首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
V N Ustinov 《Biofizika》1986,31(5):871-876
Results are presented of electrical stimulation of smooth muscles of the stomach by impulses of an electronic device. The work of the latter was synchronized by biopotentials of this organ circulating in the external feedback contour. Myoelectronic control of the frequency of the stomach basic electrical rhythm permits artificial maintenance of its value on quasi-constant level exceeding the initial one by 1.2-1.4 times. The data obtained are explained by a reduced system of differential equations describing the myoelectrical activity of the stomach smooth-muscle cell in terms of the excitable membrane theory.  相似文献   

2.
The musculature and innervation of the oesophagus of Homarus gammarus are described as a prerequisite to studies on the mechanisms and control of food ingestion. Of particular interest are two paired sensors (the anterior and posterior oesophageal sensors) which are bilaterally situated at the oesophageal-cardiac sac valve. These are similar to contact chemoreceptors previously described in insects and are classified as such on morphological grounds and with indirect electrophysiological evidence. Oesophageal peristalsis is effected by the coordinated contraction of the Oesophageal musculature. This is controlled by rhythmical bursting neuronal activity, which can be recorded from the nerve trunks in the area. A characteristic burst recorded from the superior oesophageal nerve is used as an indication of oesophageal dilatation during peristalsis for studies on the feedback effects of the oesophageal sensors. Electrical and chemical stimulation of the posterior oesophageal sensors can initiate and increase the frequency of oesophageal peristalsis, while stimulation of the anterior oesophageal sensors can slow and terminate oesophageal peristalsis. The results are discussed and a model presented of the role of the oesophageal sensors in feeding.  相似文献   

3.
The wings of the pteropod mollusc Clione limacina provide forward propulsive force through flapping movements in which the wings bend throughout their length in both dorsal and ventral directions. The musculature of the wings includes oblique, striated muscle bundles that generate the swimming movements of the wings, longitudinal and transverse (smooth) muscle bundles that collapse the wings and pull them into the body during a wing withdrawal response, and dorsoventral muscles that control the thickness of the wings. All muscles act against a hydrostatic skeleton that forms a central hemocoelic space within the wings. Of these muscle types, all have been thoroughly described and studied except the dorsoventral muscles. The fortuitous discovery that the dorsoventral musculature can be intensely labeled with an antibody against the vertebrate hyperpolarization‐activated cation channel (HCN2) provided the opportunity to describe the organization of the dorsoventral musculature in detail. In addition, electrical recordings and microelectrode dye injections supported the immunohistochemical data, and provided preliminary data on the activity of the muscle fibers. The organization and activity of the dorsoventral musculature suggests it may be involved in regulation of wing stiffness during the change from slow to fast swimming.  相似文献   

4.
The membrane potentials of single smooth muscle fibers of various regions of the stomach were measured, and do not differ from those measured in intestinal muscle. Spontaneous slow waves with superimposed spikes could be recorded from the longitudinal and circular muscle of the antrum. The development of tension was preceded by spikes but often tension appeared only when the slow waves were generated. Contracture in high K solution developed at a critical membrane potential of -42 mv. MnCl2 blocked the spike generation, then lowered the amplitude of the slow wave. On the other hand, withdrawal of Na+, or addition of atropine and tetrodotoxin inhibited the generation of most of the slow waves but a spike could still be elicited by electrical stimulation. Prostigmine enhanced and prolonged the slow wave; acetylcholine depolarized the membrane without change in the frequency of the slow waves. Chronaxie for the spike generation in the longitudinal muscle of the antrum was 30 msec and conduction velocity was 1.2 cm/sec. The time constant of the foot of the propagated spike was 28 msec. The space constants measured from the longitudinal and circular muscles of the antrum were 1.1 mm and 1.4 mm, respectively.  相似文献   

