首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To clarify the relationship between cell death and chromosomal aberrations following exposure to heavy-charged ion particles beams, exponentially growing Human Salivary Gland Tumor cells (HSG cells) were irradiated with various kinds of high energy heavy ions; 13 keV/μm carbon ions as a low-LET charged particle radiation source, 120 keV/μm carbon ions and 440 keV/μm iron ions as high-LET charged particle radiation sources. X-rays (200 kVp) were used as a reference. Reproductive cell death was evaluated by clonogenic assays, and the chromatid aberrations in G2/M phase and their repairing kinetics were analyzed by the calyculin A induced premature chromosome condensation (PCC) method. High-LET heavy-ion beams introduced much more severe and un-repairable chromatid breaks and isochromatid breaks in HSG cells than low-LET irradiation. In addition, the continuous increase of exchange aberrations after irradiation occurred in the high-LET irradiated cells. The cell death, initial production of isochromatid breaks and subsequent formation of chromosome exchange seemed to be depend similarly on LET with a maximum RBE peak around 100–200 keV/μm of LET value. Conversely, un-rejoined isochromatid breaks or chromatid breaks/gaps seemed to be less effective in reproductive cell death. These results suggest that the continuous yield of chromosome exchange aberrations induced by high-LET ionizing particles is a possible reason for the high RBE for cell death following high-LET irradiation, alongside other chromosomal aberrations additively or synergistically.  相似文献   

2.
Radiation-induced chromosome damage can be measured in interphase using the Premature Chromosome Condensation (PCC) technique. With the introduction of a new PCC technique using the potent phosphatase inhibitor calyculin-A, chromosomes can be condensed within five minutes, and it is now possible to examine the early damage induced by radiation. Using this method, it has been shown that high-LET radiation induces a higher frequency of chromatid breaks and a much higher frequency of isochromatid breaks than low-LET radiation. The kinetics of chromatid break rejoining consists of two exponential components representing a rapid and a slow time constant, which appears to be similar for low- and high-LET radiations. However, after high-LET radiation exposures, the rejoining process for isochromatid breaks influences the repair kinetics of chromatid-type breaks, and this plays an important role in the assessment of chromatid break rejoining in the G2 phase of the cell cycle.  相似文献   

3.
We investigated the earliest possible chromosome break and repair process in normal human fibroblasts irradiated with low and high LET (linear energy transfer) heavy ion radiation using the modified premature chromosome condensation (PCC) technique utilizing wortmannin (WM) during the fusion incubation period [M. Okada, S. Saito, R. Okayasu, Facilitated detection of chromosome break and repair at low levels of ionizing radiation by addition of wortmannin to G1-type PCC fusion incubation, Mutat. Res., 562 (2004) 11-17]. The initial numbers of breaks were approximately 10/cell/Gy in X-irradiated samples, followed by carbon (LET: 70 keV/microm), neon, and the number was around 5/cell/Gy in silicon (LET: 70 and 200 keV/microm) and iron (LET: 200 keV/microm) samples. If WM was not used, the initial numbers of breaks with silicon and iron were higher than those of X-rays. To quantify these data, we used initial repair ratio (IRR) defined as the number of G1 PCC breaks with WM divided by the number of breaks without WM. X-irradiation gave the maximum IRR ( approximately 2.0), while iron as well as silicon irradiation showed the minimum IRR ( approximately 1.0), suggesting almost no rejoining at the initial stage. Although there is a comparatively good correlation between the IRR value and the cell survival, the survival fraction with the repair data at 2 or 6h correlates better statistically. Our data indicate that high LET heavy ion irradiation induces a lower number of initial chromosome breaks with minimal repair when compared with low LET irradiation. These results at the chromosome level substantiate and extend the notion that high LET radiation produces complex-type DNA double strand breaks (DSBs).  相似文献   

