differentiated gene products was detected. In the reciprocal experiment, 85-97% of rat myoblast X chicken myocyte heterokaryons ceased expression of chicken skeletal muscle myosin and the M subunit of chicken creatine kinase within 7 d of culture. Extinction was not observed in heterokaryons produced by fusion of differentiated chicken and differentiated rat myocytes and thus is not due to species incompatibility or to the polyethylene glycol treatment itself. The results suggest that, when confronted in a common cytoplasm, the regulatory factors that maintain myoblasts in a proliferating, undifferentiated state are dominant over those that govern expression of differentiated gene products.  相似文献   

8.
The ability of skeletal muscle myoblasts to differentiate in the absence of spontaneous fusion was studied in cultures derived from chicken embryo leg muscle, rat myoblast lines L6 and L8, and the mouse myoblast line G8. Following 48–96 hr of culture in a low-Ca2+ (25 μm), Mg2+-depleted medium, chicken myoblasts exhibited only 3–5% fusion whereas up to 64% of the cells fused in control cultures. Depletion of Mg2+ led to preferential elimination of fibroblasts, with the result that 97% of the mononucleated cells remaining at 120 hr exhibited a bipolar morphology and stained with antibodies directed against M-creatine kinase, skeletal muscle myosin, and desmin. Mononucleated myoblasts rarely showed visible cross-striations or M-line staining with anti-myomesin unless the medium was supplemented with 0.81 mM Mg2+, suggesting that Mg2+ plays a role in sarcomere assembly. Conditions of Ca2+ and Mg2+ depletion inhibited myoblast fusion in the rodent cell lines as well, but mononucleated myoblasts failed to differentiate under these conditions. Differentiated individual myoblasts from rat cell lines and from chicken cell cultures were obtained when fusion was inhibited by growth in cytochalasin B (CB). CB-treated rat myoblast cultures accumulated MM-CK to nearly twice the specific activity found in extensively fused control cultures of comparable age. Spherical cells which accumulated during CB treatment were isolated and shown to contain nearly eight times the CK specific activity present in nonspherical cells from the same cultures. Approximately 90% of these cells exhibited immunofluorescent staining with antibodies to skeletal muscle myosin, failed to incorporate [3H]thymidine or to form colonies in clonal subculture, and thus represent terminally differentiated rat myoblasts. Quantitative microfluorometric DNA measurements on individual nuclei demonstrated that the terminally differentiated myoblasts obtained in these experiments from both chicken and rat contain 2cDNA levels, suggesting arrest in the G0 stage of the cell cycle.  相似文献   

9.
We have reported previously that a novel muscle cell growth factor, having a structure of a peptide with sugar chains, was successfully purified from porcine skeletal muscle. It was named s-myotrophin. To determine the role of s-myotrophin in skeletal muscle growth, the effect of s-myotrophin on primary cultured chick skeletal muscle cells (composed almost totally of multinucleated myotubes) was investigated by comparing s-myotrophin with Insulin-like growth factor-I (IGF-I). Both s-myotrophin and IGF-I significantly increased creatine kinase activity of the cultures; both substances gave similar responses. Intracellar protein content was also increased by the addition of these factors. The content of myosin and actin in s-myotrophin treated culture in the differentiation medium was significantly higher than that of the control (unstimulated). The content of those proteins in IGF-I treated culture was also higher than that of control, but the differences were not statistically significant. Immunoblot analysis confirmed that the amounts of myosin and actin in the myocytes were greatly increased by s-myotrophin stimulation and also by IGF-I stimulation. Morphological observations using an anti-desmin antibody staining procedure demonstrated that the size of both s-myotrophin and IGF-I treated myotubes was appreciably larger than that of control myotubes. These results suggest that s-myotrophin is a potent mediator of skeletal muscle cell hypertrophy thorough the accumulations of muscle structural proteins.  相似文献   

10.
Pectoral muscles from chicken embryos of various ages were examined with immunofluorescent and radiolabeled probes for the presence of brain-type creatine kinase (B-CK), muscle-specific creatine kinase (M-CK), muscle-specific myosin heavy chain (MHC), and cycling cells. The diffusible creatine kinase isozymes were not detectable by indirect immunofluorescence after standard histological fixation of embryonic muscle. However, a fixation procedure was devised that permitted immunodetection of the creatine kinase isozymes (particularly B-CK) in embryonic tissue from all stages of development studied. B-CK, M-CK, and MHC were all detected in post-mitotic muscle cells, but only B-CK was detected in cycling cells. Correlations between these findings and in vitro observations of a deterministic muscle lineage are discussed.  相似文献   

11.
The synthesis of contractile protein mRNAs has been studied during the differentiation of quail skeletal muscle myoblasts in culture. Eight contractile protein mRNAs were identified by translation of total cellular RNA isolated from differentiated myofibers in wheat germ and reticulocyte lysates. Products of the translation systems were fractionated by two-dimensional gel electrophoresis, and incorporation of [35S]methionine into individual contractile proteins was quantitated by computerized densitometry of autoradiograms. These translation assay systems were used to quantitate levels of contractile protein mRNAs in cultures of myoblasts undergoing highly synchronous differentiation. Our results show that dividing myoblasts contain very little, if any, translatable contractile protein mRNA. The mRNAs coding for myosin heavy chain, the musclespecific actin, three myosin light chains, two tropomyosin subunits, and one troponin subunit begin to coordinately accumulate at fusion, when contractile protein synthesis is activated. Their levels increase 50- to 200-fold during the next 30 hr, paralleling increases in the rates of contractile protein synthesis. These results indicate that the contractile protein mRNAs accumulate coordinately during myoblast differentiation and that contractile protein synthesis is regulated by changes in the levels of these mRNAs.  相似文献   