5.
The actin-bound ADP was separated from cytoplasmic nucleotides by treatment of intact arterial smooth muscle with 50% ethanol. In (32)P-labeled smooth muscle the actin-bound ADP and phosphate readily exchanged with the cytoplasmic [gamma,beta-(32)P]ATP; the specific radioactivity of actin-bound ADP was equal to that of the beta-phosphate of cytoplasmic ATP and the specific radioactivity of actin-bound phosphate was equal to that of the gamma-phosphate of cytoplasmic ATP. In contrast, the exchange of the actin-bound ADP in skeletal muscle was very slow. The presence of cytoplasmic ATP was required for the exchange of the actin-bound ADP and phosphate; if ATP synthesis was inhibited the exchange was also inhibited. The extent of exchange was reduced in muscles contracted by histamine or K(+), as compared with resting muscles. The exchange was also shown in other mammalian smooth muscles, uterus, urinary bladder, and stomach. The data indicate a dynamic state of actin in smooth muscle. The data also suggest that polymerization-depolymerization of actin is part of the contraction-relaxation cycle of smooth muscle.  相似文献   

6.
The visceral musculature of Chaetognaths was studied with special attention given to the digestive apparatus muscle. In the head the digestive apparatus muscle is relatively thick; individual muscles are difficult to distinguish at the anatomical level; in the anterior part of the oesophagus discontinuous bundles and layers of cross-striated fibers are found. As a group however, the oesophageal musculature completely covers the oesophageal epithelium. The prominent muscle layers around the oesophagus probably help to force food into the intestine against the turgor pressure of the trunk cavity which tends to collapse the intestine. Around the intestine the musculature is largely circular and smooth. The intestinal epithelium is ciliated despite its muscular covering. Muscle fibers are not individually innervated. They form myoepithelial structures with various intercellular junction types. In the intestinal muscle the fibers show myoendothelial-like junctions. Sphincters composed of myoepidermal cells surround the anus and the female gonopores. The somatic side of the general cavity is lined with a polymorphic squamous epithelium. Sometimes myoepithelial cells are found, with the occasional presence of extracellular matrix basal to the layer of the squamous epithelium. The ontogenetic relations between the polymorphic epithelium and the composite ‘mesenteries’ remain to be established. We have now some idea about the architecture of the body of Chaetognaths in relation to contractile structures.  相似文献   

7.
Experiments were performed using chronically implanted electrodes on the dog smooth muscle wall of the stomach and of the small and large intestines. Electrical activity of the muscle wall was recorded before and after feeding. When reaching the terminal ileum the active part of the migrating myoelectrical complex (MMC) continuously induced bursts of spike potentials superimposed on the slow waves. This electrical activity spread to the ascending colon. We also showed the existence of a spike activity on the terminal ileum independent of the MMC (appearing during the phase 1) and propagating to the colon. A relationship between the spike activities of the small and large intestines was also present after feeding. Beside the well-known gastro-colic reflex, we observed an increase in the spike activity of the terminal ileum and ascending colon between the 4th-5th hours after feeding. This probably corresponds to the arrival of the first portions of contents, evacuated from the arrival of the first portions of contents, evacuated from the stomach, and of the last portions of small intestinal contents. In conclusion, there is a relationship between the spike activities of the small and large intestines in starving animals and after feeding, and the terminal ileum plays a substantial role in this relationship.  相似文献   

8.
It has been stated long ago, that smooth muscle elements in the vascular walls and other tubular systems in the human being and in the animals demonstrate spiral arrangement. The authors decided to show that there is a spiral formation of the skeletal musculature in the human being and in vertebrata at the level of the whole organism, its parts and separate muscles. By means of successive joining certain muscles, their parts and even separate groups of muscular fasciculi by tendons, aponeuroses, fascia and intermuscular septa, ligaments and bones kinematic chains of muscles have been revealed, those chains that have spiral direction regarding the longitudinal axes of the body and its parts. Two examples of left- and right-hand-screw types of spirals are presented and it is stressed that the spiral principle reflects biological symmetry of structural oppositions--enantiomorphism. A conclusion is made that the spiral form of the skeletal musculature is a universal regularity for the human being and for all vertebrata. The cylindric form of the vertebral body serves as a predestinated moment for this. The spiral twisting of the muscles is the most optimal for ensuring variability of movements and performing adaptive survival of the human being and animals in the Earth gravitational field.  相似文献   

