首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Non-Homologous End-Joining (NHEJ) is the predominant pathway for the repair of DNA double strand breaks (DSBs) in human cells. The NHEJ pathway is frequently upregulated in several solid cancers as a compensatory mechanism for a separate DSB repair defect or for innate genomic instability, making this pathway a powerful target for synthetic lethality approaches. In addition, NHEJ reduces the efficacy of cancer treatment modalities which rely on the introduction of DSBs, like radiation therapy or genotoxic chemotherapy. Consequently, inhibition of the NHEJ pathway can modulate a radiation- or chemo-refractory disease presentation. The Ku70/80 heterodimer protein plays a pivotal role in the NHEJ process. It possesses a ring-shaped structure with high affinity for DSBs and serves as the first responder and central scaffold around which the rest of the repair complex is assembled. Because of this central position, the Ku70/80 dimer is a logical target for the disruption of the entire NHEJ pathway. Surprisingly, specific inhibitors of the Ku70/80 heterodimer are currently not available. We here describe an in silico, pocket-based drug discovery methodology utilizing the crystal structure of the Ku70/80 heterodimer. We identified a novel putative small molecule binding pocket and selected several potential inhibitors by computational screening. Subsequent biological screening resulted in the first identification of a compound with confirmed Ku-inhibitory activity in the low micro-molar range, capable of disrupting the binding of Ku70/80 to DNA substrates and impairing Ku-dependent activation of another NHEJ factor, the DNA-PKCS kinase. Importantly, this compound synergistically sensitized human cell lines to radiation treatment, indicating a clear potential to diminish DSB repair. The chemical scaffold we here describe can be utilized as a lead-generating platform for the design and development of a novel class of anti-cancer agents.  相似文献   

3.
The partitioning-defective 3 (Par3),a key component in the conserved Par3/Par6/aPKC complex,plays fundamentalroles in cell polarity.Herein we report the identification of Ku70 and Ku80 as novel Par3-interacting proteins throughan in vitro binding assay followed by liquid chromatography-tandem mass spectrometry.Ku70/Ku80 proteins are twokey regulatory subunits of the DNA-dependent protein kinase (DNA-PK),which plays an essential role in repairingdouble-strand DNA breaks (DSBs).We determined that the nuclear association of Par3 with Ku70/KuS0 was enhancedby y-irradiation (IR),a potent DSB inducer.Furthermore,DNA-PKcs,the catalytic subunit of DNA-PK,interacted withthe Par3/Ku70/Ku80 complex in response to IR.Par3 over-expression or knockdown was capable of up-or downregulat-ing DNA-PK activity,respectively.Moreover,the Par3 knockdown cells were found to be defective in random plasmidintegration,defective in DSB repair following IR,and radiosensitive,phenotypes similar to that of Ku70 knockdowncells.These findings identify Par3 as a novel component of the DNA-PK complex and implicate an unexpected link ofcell polarity to DSB repair.  相似文献   

4.
The author affiliations were mixed up in the previous published version. The third fund number of National Natural Science Foundation of China in the Acknowledgments was wrong, it should be "30270335". The Shanghai Municipal Council for Science and Technology (No.06DZ22032) was missed in the Acknowledgments. There are some labeling and production errors in Figure 2A, Figure 3B and 3C, Figure 5C, Figure 6B and 6E, Figure 7B and 7D.  相似文献   

5.
Ku plays a key role in multiple nuclear processes, e.g., DNA double-strand break (DSB) repair. The regulation mechanism of the localizations of Ku70 and Ku80 plays a key role in regulating the multiple functions of Ku. Although numerous biochemical studies in vitro have elucidated the DNA binding mechanism of Ku, no accumulation mechanisms of Ku70 and Ku80 at DSBs have been clarified in detail in vivo. In this study, we examined the accumulation mechanism of Ku80 at DSBs in living cells. EGFP-Ku80 accumulation at DSBs began immediately after irradiation. On the other hand, our data show that Ku70 alone, which has DNA binding activity independent of Ku80, cannot accumulate at the DSBs, whereas Ku70 bound to Ku80 can. The deletion of the C-terminal DNA-PKcs-binding domain and the mutation at the SUMOylation site of Ku80 had no effect on Ku80 accumulation. Unexpectedly, N-terminal deletion mutants of Ku80 fully lost their accumulation activity, although the mutants retained their Ku70 binding activity. Altogether, these data demonstrate that Ku80 is essential for Ku70 accumulation at DSBs. Furthermore, three domains of Ku80, i.e., the N-terminal α/β, the DNA-binding, and Ku70-binding domains, seem to necessary for the accumulation at or recognition of DSBs in the early stage after irradiation.  相似文献   

