首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
1-methyl-DL-Trp, beta-(3-benzofuranyl)-DL-alanine (the oxygen analog of Trp), and beta-[3-benzo(b)thienyl]-DL-alanine (the sulfur analog of Trp), each of which has a substitution at the indole nitrogen atom, were found to be the first examples of potent substrate analog competitive inhibitors (Ki 7-70 microM) with respect to the substrates D-Trp and L-Trp for rabbit small intestinal indoleamine 2,3-dioxygenase. Binding studies using optical absorption and CD spectroscopy demonstrated that these three inhibitors cause spectral changes upon binding to the native ferric, ferrous, ferrous-CO, and ferrous-NO enzymes. Such spectral effects of 1-methyl-DL-Trp on all of these enzyme derivatives were similar to those caused by L-Trp, while the sulfur and the oxygen analogs of Trp exhibit relatively small effects except for those observed for the sulfur analog with CD spectroscopy. Each of these three Trp analog inhibitors competes with L-Trp for the ferrous-CO enzyme, a model for the ferrous-O2 enzyme. The present findings demonstrate that, although substitution of a methyl group for the hydrogen atom on the indole nitrogen or of a more electron-inductive sulfur or oxygen atom for the indole nitrogen atom does not prevent the binding of the resulting Trp analog to indoleamine 2,3-dioxygenase, the free form of the indole nitrogen base is an important physical and/or electronic structural requirement for Trp to be metabolized by the enzyme. The inability of 1-methyl-Trp to serve as a substrate for the dioxygenase supports a view that singlet oxygen is not the reactive oxygen species involved in the dioxygenation of Trp by the enzyme.  相似文献   

2.
The crystal structure of the complex between the binuclear manganese metalloenzyme arginase and the boronic acid analog of L-arginine, 2(S)-amino-6-boronohexanoic acid (ABH), has been determined at 1.7 A resolution from a crystal perfectly twinned by hemihedry. ABH binds as the tetrahedral boronate anion, with one hydroxyl oxygen symmetrically bridging the binuclear manganese cluster and a second hydroxyl oxygen coordinating to Mn2+A. This binding mode mimics the transition state of a metal-activated hydroxide mechanism. This transition state structure differs from that occurring in NO biosynthesis, thereby explaining why ABH does not inhibit NO synthase. We also show that arginase activity is present in the penis. Accordingly, the tight binding and specificity of ABH allows us to probe the physiological role of arginase in modulating the NO-dependent smooth muscle relaxation required for erection. Strikingly, ABH causes significant enhancement of nonadrenergic, noncholinergic nerve-mediated relaxation of penile corpus cavernosum smooth muscle, suggesting that arginase inhibition sustains L-arginine concentrations for NO synthase activity. Therefore, human penile arginase is a potential target for therapeutic intervention in the treatment of erectile dysfunction.  相似文献   

3.
Fluoride is an uncompetitive inhibitor of rat liver arginase. This study has shown that fluoride caused substrate inhibition of rat liver arginase at substrate concentrations above 4 mM. Rat kidney arginase was more sensitive to inhibition by fluoride than liver arginase. For both liver and kidney arginase preincubation with fluoride had no effect on the inhibition. When assayed with various concentrations of L-arginine, rat kidney arginase did not have Michaelis-Menten kinetics. Lineweaver-Burk and Eadie-Hofstee plots were nonlinear. Kidney arginase showed strong substrate activation at concentrations of L-arginine above 4 mM. Within narrow concentrations of L-arginine, the inhibition of kidney arginase by fluoride was uncompetitive. Fluoride caused substrate inhibition of kidney arginase at L-arginine concentrations above 1 mM. The presence of fluoride prevented the substrate activation of rat kidney arginase.  相似文献   