4.
Chromosome breakage and rejoining of sister chromatids in Bloom's syndrome   总被引:2,自引:0,他引:2  
The occurrence of chromosome breaks and reunion of sister chromatids in lymphocytes of two patients with Bloom's syndrome has been compared with those found in X-rayed and control cells. The distribution of breaks in BS is non-random both between and within chromosomes, the centric regions of certain chromosomes being preferentially involved. The following working hypotheses are put forward: When chromosome breaks in human lymphocytes occur in G0— G1, practically no sister chromatid reunion (SCR) takes place, whereas ends created by an S—G2 break show a considerable tendency to SCR. We propose further that chromosome aberrations in BS mainly result from breaks in S—G2, including possible U-type rejoining of sister chromatid exchanges. Fragments extra to an intact chromosome complement result from a chromatid break or an asymmetrical chromatid translocation in a previous mitosis.  相似文献   

5.
The biophysical characteristics of heavy ions make them a rational source of radiation for use in radiotherapy of malignant tumours. Prior to radiotherapy treatment, a therapeutic regimen must be precisely defined, and during this stage information on individual patient radiosensitivity would be of very great medical value. There are various methods to predict radiosensitivity, but some shortfalls are difficult to avoid. The present study investigated the induction of chromatid breaks in five different cell lines, including one normal liver cell line (L02), exposed to carbon ions accelerated by the heavy ion research facility in Lanzhou (HIRFL), using chemically induced premature chromosome condensation (PCC). Previous studies have reported the number of chromatid breaks to be linearly related to the radiation dose, but the relationship between cell survival and chromatid breaks is not clear. The major result of the present study is that cellular radiosensitivity, as measured by D0, is linearly correlated with the frequency of chromatid breaks per Gy in these five cell lines. We propose that PCC may be applied to predict radiosensitivity of tumour cells exposed to heavy ions.  相似文献   

6.
Cytogenetic analysis of chromosomal aberrations (CA) in 175,229 cells from 1113 individuals, both unexposed and occupationally or environmentally exposed to heavy metals (mercury and lead), organic (styrene, formaldehyde, phenol and benzo(a)pyrene) and inorganic (sulfur and nitrogen oxides, hydrogen and ammonium fluorides) volatile substances and/or ionizing radiation was performed. In addition, 11,250 cells from 225 individuals were scored for the frequency of sister-chromatid exchanges (SCE). Increased frequencies of CA were found in all occupationally exposed groups. A principal difference between the exposure to heavy metals and organic substances was found: increase in the CA frequency was dependent on duration of exposure to mercury but not dependent on duration of exposure to styrene, formaldehyde and phenol. A higher CA incidence was found in lymphocytes of children living in the vicinity of a plant manufacturing phosphate fertilizers. This indicates that children are a sensitive study group for the assessment of environmental exposure. However, the results of SCE analysis in these children were inconclusive. Exposure to ionizing radiation was found to cause chromosome breaks and chromatid exchanges in Chernobyl clean-up workers and chromatid breaks, chromatid exchanges, dicentric chromosomes and chromosome translocations in workers from the Ignalina Nuclear Power Plant. The increased frequency of chromatid exchanges in individuals exposed to ionizing radiation was quite unexpected. This may be attributed to the action of some unrecognized life-style or occupational factors, or to be a result of radiation-induced genomic instability. Also an increased SCE frequency was found in lymphocytes of Chernobyl clean-up workers.  相似文献   

7.
激光作用质粒DNA和小牛胸腺DNA的AFM研究   总被引:3,自引:0,他引:3  
激光作用质粒DNA和小牛胸腺DNA产生损伤效应,导致DNA结构变化,利用一种改进的试样制备过程和纳米显微镜--原子力显微镜(AFM)能够获得可重现的激光作用质粒DNA和小牛胸腺DNA的AFM图象,显示它们的特殊的表面结构。  相似文献   