6.
7.
Ku70 plays an important role in DNA damage repair and prevention of cell death. Previously, we reported that apoptosis caused a decrease in cellular Ku70 levels. In this study, we analyzed the mechanism of how Ku70 levels decrease during drug-induced apoptosis. In HeLa cells, staurosporin (STS) caused a decrease in Ku70 levels without significantly affecting Ku70 mRNA levels. We found that Ku70 protein was highly ubiquitinated in various cell types, such as HeLa, HEK293T, Dami (a megakaryocytic cell line), endothelial, and rat kidney cells. An increase in ubiquitinated Ku70 protein was observed in apoptotic cells, and proteasome inhibitors attenuated the decrease in Ku70 levels in apoptotic cells. These results suggest that the ubiquitin-proteasome proteolytic pathway plays a role in decreasing Ku70 levels in apoptotic cells. Ku70 forms a heterodimer with Ku80, which is required for the DNA repair activity of Ku proteins. We also found that Ku80 levels decreased in apoptotic cells and that Ku80 is a target of ubiquitin. Ubiquitinated Ku70 was not found in the Ku70-Ku80 heterodimer, suggesting that modification by ubiquitin inhibits Ku heterodimer formation. We propose that the ubiquitin-dependent modification of Ku70 plays an important role in the control of cellular levels of Ku70.  相似文献   

8.
The product of the BLM gene, which is mutated in Bloom syndrome in humans, and the Saccharomyces cerevisiae protein Sgs1 are both homologous to the Escherichia coli DNA helicase RecQ, and have been shown to be involved in the regulation of homologous recombination. Mutations in these genes result in genome instability because they increase the incidence of deletions and translocations. We present evidence for a genetic interaction between SGS1 and YKU70, which encodes the S. cerevisiae homologue of the human DNA helicase Ku70. In a yku70 mutant background, sgs1 mutations increased sensitivity to DNA breakage induced either by treatment with camptothecin or by the expression of the restriction enzyme EcoRI. The yku70 mutation caused a fourfold increase in the rate of double-strand break (DSB)-induced target integration as that seen in the sgs1 mutant. The combination of yku70 and sgs1 mutations additively increased the rate of the targeted integration, and this effect was completely suppressed by deletion of RAD51. Interestingly, an extra copy of YKU70 partially suppressed the increase in targeted integration seen in the sgs1 single mutant. These results suggest that Yku70 modulates the repair of DSBs associated with homologous recombination in a different way from Sgs1, and that the inactivation of RecQ and Ku70 homologues may enhance the frequency of gene targeting in higher eukaryotes.  相似文献   

9.
Chromosomal breaks are repaired by homologous recombination (HR) or non-homologous end joining (NHEJ) mechanisms. The Ku70/Ku80 heterodimer binds DNA ends and plays roles in NHEJ and telomere maintenance in organisms ranging from yeast to humans. We have previously identified a ku80 mutant of the model plant Arabidopsis thaliana and shown the role of Ku80 in telomere homeostasis in plant cells. We show here that this mutant is hypersensitive to the DNA-damaging agent methyl methane sulphonate and has a reduced capacity to carry out NHEJ recombination. To understand the interplay between HR and NHEJ in plants, we measured HR in the absence of Ku80. We find that the frequency of intrachromosomal HR is not affected by the absence of Ku80. Previous work has clearly implicated the Ku heterodimer in Agrobacterium-mediated T-DNA transformation of yeast. Surprisingly, ku80 mutant plants show no defect in the efficiency of T-DNA transformation of plants with Agrobacterium, showing that an alternative pathway must exist in plants.  相似文献   