4.
Arginase was purified from Vigna catjang cotyledons and buffalo liver by chromatographic separations using Bio-Gel P-150, DEAE-cellulose and arginine AH Sepharose 4B affinity columns. The native molecular weight of an enzyme estimated on Bio-Gel P-300 column for Vigna catjang was 210 kDa and 120 kDa of buffalo liver, while SDS-PAGE showed a single band of molecular weight 52 kDa for cotyledon and 43 kDa for buffalo liver arginase. The kinetic properties determined for the purified cotyledon and liver arginase showed an optimum pH of 10.0 and pH 9.2 respectively. Optimal cofactor Mn++ ion concentration was found to be 0.6 mM for cotyledon and 2 mM for liver arginase. The Michaelis-Menten constant for cotyledon arginase and hepatic arginase were found to be 42 mM and 2 mM respectively. The activity of guanidino compounds as alternate substrates for Vigna catjang cotyledon and buffalo liver arginase is critically dependent on the length of the amino acid side chain and the number of carbon atoms. In addition to L-arginine cotyledon arginase showed substrate specificity towards agmatine and L-canavanine, whereas the liver arginase showed substrate specificity towards only L-canavanine.  相似文献   

5.
Arginase is a binuclear Mn(2+) metalloenzyme that catalyzes the hydrolysis of L-arginine to L-ornithine and urea. X-ray crystal structures of arginase complexed to substrate analogues N(omega)-hydroxy-L-arginine and N(omega)-hydroxy-nor-L-arginine, as well as the products L-ornithine and urea, complete a set of structural "snapshots" along the reaction coordinate of arginase catalysis when interpreted along with the X-ray crystal structure of the arginase-transition-state analogue complex described in Kim et al. [Kim, N. N., Cox, J. D., Baggio, R. F., Emig, F. A., Mistry, S., Harper, S. L., Speicher, D. W., Morris, Jr., S. M., Ash, D. E., Traish, A. M., and Christianson, D. W. (2001) Biochemistry 40, 2678-2688]. Taken together, these structures render important insight on the structural determinants of tight binding inhibitors. Furthermore, we demonstrate for the first time the structural mechanistic link between arginase and NO synthase through their respective complexes with N(omega)-hydroxy-L-arginine. That N(omega)-hydroxy-L-arginine is a catalytic intermediate for NO synthase and an inhibitor of arginase reflects the reciprocal metabolic relationship between these two critical enzymes of L-arginine catabolism.  相似文献   

6.
Murine macrophage oxidation of L-arginine guanidino nitrogen to nitrite/nitrate yields an intermediate effector, possibly nitric oxide, with antimicrobial activity. Total body nitrogen oxidation metabolism (NOM) was measured in vivo by determining the urinary nitrate excretion of mice ingesting a chemically defined nitrite/nitrate-free diet. As reported previously, mycobacterial infection with bacillus Calmétte-Guerin led to a large increase in urinary nitrate excretion. This increase was temporally related to macrophage activation in vivo. The substrate for macrophage nitrogen oxidation metabolism in vitro, L-arginine, was deleted from the diet without ameliorating the urinary nitrate excretion response induced by BCG. This suggested that L-arginine was synthesized endogenously because there are no other known natural substrates for NOM. A competitive inhibitor of NOM, the L-arginine analog, NG-monomethyl-L-arginine was fed to mice in their drinking water. NG-monomethyl-L-arginine ingestion blocked both basal and bacillus Calmétte-Guerin-induced urinary nitrate excretion over a 2-4 week time span. These experimental conditions should prove useful for further investigation on the role of macrophage NOM in host defense against intracellular microorganisms.  相似文献   

7.
Arginine metabolism in rat enterocytes   总被引:2,自引:0,他引:2  
Rat enterocytes exposed to L-arginine in the absence of any other exogenous substrate were found to actively metabolize this cationic amino acid. L-Arginine was converted to L-citrulline either directly in a NADPH-sensitive manner thought to be coupled with the generation of NO, or indirectly through the sequence of reactions catalyzed by arginase and ornithine transcarbamylase. A large fraction of L-citrulline and L-ornithine generated from exogenous L-arginine was released in the incubation medium. The production of CO2 and (poly)amines from L-arginine occurred at rates 2 to 3 orders of magnitude lower than that characterizing the net uptake of the cationic amino acid, and this despite the fact that enterocytes were equipped to allow the interconversion of L-ornithine and L-glutamate. It is concluded that the oxidative catabolism of L-arginine in enterocytes is quantitatively negligible relative to its conversion to L-citrulline and L-ornithine.  相似文献   