12.
Tumor necrosis factor inhibits human myogenesis in vitro.   总被引:15,自引:5,他引:10       下载免费PDF全文
We examined the effects of human recombinant tumor necrosis factor-alpha (TNF) on human primary myoblasts. When added to proliferating myoblasts, TNF inhibited the expression of alpha-cardiac actin, a muscle-specific gene whose expression is observed at low levels in human myoblasts. TNF also inhibited muscle differentiation as measured by several parameters, including cell fusion and the expression of other muscle-specific genes, such as alpha-skeletal actin and myosin heavy chain. Muscle cells were sensitive to TNF in a narrow temporal window of differentiation. Northern (RNA) blot and immunofluorescence analyses revealed that human muscle gene expression became unresponsive to TNF coincident with myoblast differentiation. When TNF was added to differentiated myotubes, there was no effect on muscle gene expression. In contrast, TNF-inducible mRNAs such as interferon beta-2 still responded, suggesting that the signal mediated by TNF binding to its receptor had no effect on muscle-specific genes after differentiation.  相似文献   

13.
14.
In vitro differentiation of myoblasts from skeletal muscle of rainbow trout   总被引:1,自引:0,他引:1  
Substrata, plating densities and tissue culture media were compared for their effects on the proliferation and differentiation of myoblasts from skeletal muscle of rainbow trout. Mononuclear cells were isolated from the lateralis muscle of 4–11-month-old trout and plated on to glass coverslips coated with fibronectin, laminin or Matrigel. Cell proliferation was estimated by determining the density of nuclei on successive days in culture, and myoblast differentiation was detected by immunostaining cultures with the myosin-specific monoclonal antibody MF20. Mononuclear cell proliferation was highest for cells cultured on fibronectin or laminin and lowest for cells cultured on Matrigel, but the total number of nuclei in myosin-positive cells did not differ between substrata. The percentage of nuclei in myosin-positive myocytes and myotubes was significantly higher for cells cultured on Matrigel. The proportion of cells adhering to Matrigel and undergoing differentiation increased with plating density. Of three media tested, Dulbecco's Modified Eagle Medium (DMEM), RPMI 1640 (RPMI), Leibovitz's L-15 (L-15) supplemented with 1 or 10% fetal bovine serum (FBS), a significantly greater proportion of the myoblasts differentiated when cells were cultured in L-15+ 10% FBS. These results suggest that culturing trout muscle-derived cells on a substratum of Matrigel at a high density and maintaining cells in L-15+ 10% FBS provide the conditions that maximize the proportion of cells that actively synthesize muscle myosin and facilitate trout myoblast differentiation in vitro .  相似文献   

15.
16.
17.
Chicken muscle cell cultures were incubated at 41 degrees C, the physiological chicken body temperature, and compared with cultures incubated at 37 degrees C, the typical cell culture incubation temperature. The cultures incubated at 41 degrees C show not only an increase in creatine kinase (CK)-specific activity but also a marked increase in the percentage of adult muscle CK isozyme (MM-CK) in 7-day muscle cultures. Muscle cell cultures incubated in the presence of cytosine arabinoside (ara-C), a cell proliferation inhibitor, do not have the mononucleated cell overgrowth seen at 41 degrees C and thus exhibit a further increase in creatine kinase-specific activity compared with cultures incubated at 41 degrees C in the absence of ara-C. These results suggest that muscle cell cultures incubated at 41 degrees C are more highly differentiated than those incubated at 37 degrees C.  相似文献   

18.
19.
20.
It is well known that arterial smooth muscle cells (SMC) of adult rats, cultured in a medium containing fetal calf serum (FCS), replicate actively and lose the expression of differentiation markers, such as desmin, smooth muscle (SM) myosin and alpha-SM actin. We report here that compared to freshly isolated cells, primary cultures of SMC from newborn animals show no change in the number of alpha-SM actin containing cells and a less important decrease in the number of desmin and SM myosin containing cells than that seen in primary cultures of SMC from adult animals; moreover, contrary to what is seen in SMC cultured from adult animals, they show an increase of alpha-SM actin mRNA level, alpha-SM actin synthesis and expression per cell. These features are partially maintained at the 5th passage, when the cytoskeletal equipment of adult SMC has further evolved toward dedifferentiation. Cloned newborn rat SMC continue to express alpha-SM actin, desmin and SM myosin at the 5th passage. Thus, newborn SMC maintain, at least in part, the potential to express differentiated features in culture. Heparin has been proposed to control proliferation and differentiation of arterial SMC. When cultured in the presence of heparin, newborn SMC show an increase of alpha-SM actin synthesis and content but no modification of the proportion of alpha-SM actin total (measured by Northern blots) and functional (measured by in vitro translation in a reticulocyte lysate) mRNAs compared to control cells cultured for the same time in FCS containing medium. This suggests that heparin action is exerted at a translational or post-translational level. Cultured newborn rat aortic SMC furnish an in vitro model for the study of several aspects of SMC differentiation and possibly of mechanisms leading to the establishment and prevention of atheromatous plaques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号