10.
Seluanov A  Danek J  Hause N  Gorbunova V 《DNA Repair》2007,6(12):1740-1748
Aging is associated with accumulation of genomic rearrangements consistent with aberrant repair of DNA breaks. We have shown previously that DNA repair by non-homologous end joining (NHEJ) becomes less efficient and more error-prone in senescent cells. Here, we show that the levels of Ku70 and Ku80 drop approximately twofold in replicatively senescent cells. Intracellular distribution of Ku also changes. In the young cells roughly half of Ku is located in the nucleus and half in the cytoplasm. In senescent cells the nuclear levels of Ku do not change, while the cytoplasmic Ku fraction disappears. Upon treatment with gamma-irradiation, in the young cells cytoplasmic Ku moved into the nuclear and membrane fractions, while no change in the Ku distribution occurred in senescent cells. Upon treatment with UVC Ku moved out of the nucleus in the young cells, while most Ku remained nuclear in senescent cells. This suggests that the nuclear Ku in senescent cells is unable to respond to DNA damage. We hypothesize that overall decline in Ku levels changes in Ku intracellular distribution, and the loss of appropriate response of Ku to DNA damage in senescent cells contribute to the decline of NHEJ and to age-related genomic instability.  相似文献   

11.
12.
Ku, the heterodimer of Ku70 and Ku80, plays an essential role in the DNA double-strand break (DSB) repair pathway, i.e., non-homologous end-joining (NHEJ). Two isoforms of Ku80 encoded by the same genes, namely, Ku80 and KARP-1 are expressed and function in primate cells, but not in rodent cells. Ku80 works as a heterodimer with Ku70. However, it is not yet clear whether KARP-1 forms a heterodimer with Ku70 and works as a heterodimer. Although KARP-1 appears to work in NHEJ, its physiological role remains unclear. In this study, we established and characterized EGFP-KARP-1-expressing xrs-6 cell lines, EGFP-KARP-1/xrs-6. We found that nuclear localization signal (NLS) of KARP-1 is localized in the C-terminal region. Our data showed that KARP-1 localizes within the nucleus in NLS-dependent and NLS-independent manner and forms a heterodimer with Ku70, and stabilizes Ku70. On the other hand, EGFP-KARP-1 could not perfectly complement the radiosensitivity and DSB repair activity of Ku80-deficient xrs-6 cells. Furthermore, KARP-1 could not accumulate at DSBs faster than Ku80, although EGFP-KARP-1 accumulates at DSBs. Our data demonstrate that the function of KARP-1 could not perfectly replace that of Ku80 in DSB repair, although KARP-1 has some biochemical properties, which resemble those of Ku80, and works as a heterodimer with Ku70. On the other hand, the number of EGFP-KARP-1-expressing xrs-6 cells showing pan-nuclear γ-H2AX staining significantly increases following X-irradiation, suggesting that KARP-1 may have a novel role in DSB response.  相似文献   

13.
14.
HIV-1 integrase (IN) is a key viral enzymatic protein acting in several viral replication steps, including integration. IN has been shown to be an unstable protein degraded by the N-end rule pathway through the host ubiquitin-proteasome machinery. However, it is still not fully understood how this viral protein is protected from the host ubiquitin-proteasome system within cells during HIV replication. In the present study, we provide evidence that the host protein Ku70 interacts with HIV-1 IN and protects it from the Lys(48)-linked polyubiquitination proteasomal pathway. Moreover, Ku70 is able to down-regulate the overall protein polyubiquitination level within the host cells and to specifically deubiquitinate IN through their interaction. Mutagenic studies revealed that the C terminus of IN (residues 230-288) is required for IN binding to the N-terminal part of Ku70 (Ku70(1-430)), and their interaction is independent of Ku70/80 heterodimerization. Finally, knockdown of Ku70 expression in both virus-producing and target CD4(+) T cells significantly disrupted HIV-1 replication and rendered two-long terminal repeat circles and integration undetectable, indicating that Ku70 is required for both the early and the late stages of the HIV-1 life cycle. Interestingly, Ku70 was incorporated into the progeny virus in an IN-dependent way. We proposed that Ku70 may interact with IN during viral assembly and accompany HIV-1 IN upon entry into the new target cells, acting to 1) protect IN from the host defense system and 2) assist IN integration activity. Overall, this report provides another example of how HIV-1 hijacks host cellular machinery to protect the virus itself and to facilitate its replication.  相似文献   