8.
W B Knight  W W Cleland 《Biochemistry》1989,28(14):5728-5734
The kinetic and catalytic mechanism of glycerokinase from Candida mycoderma was examined with thiol and amino analogues of glycerol and with MgAMPPCP, an analogue of MgATP. (S)-1-Aminopropanediol was phosphorylated on nitrogen (Vmax 0.4% that of glycerol) while the R enantiomer was phosphorylated on oxygen (Vmax 0.7% that of glycerol). (S)-1-Mercaptopropanediol was phosphorylated on oxygen (Vmax 3.5% that of glycerol), while the R enantiomer was phosphorylated on sulfur (Vmax 0.001% that of glycerol). The hydroxyl group at C-2 thus orients the substrate in the active site, while that at the carbon remote from phosphorylation enhances both catalysis and binding of the substrate, presumably because of hydrogen-bonding interactions. The kinetic mechanism is random with a high degree of synergistic binding between the substrates, so that the mechanism appears ordered with glycerol adding first but equilibrium ordered with MgATP binding first with the amino analogues.  相似文献   

9.
BACKGROUND: Arginase is a manganese-dependent enzyme that catalyzes the hydrolysis of L-arginine to L-ornithine and urea. In ureotelic animals arginase is the final enzyme of the urea cycle, but in many species it has a wider role controlling the use of arginine for other metabolic purposes, including the production of creatine, polyamines, proline and nitric oxide. Arginase activity is regulated by various small molecules, including the product L-ornithine. The aim of these structural studies was to test aspects of the catalytic mechanism and to investigate the structural basis of arginase inhibition. RESULTS: We report here the crystal structures of arginase from Bacillus caldovelox at pH 5.6 and pH 8.5, and of binary complexes of the enzyme with L-arginine, L-ornithine and L-lysine at pH 8.5. The arginase monomer comprises a single compact alpha/beta domain that further associates into a hexameric quaternary structure. The binary complexes reveal a common mode of ligand binding, which places the substrate adjacent to the dimanganese centre. We also observe a conformational change that impacts on the active site and is coupled with the occupancy of an external site by guanidine or arginine. CONCLUSIONS: The structures reported here clarify aspects of the active site and indicate key features of the catalytic mechanism, including substrate coordination to one of the manganese ions and an orientational role for a neighboring histidine residue. Stereospecificity for L-amino acids is found to depend on their precise recognition at the active-site rim. Identification of a second arginine-binding site, remote from the active site, and associated conformational changes lead us to propose a regulatory role for this site in substrate hydrolysis.  相似文献   

10.
High-output synthesis of nitric oxide (NO) by the inducible isoform of NO-synthases (NOS-2) plays an important role in hepatic pathophysiological processes and may contribute to both organ protection and organ destruction during inflammatory reactions. As they compete for the same substrate, L-arginine, an interdependence of NOS-2 and arginase-1 has been repeatedly observed in cells where arginase-1 is cytokine-inducible. However, in hepatocytes, arginases are constitutively expressed and thus, their impact on hepatic NOS-2-derived NO synthesis as well as the influence of L-arginine influx via cationic amino acid transporters during inflammatory reactions are still under debate. Freshly isolated rat hepatocytes were cultured for 24h in the presence of various L-arginine concentrations with or without cytokine addition and nitrite and urea accumulation in culture supernatants was measured. We find that both, cytokine-induced NOS-2 and arginase activities strongly depend on extracellular L-arginine concentrations. When we competed for L-arginine influx via the cationic amino acid transporters by addition of L-lysine, we find a 60-70% inhibition of arginase activity without significant loss of NOS-2 activity. Addition of L-valine, as an arginase inhibitor, leads to a 25% increase in NO formation and an 80-90% decrease in arginase activity. Interestingly, product inhibition of arginase and competitive inhibition of CATs through the addition of L-ornithine leads to a highly significant increase in hepatocytic NOS-2 activity with a concomitant and complete abolishment of its dependence on extracellular L-arginine concentrations. In conclusion, hepatocytic NOS-2 activity shows a surprising pattern of dependence on exogenous L-arginine concentrations. Inhibition and competition experiments suggest a relatively tight link of NOS-2 and urea cycle activities. These data stress the hypothesis of a metabolon-like organization of the urea cycle together with NOS-2 in hepatocytes as excess L-ornithine will be metabolized to l-arginine and thereby increases NO production.  相似文献   