9.
Interstitial cells of Cajal (ICC) include several types of specialized cells within the musculature of the gastrointestinal tract (GIT). Some types of ICC act as pacemakers in the GIT musculature, whereas others are implicated in the modulation of enteric neurotransmission. Kit immunohistochemistry reliably identifies the location of these cells and provides information on changes in ICC distribution and density. Human stomach specimens were obtained from 7 embryos and 28 foetuses without gastrointestinal disorders. The specimens were 7–27 weeks of gestational age, and both sexes are represented in the sample. The specimens were exposed to anti‐c‐kit antibodies to investigate ICC differentiation. Enteric plexuses were immunohistochemically examined by using anti‐neuron specific enolase and the differentiation of smooth muscle cells (SMC) was studied with anti‐α smooth muscle actin and anti‐desmin antibodies. By week 7, c‐kit‐immunopositive precursors formed a layer in the outer stomach wall around myenteric plexus elements. Between 9 and 11 weeks some of these precursors differentiated into ICC. ICC at the myenteric plexus level differentiated first, followed by those within the muscle layer: between SMC, at the circular and longitudinal layers, and within connective tissue septa enveloping muscle bundles. In the fourth month, all subtypes of c‐kit‐immunoreactivity ICC which are necessary for the generation of slow waves and their transfer to SMC have been developed. These results may help elucidate the origin of ICC and the aetiology and pathogenesis of stomach motility disorders in neonates and young children that are associated with absence or decreased number of these cells.  相似文献   

10.
In an in vitro model for distention-induced peristalsis in the guinea pig small intestine, the electrical activity, intraluminal pressure, and outflow of contents were studied simultaneously to search for evidence of myogenic control activity. Intraluminal distention induced periods of nifedipine-sensitive slow wave activity with superimposed action potentials, alternating with periods of quiescence. Slow waves and associated high intraluminal pressure transients propagated aborally, causing outflow of content. In the proximal small intestine, a frequency gradient of distention-induced slow waves was observed, with a frequency of 19 cycles/min in the first 1 cm and 11 cycles/min 10 cm distally. Intracellular recording revealed that the guinea pig small intestinal musculature, in response to carbachol, generated slow waves with superimposed action potentials, both sensitive to nifedipine. These slow waves also exhibited a frequency gradient. In addition, distention and cholinergic stimulation induced high-frequency membrane potential oscillations (~55 cycles/min) that were not associated with distention-induced peristalsis. Continuous distention produced excitation of the musculature, in part neurally mediated, that resulted in periodic occurrence of bursts of distally propagating nifedipine-sensitive slow waves with superimposed action potentials associated with propagating intraluminal pressure waves that caused pulsatile outflow of content at the slow wave frequency.  相似文献   

11.
Muscle tissues can be divided into six classes; smooth, fast skeletal, slow skeletal and cardiac muscle tissues for vertebrates, and striated and smooth muscle tissues for invertebrates. We reconstructed phylogenetic trees of six protein genes that are expressed in muscle tissues and, using a newly developed program, inferred the phylogeny of muscle tissues by superimposition of five of those gene trees. The proteins used are troponin C, myosin essential light chain, myosin regulatory light chain, myosin heavy chain, actin, and muscle regulatory factor (MRF) families. Our results suggest that the emergence of skeletal-cardiac muscle type tissues preceded the vertebrate/arthropod divergence (ca. 700 MYA), while vertebrate smooth muscle seemed to evolve independent of other muscles. In addition, skeletal muscle is not monophyletic, but cardiac and slow skeletal muscles make a cluster. Furthermore, arthropod striated muscle, urochordate smooth muscle, and vertebrate muscles except for smooth muscle share a common ancestor. On the other hand, arthropod nonmuscle and vertebrate smooth muscle and nonmuscle share a common ancestor.  相似文献   