15.
The frequency of targeted gene disruption via homologous recombination is low in the clinically important dermatophyte, Trichophyton mentagrophytes . The Ku genes, Ku70 and Ku80 , encode key components of the nonhomologous end-joining pathway involved in DNA double-strand break repair. Their deletion increases the homologous recombination frequency, facilitating targeted gene disruption. To improve the homologous recombination frequency in T. mentagrophytes , the Ku80 ortholog was inactivated. The nucleotide sequence of the Ku80 locus containing a 2788-bp ORF encoding a predicted product of 728 amino acids was identified, and designated as TmKu80 . The predicted TmKu80 product showed a high degree of amino acid sequence similarity to known fungal Ku80 proteins. Ku80 disruption mutant strains of T. mentagrophytes were constructed by Agrobacterium tumefaciens -mediated genetic transformation. The average homologous recombination frequency was 73.3 ± 25.2% for the areA/nit-2 -like nitrogen regulatory gene ( tnr ) in Ku80 mutants, about 33-fold higher than that in wild-type controls. A high frequency ( c . 67%) was also obtained for the Tri m4 gene encoding a putative serine protease. Ku80 mutant strains will be useful for large-scale reverse genetics studies of dermatophytes, including T. mentagrophytes , providing valuable information on the basic mechanisms of host invasion.  相似文献   

16.
Porcine circovirus type 2 possesses a circular, single-stranded DNA genome that requires the replication protein (Rep) for virus replication. To characterize the DNA binding potential and the significant region that confers the nuclear localization of the Rep protein, the defined coding regions of rep gene were cloned and expressed. All of the recombinant proteins except for the N-terminal 110 residues deletion mutant could bind to the double-stranded minimal binding site of replication origin (ori). In addition, the N-terminal deletion mutant lacking 110 residues exhibited mainly cytoplasmic staining in the transfected cells in contrast to the others, which localized dominantly in the nucleus, suggesting that this N-terminal domain is essential for nuclear localization. Furthermore, a series of green fluorescence proteins (GFP) containing potential nuclear localization signal (NLS) sequences were tested for their cellular distribution. The ability of the utmost 20 residues of the N-terminal region to target the GFP to the nucleus confirmed its role as a functional NLS.  相似文献   

17.
It has been established that non-steroidal anti-inflammatory drugs (NSAIDs), such as sodium salicylate, sulindac, ibuprofen, and indomethacin, induce anti-inflammatory and anti-proliferative effects independent of cyclooxygenase. These cyclooxygenase-independent pharmacodynamic effects appear to regulate several signaling pathways involving proliferation, apoptosis, and heat shock response. However, the mechanisms of these actions remain an area of ongoing investigation. Hsc70 is a cytoplasmic chaperone protein involved in folding and trafficking of client proteins to different subcellular compartments, plays roles in signal transduction and apoptosis processes, and translocates to the nucleus following exposure to heat shock. Since NSAIDs induce some aspects of the heat shock response, we hypothesized that they may also induce Hsc70 nuclear translocation. Western immunoblotting and indirect cellular immunofluorescence showed that indomethacin and ibuprofen induce Hsc70 nuclear translocation at concentrations previously shown to induce HSF DNA-binding activity. Chemical inhibition of both p38(MAPK) and Erk42/44 had no effect on localization patterns. In addition, while indomethacin has been shown to behave as an oxidative stressor, the radical scavenging agent, N-acetyl cysteine, did not inhibit nuclear translocation. These results indicate that induction of the heat shock response by NSAIDs occurs at concentrations fivefold greater than those required to inhibit cyclooxygenase activity, suggesting a cyclooxygenase-independent mechanism, and in the presence or absence of kinase inhibitors and a free radical scavenger, suggesting independence of Erk42/44 or p38(MAPK) activities and intracellular oxidoreductive state.  相似文献   