11.
Abstract

In the mechanism of retaining β-glycosidases, the 2-hydroxyl group of the substrate in the monosaccharyl unit involved in catalysis (subsite -1) is beleived to play an important role through hydrogen bonding interactions with protein residues that are optimized at the transition state. Commonly, removal of the 2-OH group of the substrate results in a 10–12 kcal·mol-1 transition state destabilization. However, this effect seems not to be general as reported here for Bacillus 1,3-1,4-β-glucanase, a family 16 retaining endo-glycosidase. A p-nitrophenol 2-deosxy tetrasaccharide substrate was synthesized to probe the involvement of the 2-OH group in catalysis. Comparative kinetics with wild-type and subsite +1 mutants show that the 2-deoxy analog is a better substrate than the corresponding 2-hydroxy substrate. It is tentatively proposed that the 2-deoxy analog adopts a different conformation upon binding that compensates for the lack of the 2-OH substituent.  相似文献   

12.
Nitric oxide (NO) production was increased in macrophages during inflammation. Casein-elicitation of rodents causing a peritoneal inflammation offered a good model to study alterations in the metabolism of L-arginine, the precursor of NO synthesis. The utilization of L-arginine for NO production, arginase pathway and protein synthesis were studied by radioactive labeling and chromatographic separation. The expression of NO synthase and arginase was studied by Western blotting.Rat macrophages utilized more arginine than mouse macrophages (228+/-27 versus 71+/-12.8pmol per 10(6) macrophages). Arginine incorporation into proteins was low in both species (<15% of labeling). When NO synthesis was blocked, arginine was utilized at a lower general rate, but L-ornithine formation did not increase. The expression of enzymes utilizing arginine increased. NO production was raised mainly in rats (1162+/-84pmol citrulline per 10(6) cells) while in mice both arginase and NO synthase were active in elicited macrophages (677+/-85pmol ornithine and 456+/-48pmol citrulline per 10(6) cells).We concluded, that inflammation induced enhanced L-arginine utilization in rodent macrophages. The expressions and the activities of arginase and NO synthase as well as NO formation were increased in elicited macrophages. Specific blocking of NO synthesis did not result in the enhanced effectivity of the arginase pathway, rather was manifested in a general lower rate of arginine utilization. Different rodent species reacted differently to inflammation: in rats, high NO increase was found exclusively, while in mice the activation of the arginase pathway was also important.  相似文献   

13.
L-Arginine is an essential amino acid for birds and young mammals, and it is a conditionally essential amino acid for adult mammals, as it is important in situations in which requirements exceed production, such as pregnancy. Recent findings indicate that increased metabolism of L-arginine by myeloid cells can result in the impairment of lymphocyte responses to antigen during immune responses and tumour growth. Two enzymes that compete for L-arginine as a substrate - arginase and nitric-oxide synthase - are crucial components of this lymphocyte-suppression pathway, and the metabolic products of these enzymes are important moderators of T-cell function. This Review article focuses on the relevance of L-arginine metabolism by myeloid cells for immunity under physiological and pathological conditions.  相似文献   

14.
Application of cyclic stretch (10% at 1 hertz) to vascular smooth muscle cells (SMC) increased L-arginine uptake and this was associated with a specific increase in cationic amino acid transporter-2 (CAT-2) mRNA. In addition, cyclic stretch stimulated L-arginine metabolism by inducing arginase I mRNA and arginase activity. In contrast, cyclic stretch inhibited the catabolism of L-arginine to nitric oxide (NO) by blocking inducible NO synthase expression. Exposure of SMC to cyclic stretch markedly increased the capacity of SMC to generate L-proline from L-arginine while inhibiting the formation of polyamines. The stretch-mediated increase in L-proline production was reversed by methyl-L-arginine, a competitive inhibitor of L-arginine transport, by hydroxy-L-arginine, an arginase inhibitor, or by the ornithine aminotransferase inhibitor L-canaline. Finally, cyclic stretch stimulated collagen synthesis and the accumulation of type I collagen, which was inhibited by L-canaline. These results demonstrate that cyclic stretch coordinately stimulates L-proline synthesis by regulating the genes that modulate the transport and metabolism of L-arginine. In addition, they show that stretch-stimulated collagen production is dependent on L-proline formation. The ability of hemodynamic forces to up-regulate L-arginine transport and direct its metabolism to L-proline may play an important role in stabilizing vascular lesions by promoting SMC collagen synthesis.  相似文献   