12.
Rhythmical depolarization and automatic contractions of smooth musculature of the gastrointestinal tract are a consequence of pacemaker activity of c-Kit-immunoreactive cells of mesenchymal origin—interstitial Cajal cells (ICC) that have a peculiar mechanism of intercellular Ca2+ balance, which is controlled by mitochondria. Intermuscular layer cells (ICC-MY) generate pacemaker potentials. Their induced depolarization is enhanced by unitary potentials generated by intracellular population—ICC-IM. Summation of unitary potentials in the tact of the pacemaker ones leads to creation of the second potential of slow waves—plateau potentials. Due to the presence of synapse-like structures, ICC serve messenger of transmission of the enteral nervous system onto the muscle. Long processes and close intercellular contacts similar to tight junction provide conductance and coordination of excitation in the intestinal musculature. Electrical rhythmicity appears in the intestinal muscle at the prenatal development period in parallel with the structural and functional ICC maturation, but establishment of mature rhythm parameters occurs in early postnatal ontogenesis. Features of similarity and difference in organization of control by pacemakers of the heart and musculature of the gastrointestinal tract are discussed.  相似文献   

13.
Interstitial cells of Cajal (ICC) are the pacemaker cells in the gut. They have special properties that make them unique in their ability to generate and propagate slow waves in gastrointestinal muscles. The electrical slow wave activity determines the characteristic frequency of phasic contractions of the stomach, intestine and colon. Slow waves also determine the direction and velocity of propagation of peristaltic activity, in concert with the enteric nervous system. Characterization of receptors and ion channels in the ICC membrane is under way, and manipulation of slow wave activity markedly alters the movement of contents through the gut. Gastric myoelectrical slow wave activity produced by pacemaker cells (ICC) can be reflected by electrogastrography (EGG). Electrogastrography is a perspective non-invasive method that can detect gastric dysrhythmias associated with symptoms of nausea or delayed gastric emptying.  相似文献   

14.
Calponins are proteins present in vertebrate smooth musculature where they occur in association with thin myofilaments. Calponins are not present in vertebrate or invertebrate striated muscles. The blood fluke Schistosoma japonicum expresses a 38.3-kDa protein that bears substantial homology with vertebrate calponin and occurs entirely within smooth musculature of adults. Calponin-like immunoreactivity has been demonstrated in smooth muscles of many invertebrate phyla. The Schistosoma japonicum calponin has been localised in smooth myofibrils of adults where it is associated with myofilaments and sarcoplasmic reticulum. In this study, the ultrastructural localisation of the protein in muscles of S. japonicum cercariae is described. The protein is present in smooth muscles of the forebody and the stratified muscle of the tail. Within the stratified layer, the protein occurs predominantly in transverse arrays of sarcoplasmic reticulum. The localisation data suggest that the calponin-like protein of S. japonicum is involved in contraction of the stratified tail muscle. Furthermore, the presence of a calponin system in the stratified muscle suggests that this muscle is simply a superior form of muscle, closely related to smooth muscles that use a caldesmin-calponin system in contraction.  相似文献   

15.
Summary The skeletal morphology, musculature and innervation of the mandible of the common lobster,Homarus gammarus, are described as a basis for the functional study included in the two subsequent papers.Although the mandible articulation takes the form of a hinge with movement in a single plane, the musculature of the mandible is complex. The main muscles are similar to those ofAstacus (Schmidt, 1915) but some smaller, previously undescribed muscles were found.As forAstacus (Keim, 1915) andCambarus (Chaudonneret, 1956) the mandibular muscles are innervated by two nerve trunks, the inner and outer mandibular nerves. However, differences occur in the branching of these nerves and the muscles which they innervate.A group of sensory cells associated with the posterior stomach nerve (omn 4) are described. It is suggested that these form a proprioceptive organ associated with the hypodermis overlying the lateral mandible articulation.An interesting group of neurones lying at the confluence of nerve branches from omn 2, omn 3, and omn 4 is described.  相似文献   

16.
PROJECT: The results of our recent studies prove the stimulating effect of aqueous peat extract (APE) on the spontaneous contractile activity (SCA) of the smooth musculature. Only substances with a molecular weight of <3,000 Dalton are able to evoke any effect. As we know from the corresponding literature, trace elements as for instance copper, manganese, lead and cadmium do also influence the SCA even when they appear in low concentrations (micromol-range). The purpose of this study therefore is to examine the influence of the trace-elements on the inspected stimulating effects which aqueous peat extract has on the SCA. PROCEDURE: During in-vitro experiments with smooth muscles in organbaths, it has been examined--under application of a standardized method--if trace-elements are the cause for the stimulating effect of aqueous peat extract on the SCA of the smooth musculature. RESULTS: The results have shown that--independent from their concentration within the peat - the trace-elements do not influence the SCA of the smooth muscles. CONCLUSION: The results can be explained by the chelating capacity of the peat-components, that leads to the absorption of the trace-elements. Additionally we can conclude that organic substances are the exclusive reason for the described effects.  相似文献   