8.
M. Gatti  C. Tanzarella    G. Olivieri 《Genetics》1974,77(4):701-719
A technique has been perfected for enabling good microscope preparations to be obtained from the larval ganglia of Drosophila melanogaster. This system was then tested with X-rays and an extensive series of data was obtained on the chromosome aberrations induced in the various stages of the cell cycle.-The analysis of the results obtained offers the following points of interest: (1) There exists a difference in radio-sensitivity between the two sexes. The females constantly display a greater frequency of both chromosome and chromatid aberrations. They also display a greater frequency of spontaneous aberrations. (2) In both sexes the overall chromosome damage is greater in cells irradiated in stages G(2) and G(1). These two peaks of greater radiosensitivity are produced by a high frequency of terminal deletions and chromatid exchanges and by a high frequency of dicentrics, respectively. (3) The aberrations are not distributed at random among the various chromosomes. On the average, the Y chromosome is found to be more resistant and the breaks are preferentially localized in the pericentromeric heterochromatin of the X chromosome and of the autosomes. (4) Somatic pairing influences the frequency and type of the chromosome aberrations induced. In this system, such an arrangement of the chromosomes results in a high frequency of exchanges and dicentrics between homologous chromosomes and a low frequency of scorable translocations. Moreover, somatic pairing, probably by preventing the formation of looped regions in the interphase chromosomes, results in the almost total absence of intrachanges at both chromosome and chromatid level.  相似文献   

9.
N V Luchnik  M M Antoshchina 《Genetika》1983,19(12):1991-1994
Chinese hamster cells with different patterns of distribution of 5-bromodeoxyuridine (BrdUrd) between chromosome subunits were subjected, during the G2 stage, to UV irradiation, which only produced breaks in BrdUrd substituted DNA. The frequency of chromatid and subchromatid interchanges as well as isochromatid aberrations was estimated. It was found that only BrdUrd containing chromatids were involved into aberrations; this result challenges the so called "molecular theory" for aberration production proposed by Leenhouts and Chadwick. A very small increase of the aberration yield in chromosomes without BrdUrd may be connected with the action of UV on the frequency of recombination. The observed frequency of interchanges was not proportional to the BrdUrd content in chromosomes and depended on the time of its incorporation: more exchanges were induced in the chromatids incorporating BrdUrd during the last round of replication. These regularities may be connected with some molecular peculiarities of chromosome structure and function.  相似文献   

10.
The mitotic chromosome structure of 45S rDNA site gaps in Lolium perenne was studied by atomic force microscope (AFM) combining with fluorescence in situ hybridization (FISH) analysis in the present study. FISH on the mitotic chromosomes showed that 45S rDNA gaps were completely broken or local despiralizations of the chromatid which had the appearance of one or a few thin DNA fiber threads. Topography imaging using AFM confirmed these observations. In addition, AFM imaging showed that the broken end of the chromosome fragment lacking the 45S rDNA was sharper, suggesting high condensation. In contrast, the broken ends containing the 45S rDNA or thin 45S rDNA fibers exhibited lower density and were uncompacted. Higher magnification visualization by AFM of the terminals of decondensed 45S rDNA chromatin indicated that both ends containing the 45S rDNA also exhibited lower density zones. The measured height of a decondensed 45S rDNA chromatin as obtained from the AFM image was about 55–65 nm, composed of just two 30-nm single fibers of chromatin. FISH in flow-sorted G2 interphase nuclei showed that 45S rDNA was highly decondensed in more than 90% of the G2/M nuclei. Our results suggested that a failure of the complex folding of the chromatin fibers occurred at 45S rDNA sites, resulting in gap formation or break.  相似文献   

11.
Chinese hamster ovary (CHO) cells were treated with ultraviolet radiation or the alkylating agents, nitrogen mustard or trenimon, and chromosome damage to G2 phase cells were scored by the premature chromosome condensation (PCC) method or the metotic chromosome method. Treatment with these agents produced gaps but not chromatid breaks or exchanges. After UV treatment, the gap frequency observed in G2-PCC was higher than in the mitotic chromosomes, while the reverse trend was observed after treatment with nitrogen mustard or trenimon. These results suggest that two types of chromosome gaps exist, both of which are observable in mitotic chromosomes while only one type is observable in PCC due to differences in the stages of condensation between PCC and mitotic chromosomes.  相似文献   