15.
《Free radical research》2013,47(3):137-145
Abstract

Nitric oxide (NO) is produced from the conversion of L-arginine by NO synthase (NOS) and regulates a variety of processes in the gastrointestinal tract. Considering the increased activity of arginase in colitis tissue, it is speculated that arginase could inhibit NO synthesis by competing for the same L-arginine substrate, resulting in the exacerbation of colitis. We examined the role of arginase and its relationship to NO metabolism in dextran sulfate sodium (DSS)-induced colitis. Experimental colitis was induced in mice by administration of 2.5% DSS in drinking water for 8 days. Treatment for arginase inhibition was done by once daily intraperitoneal injection of Nω-hydroxy-nor- arginine (nor-NOHA). On day 8, we evaluated clinical parameters (body weight, disease activity index, and colon length), histological features, the activity and expression of arginase, L-arginine content, the expression of NO synthase (NOS), and the concentration of NO end-product (NOx: nitrite + nitrate). Administration of nor-NOHA improved the worsened clinical parameters and histological features in DSS-induced colitis. Treatment with nor-NOHA attenuated the increased activity of arginase, upregulation of arginase Ι at both mRNA and protein levels, and decreased the content of L-arginine in colonic tissue in the DSS-treated mice. Conversely, despite the decreased expression of NOS2 mRNA, the decreased concentration of NOx in colonic tissues was restored to almost normal levels. The consumption of L-arginine by arginase could lead to decreased production of NO from NOS, contributing to the pathogenesis of the colonic inflammation; thus, arginase inhibition might be effective for improving colitis.  相似文献   

16.
An immune binding technique was used for measuring the effects of certain amino acids on the rate of insulin biosynthesis. [3H]phenylalanine served as the radioactive precursor for insulin synthesized by isolated mouse pancreatic islets. L-Leucine was found to stimulate the insulin biosynthesis and this effect was observed already at a physiologic concentration in contrast to the much higher concentrations needed to stimulate insulin secretion in vitro. Furthermore, it was found that 2-aminonorbornane-2-carboxylic acid and α-ketoisocaproic acid shared with glucose and L-leucine the ability to stimulate insulin biosynthesis. In contrast, L-alanine, L-arginine and D-leucine had no stimulatory effect in the absence of glucose, while in the presence of 5 mM glucose L-arginine decreased and L-alanine increased the incorporation rate of tritiated phenylalanine. The fact that many of those compounds which stimulated insulin biosynthesis have also been shown elsewhere to be metabolized by the B-cells supports the view that the rate of insulin biosynthesis may be substrate dependent.  相似文献   

17.
The pKa values of enzyme groups of Escherichia coli glutamine synthetase which affect catalysis and/or substrate binding were determined by measuring the pH dependence of Vmax and V/K. Analysis of these data revealed that two enzyme groups are required for catalysis with apparent pKa values of approximately 7.1 and 8.2. The binding of ATP is essentially independent of pH in the range studied while the substrate ammonia must be deprotonated for the catalytic reaction. Using methylamine and hydroxylamine in place of ammonia, the pKa value of the deprotonated amine substrate as expressed in the V/K profiles was shifted to a lower pKa value for hydroxylamine and a higher pKa value for methylamine. These data indicate that the amine substrate must be deprotonated for binding. Hydroxylamine is at least as good a substrate as ammonia judged by the kinetic parameters whereas methylamine is a poor substrate as expressed in both the V and V/K values. Glutamate binding was determined by monitoring fluorescence changes of the enzyme and the data indicate that a protonated residue (pKa = 8.3 +/- 0.2) is required for glutamate binding. Chemical modification by reductive methylation with HCHO indicated that the group involved in glutamate binding most likely is a lysine residue. In addition, the Ki value for the transition state analog, L-3-amino-3-carboxy-propanesulfonamide was measured as a function of pH and the results indicate that an enzyme residue must be protonated (pKa = 8.2 +/- 0.1) to assist in binding. A mechanism for the reaction catalyzed by glutamine synthetase is proposed from the kinetic data acquired herein. A salt bridge is formed between the gamma-phosphate group of ATP and an enzyme group prior to attack by the gamma-carboxyl of glutamate on ATP to form gamma-glutamyl phosphate. The amine substrate subsequently attacks gamma-glutamyl phosphate resulting in formation of the tetrahedral adduct before phosphate release. A base on the enzyme assists in the deprotonation of ammonia during its attack on gamma-glutamyl phosphate or after the protonated carbinol amine is formed. Based on the kinetic data with the three amine substrates, catalysis is not rate-limiting through the pH range 6-9.  相似文献   