18.
DNA double strand breaks (DSB) are repaired by nonhomologous end-joining (NHEJ) or homologous recombination (HR). Recent genetic data in yeast shows that the choice between these two pathways for the repair of DSBs is via competition between the NHEJ protein, Ku, and the HR protein, Mre11/Rad50/Xrs2 (MRX) complex. To study the interrelationship between human Ku and Mre11 or Mre11/Rad50 (MR), we established an in vitro DNA end resection system using a forked model dsDNA substrate and purified human Ku70/80, Mre11, Mre11/Rad50, and exonuclease 1 (Exo1). Our study shows that the addition of Ku70/80 blocks Exo1-mediated DNA end resection of the forked dsDNA substrate. Although human Mre11 and MR bind to the forked double strand DNA, they could not compete with Ku for DNA ends or actively mediate the displacement of Ku from the DNA end either physically or via its exonuclease or endonuclease activity. Our in vitro studies show that Ku can block DNA resection and suggest that Ku must be actively displaced for DNA end processing to occur and is more complicated than the competition model established in yeast.  相似文献   

19.
The Ku heterodimer (Ku70/Ku80) plays a central role in DNA double-strand breaks recognition and repair. However, Ku is expressed also on the surface of different types of cells along with its intracellular pool within the nucleus and the cytoplasm. Participation of membrane-associated Ku in cell-cell interaction has been reported recently. Here, we describe a novel function of cell-surface Ku as an adhesion receptor for fibronectin (Fn). The role of Ku in cell adhesion was investigated by comparing the Ku80 deficient Chinese hamster ovary (CHO) cell line, xrs-6, with clones transfected stably with either the hamster or human Ku80 cDNA. Ku expression in transfectant cells resulted in a significant increased adhesion on Fn and type IV collagen as compared to control cells. The observed increase in cell adhesion relied on Ku cell-surface expression, since antibodies directed against Ku70 or Ku80 subunit inhibited adhesion on Fn of Ku80, but not control vector, transfected xrs-6 cells. In addition, both Ku70 and Ku80 present a structural relationship with integrin I (or A) domains and the A1 and A3 domains of von Willebrand factor, domains known to be involved in Fn binding. Both Ku70 and Ku80 exhibit a complete set of residues compatible in their position and chemical nature with the formation of a metal ion-dependent adhesion (MIDAS) site implicated in ligand binding and integrin activation. Taken together, these functional and structural approaches support a new role for Ku as an adhesion receptor for Fn.  相似文献   

20.
Cell death linked to oxidative DNA damage has been implicated in acute pancreatitis. The severe DNA damage, which is beyond the capacity of the DNA repair proteins, triggers apoptosis. It has been hypothesized that oxidative stress may induce a decrease in the Ku70 and Ku80 levels and apoptosis in pancreatic acinar cells. In this study, it was found that oxidative stress caused by glucose oxidase (GO) acting on beta-d-glucose, glucose/glucose oxidase (G/GO), induced slight changes in cytoplasmic Ku70 and Ku80 but drastically induced a decrease in nuclear Ku70 and Ku80 both time- and concentration-dependently in AR42J cells. G/GO induced apoptosis determined by poly(ADP-ribose) polymerase cleavage, an increase in expression of p53 and Bax, and a decrease in Bcl-2 expression. G/GO-induced apoptosis was in parallel with the loss of nuclear Ku proteins in AR42J cells. Caspase-3 inhibitor prevented G/GO-induced nuclear Ku loss and cell death. G/GO did not induce apoptosis in the cells transfected with either the Ku70 or Ku80 expression gene but increased apoptosis in those transfected with the Ku dominant negative mutant. Pulse and pulse-chase results show that G/GO induced Ku70 and Ku80 syntheses, even though Ku70 and Ku80 were degraded both in cytoplasm and nucleus. G/GO-induced decrease in Ku binding to importin alpha and importin beta reflects possible modification of nuclear import of Ku proteins. The importin beta level was not changed by G/GO. These results demonstrate that nuclear decrease in Ku70 and Ku80 may result from the decrease in Ku binding to nuclear transporter importins and the degradation of Ku proteins. The nuclear loss of Ku proteins may underlie the mechanism of apoptosis in pancreatic acinar cells after oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号