12.
Architecture of metaphase chromosomes and chromosome scaffolds   总被引:19,自引:11,他引:8       下载免费PDF全文
We have developed procedures for depositing intact mitotic chromosomes and isolated residual scaffolds on electron microscope grids at controlled and reproducible levels of compaction. The chromosomes were isolated using a recently developed aqueous method. Our study has addressed two different aspects of chromosome structure. First, we present a method for improved visualization of radial chromatin loops in undisrupted mitotic chromosomes. Second, we have visualized a nonhistone protein residual scaffold isolated from nuclease-digested chromosomes under conditions of low salt protein extraction. These scaffolds, which have an extremely simple protein composition, are the size of chromosomes, are fibrous in nature, and are found to retain differentiated regions that appear to derive from the kinetochores and the chromatid axis. When our standard preparation conditions were used, the scaffold appearance was found to be very reproducible. If the ionic conditions were varied, however, the scaffold appearance underwent dramatic changes. In the presence of millimolar concentrations of Mg++ or high concentrations of NaCl, the fibrous scaffold protein network was observed to undergo a lateral aggregation or assembly into a coarse meshlike structure. The alteration of scaffold structure was apparently reversible. This observation is consistent with a model in which the scaffolding network plays a dynamic role in chromosome condensation at mitosis.  相似文献   

13.
Fish subjected to 350 R, 660 R and 990 R of X-radiation showed chromosomal aberrations such as chromatid breaks and gaps, and chromatid exchanges between several chromosomes. The frequency of aberrations/metaphase increased with radiation dosage. Likewise, the percentage of aberrant cells increased with increased irradiation. The countable metaphases fish was lower for higher doses of radiation. At lower doses single chromatid breaks accounted for most of the aberrations whereas complex aberrations involving the breakage and exchange of fragments between several chromosomes were more frequent in fish subjected to 990 R. Gill tissue yielded three times as many countable metaphases as did spleen tissue.  相似文献   

14.
Studies of classical chromosome aberrations and sister-chromatid exchanges (SCES) suggest independent mechanisms for the two events despite some common features. Examination of chromosome breakage caused by X-rays, visible light, and viruses has shown that few chromatid breaks are accompanied by SCEs at the sites of breaks. No similar observations were available for chemically induced breaks, but it has been reported that rat chromosomes exposed to dimethylbenzanthracene (DMBA) contained a preponderance of both aberrations and SCEs in certain specific regions, implicating a common process in their formation. These conclusions were drawn from a comparison of breaks induced in vivo with SCEs induced in vitro. However, we used 7 chemical mutagens to induce both chromatid breaks and SCEs in "harlequin" chromosomes of cultured rat and Chinese hamster ovary (CHO) cells and found that 25% of the 914 breaks scored were associated with SCEs. The proportion of breaks accompanied by SCEs is related to the overall SCE frequency and falls into the range predicted on the basis that breaks and SCEs occur independently. The reported association between sites for SCEs and aberrations also reflects secondary factors, such as induction of SCEs and aberrations during DNA synthesis in late replicating regions of the chromosomes.  相似文献   

15.
The structure of the bacterial chromosome was investigated after introducing breaks in the DNA with gamma irradiation. It is demonstrated that irradiation of the chromosome in the cell prior to isolation results in partial unfolding of the isolated condensed DNA, while irradiation of the chromosome after it is released from the cell has no demonstrable effect on DNA folding. The results indicate that RNA/DNA interactions which stabilize DNA folds are unstable when breaks are introduced in the DNA prior to isolation of the chromosome. It is suggested that the supercoiled state of the DNA is required for the initial stabilization of some of the critical RNA/DNA interaction in the isolated nucleoid. However, some of these interactions are not affected by irradiation of the cells. Remnant supercoiling in partially relaxed chromosomes containing a limited number of DNA breaks has the same superhelical density as the unirradiated chromosome. This suggests that restraints on rotation of the packaged DNA are formed prior to the physical unwinding which occurs at the sites of the radiation induced DNA breaks. — Analysis of the in vitro irradiated chromosomes shows that there are 100+-30 domains of supercoiling per genome equivalent of DNA. The introduction of up to 50 double-strand breaks per nucleoid does not influence rotor speed effects of the sedimentation coefficient of the chromosome.  相似文献   