18.
As part of our continuing search for new amino acid inhibitors of metalloenzymes, we now report the synthesis and biological evaluation of the trifluoromethylketone analogue of L-arginine, (S)-2-amino-8,8,8-trifluoro-7-oxo-octanoic acid (10). While this novel amino acid was initially designed as a potential inhibitor of human arginase I, it exhibits no measurable inhibitory activity against this enzyme. Surprisingly, however, 10 is a potent inhibitor of human histone deacetylase 8, with IC(50)=1.5 ± 0.2 μM. Additionally, 10 weakly inhibits the related bacterial enzyme, acetylpolyamine amidohydrolase, with IC(50)=110 ± 30 μM. The lack of inhibitory activity against human arginase I may result from unfavorable interactions of the bulky trifluoromethyl group of 10 in the constricted active site. Since the active site of histone deacetylase 8 is less constricted, we hypothesize that it accommodates 10 as the gem-diol, which mimics the tetrahedral intermediate and its flanking transition states in catalysis. Therefore, we suggest that 10 represents a new lead in the design of an amino acid or peptide-based inhibitor of histone deacetylases with simpler structure than previously studied trifluoromethylketones.  相似文献   

19.
B Asbóth  L Polgár 《Biochemistry》1983,22(1):117-122
X-ray diffraction studies suggested that the tetrahedral intermediate formed during the catalysis by serine and thiol proteinases can be stabilized by hydrogen bonds from the protein to the oxyanion of the intermediate [cf. Kraut, J. (1977) Annu. Rev. Biochem. 46, 331-358; Drenth, J., Kalk, K.H., & Swen, H.M. (1976) Biochemistry 15, 3731-3738]. To obtain evidence in favor or against this hypothesis, we synthesized thiono substrates (the derivatives of N-benzoyl-glycine methyl ester and N-acetylphenylalanine ethyl ester) containing a sulfur in place of the carbonyl oxygen atom of the scissile ester bond. We anticipated that this relatively subtle structural change specifically directed to the oxyanion binding site should produce serious catalytic consequences owing to the different properties of oxygen and sulfur if transition-state stabilization in the oxyanion hole is indeed important. In fact, while in alkaline hydrolysis the chemical reactivities of oxygen esters and corresponding thiono esters proved to be similar, neither chymotrypsin nor subtilisin hydrolyzed the thiono esters at a measurable rate. This result substantiates the crucial role of the oxyanion binding site in serine proteinase catalysis. On the basis of the similar values of the binding constants found for oxygen esters and their thiono counterparts, it can be concluded that the substitution of sulfur for oxygen significantly influences transition state stabilization but not substrate binding. The thiol proteinases papain and chymopapain react with the oxygen and thiono esters of N-benzoylglycine at similar rates. Apparently, in these reactions the above stabilizing mechanism is absent or not important, which is a major mechanistic difference between the catalyses by serine and thiol proteinases.  相似文献   

20.
The mode of binding of the substrate analog 2'-deoxy-2'-fluoroguanylyl- (3',5')-cytidine (GfpC) to RNase T1 was determined by computer modelling studies. The results obtained are in good agreement with the observations of 1H-nmr studies. The modes of binding of the substrate analog GfpC and the substrate GpC to the enzyme RNase T1 have been compared. Though the guanine base favours to occupy the same site of the enzyme in both the complexes, significant differences are observed in the local environment around the 2'-substituent group of guanosine ribose moiety. In the RNase T1-GpC complex, the 2'-OH group is in close proximity to the side chain carboxylic acid of Glu58 which leads to the formation of a hydrogen bond. However, in the RNase T1-GfpC complex, 2'-fluorine is positioned away from Glu58 due to electrostatic repulsion and instead forms a hydrogen bond with His40 imidazolium group. The results obtained rule out the possibility of His40 serving as the base group in catalysis as suggested by 1H-nmr studies and further support the primary role assigned to Glu58 as the general base group by earlier computer modelling and the recent site directed mutagenesis studies. This study also implies that the 2'-deoxy-2'-fluoro substrate analog may not serve as a good model for determining the amino acid residue which serves as the general base group in ribonuclease catalysed reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号