17.
In chronic experiments, we have studied electrical activity of muscles of the gastro-esophageal sphincter, small curvature, corpus and antrum of the stomach in conditions of hunger, food intake behaviour and satiation of the rabbits. The aim of this study involved particularities of the electrical activity of myogenic pacemaker zone of the stomach. It has been shown that function of myogenic pacemaker of the rabbit stomach is performed by smooth muscles of the small curvature of the stomach. Pacemaker properties of muscles of the small curvature of the stomach are performed in conditions of food intake behaviour and satiation.  相似文献   

18.
Development of the musculature in chick limbs involves tissue and cellular patterning. Patterning at the tissue level leads to the precise arrangement of specific muscles; at the cellular level patterning gives rise to the fibre type diversity in muscles. Although the data suggests that the information controlling muscle patterning is localised within the limb mesenchyme and not in the somitic myogenic precursor cells themselves, the mechanisms underlying muscle organisation have still to be elucidated. The anterior-posterior axis of the limb is specified by a group of cells in the posterior region of the limb mesenchyme, called the zone of polarizing activity (ZPA). When polarizing-region cells are grafted to the anterior margin of the bud, they cause mirror-image digit duplications to be produced. The effect of ZPA grafts can be reproduced by application of retinoic acid (RA) beads and by grafting sonic hedgehog (SHH)-expressing cells to the anterior margin of the limb. Although most previous studies have looked at changes of the skeletal patterning, ZPA and RA also affect muscle patterning. In this report, we investigated the role of SHH in tissue and cellular patterning of forearm wing muscles. Ectopic application of a localised source of SHH to the anterior margin of the wing, leading to complete digit duplication, is able to transform anterior forearm muscles into muscles with a posterior identity. Moreover, the ectopic source of SHH induces a mirror image duplication of the normal posterior muscles fibre types in the new posterior muscles. The reorganisation of the slow fibres can be detected before muscle mass cleavage has started; suggesting that the appropriate fibre type arrangement is in place before the splitting process can be observed.  相似文献   

19.
20.
The molecular mechanisms controlling -adrenergic receptor agonist (BA)-induced skeletal muscle hypertrophy are not well known. We presently report that BA exerts a distinct muscle- and muscle fiber type-specific hypertrophy. Moreover, we have shown that pharmacologically or genetically attenuating extracellular signal-regulated kinase (ERK) signaling in muscle fibers resulted in decreases (P < 0.05) in fast but not slow fiber type-specific reporter gene expressions in response to BA exposure in vitro and in vivo. Consistent with these data, forced expression of MAPK phosphatase 1, a nuclear protein that dephosphorylates ERK1/2, in fast-twitch skeletal muscle ablated (P < 0.05) the hypertrophic effects of BA feeding (clenbuterol, 20 parts per million in water) in vivo. Further analysis has shown that BA-induced phosphorylation and activation of ERK occurred to a greater (P < 0.05) extent in fast myofibers than in slow myofibers. Analysis of the basal level of ERK activity in slow and fast muscles revealed that ERK1/2 is activated to a greater extent in fast- than in slow-twitch muscles. These data indicate that ERK signaling is differentially involved in BA-induced hypertrophy in slow and fast skeletal muscles, suggesting that the increased abundance of phospho-ERK1/2 and ERK activity found in fast-twitch myofibers, compared with their slow-twitch counterparts, may account, at least in part, for the fiber type-specific hypertrophy induced by BA stimulation. These data suggest that fast myofibers are pivotal in the adaptation of muscle to environmental cues and that the mechanism underlying this change is partially mediated by the MAPK signaling cascade. muscle fiber type; mitogen-activated protein kinase signaling pathways; mechanism  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号