16.
Chinese hamster cells with chromosomes differently substituted for BUdR (TT-TT, TT-TB, TB-TB, TB-BB, where T is thymidine containing chromatid and B is BUdR substituted chromatid) were exposed to UV-light in phase G2 and chromosome aberrations (mainly chromatid breaks) were analysed. Breaks frequency per chromosome was proportional to BUdR content. No breaks were found in TT-TT chromosomes. The frequency of breaks per TB chromatid was similar with TT-TB and TB-BB chromosomes. In TB-BB chromosomes, however, virtually no breaks occurred in TB chromatids whereas in BB chromatids, their frequency was much higher than was expected.  相似文献   

17.
激光对DNA作用机理的AFM研究   总被引:8,自引:0,他引:8  
激光作用质粒DNA和小牛胸腺DNA产生损伤效应,导致DNA结构变化,利用一种改进的试样制备过程和纳米显微镜--原子力显微镜(AFM)能够获得可重现的激光作用质粒DNA和小牛胸腺DNA的AFM图像,显示它们的特殊的表达结构,讨论了激光辐照导致DNA链断裂的作用机理。  相似文献   

18.
The structural maintenance of chromosomes (Smc) family members Smc5 and Smc6 are both essential in budding and fission yeasts. Yeast smc5/6 mutants are hypersensitive to DNA damage, and Smc5/6 is recruited to HO-induced double-strand breaks (DSBs), facilitating intersister chromatid recombinational repair. To determine the role of the vertebrate Smc5/6 complex during the normal cell cycle, we generated an Smc5-deficient chicken DT40 cell line using gene targeting. Surprisingly, Smc5(-) cells were viable, although they proliferated more slowly than controls and showed mitotic abnormalities. Smc5-deficient cells were sensitive to methyl methanesulfonate and ionizing radiation (IR) and showed increased chromosome aberration levels upon irradiation. Formation and resolution of Rad51 and gamma-H2AX foci after irradiation were altered in Smc5 mutants, suggesting defects in homologous recombinational (HR) repair of DNA damage. Ku70(-/-) Smc5(-) cells were more sensitive to IR than either single mutant, with Rad54(-/-) Smc5(-) cells being no more sensitive than Rad54(-/-) cells, consistent with an HR function for the vertebrate Smc5/6 complex. Although gene targeting occurred at wild-type levels, recombinational repair of induced double-strand breaks was reduced in Smc5(-) cells. Smc5 loss increased sister chromatid exchanges and sister chromatid separation distances in mitotic chromosomes. We conclude that Smc5/6 regulates recombinational repair by ensuring appropriate sister chromatid cohesion.  相似文献   

19.
Ionizing radiation can lead to DNA double-strand breaks (DSBs) which belong to the most dangerous forms of damage to the DNA. Cells possess elaborate repair mechanisms and react in a complex manner to the emergence of DSBs. Experiments have shown that gene expression levels in irradiated cells are changed, and thousands of radiation-responsive genes have been identified. On the other hand, recent studies have shown that gene expression is tightly connected to the three-dimensional organization of the genome. In this work, we analyzed the chromatin organization in the cell nuclei before and after exposure to ionizing radiation with an expression-dependent folding model. Our results indicate that the alteration of the chromosome organization on the scale of a complete chromosome is rather limited despite the expression level change of a large number of genes. We further modelled breaks within sub-compartments of the model chromosomes and showed that entropic changes caused by a break lead to increased mobility of the break sites and help to locate break ends further to the periphery of the sub-compartments. We conclude that the changes in the chromatin structure after irradiation are limited to local scales and demonstrate the importance of entropy for the behaviour of break ends.  相似文献   

20.
Two-cell mouse embryos were X-irradiated in the late G2 phase in vivo. The first and second postradiation mitoses were analyzed for chromosomal anomalies. The majority of structural aberrations visible at the first mitosis after irradiation were chromatid breaks and chromatid gaps; only a few interchanges and dicentrics were observed. The aberration frequency resulted in a dose-effect relationship which was well described by a linear model. At the second mitosis 29% of the structural aberrations of the first mitosis were counted; the aberration quality changed only slightly. It is discussed whether these aberrations are to be considered "new," "derived," or unchanged transmitted aberrations. Contrary to the results obtained after irradiation of one-cell embryos, little chromosome loss was induced by radiation in two-cell embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号