首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an effort to increase the transfer of training to sport performance, sport-specific training programs should be developed. Competition modeling has been proposed as a method for developing metabolic conditioning programs that mimic competition environments. This process involves both a qualitative and quantitative evaluation of competitive conditions of a sport. The purpose of this observational research was to construct a competition model of American football for 3 different levels: high school, collegiate, and professional. Observations of 30 football games at different levels were conducted and modeled with respect to length of play, length of recovery between plays, plays per series, and stoppages per series. The resultant data demonstrated that differences in these variables exist between levels of play. High school plays lasted, on average, 5.6 +/- 2.0 seconds and were slightly longer than college (+0.47 seconds) and professional (+0.44 seconds) plays. The average time for recovery between plays was longest in National Football League (NFL) games and shortest in high school. On average, the work to recovery ratio was most strenuous in high school (1:5.5), college (1:6.1), and NFL (1:6.2), respectively. Differences in the identified competitive conditions, although slight, do exist among high school, collegiate, and professional football. In order to design specific metabolic training programs for American football, coaches should consider the identified models. Exercise to rest ratios and volume of work performed in a training session should be designed to ensure that players are preparing specifically for identified game conditions.  相似文献   

2.
This study compares the effects of rest intervals on isokinetic muscle torque recovery between sets of a knee extensor and flexor exercise protocol in physically active younger and older women. Twenty young (22.4 +/- 1.7 years) and 16 older (70.7 +/- 4.3 years) women performed three sets of eight maximum repetitions of knee extension/flexion at 60 degrees x s(-1). The rest interval between sets was 15, 30, and 60 seconds and was randomly assigned across three testing days. No significant interaction of rest by set by age group was observed. There was a significant decline in mean knee extensor torque when 15- and 30-second rest intervals were used between sets, but not when a 60-second rest interval was applied for both the young and the old women. No significant decline for mean knee flexor torque was observed in the older women when a 30-second rest interval was used, whereas a longer 60-second rest interval was required in younger women. Active younger and older women require similar rest intervals between sets of a knee extensor exercise (60 seconds) for complete recovery. However, older women recovered faster (30 seconds) than younger women (60 seconds) between sets of a knee flexor exercise. The exercise-to-rest ratio for knee extensors was similar for young and old women (1:2). Old women required only a 1:1 exercise-to-rest ratio for knee flexor recovery, whereas younger women required a longer 1:2 exercise-to-rest ratio. The results of the present study are specific to isokinetic testing and training and are more applicable in rehabilitation and research settings. Practitioners should consider age and gender when prescribing rest intervals between sets.  相似文献   

3.
The purpose of this study was to compare selected physical fitness and performance variables between National Collegiate Athletic Association (NCAA) Division I and II football players. The subjects included offensive and defensive starters, excluding kickers and punters from 26 NCAA Division I and 23 Division II teams. Offensive players were grouped and compared by the following positions: quarterback, running back, wide receiver, tight end, and line. Defensive players were grouped and compared by the following positions: line, linebackers, and backs. Division I players were better in 58 of 117 comparisons (p < or = 0.01). Division II players were not found to be better in any of the variables studied.  相似文献   

4.
5.
The purpose of this study was to determine the effect of football equipment and running surface on sprint performance in NCAA Division II football players (n = 68). Players were timed in the 40-yd sprint on an indoor rubberized track (Day 1) and on an outdoor, natural-grass football field (Day 2) wearing either regulation football equipment or shorts and a T-shirt. Each player was assigned randomly to perform 2 trials under each condition on each surface, and the average of the 2 trials was used for analysis. Offensive backs, defensive backs, and linebackers were significantly faster than were offensive and defensive linemen in all trials, and subjects were collapsed into 2 groups, backs and linemen. Football equipment significantly impaired performance on the track (-2.8% +/- 1.7%) and the field (-2.9% +/- 1.8%). The increase in body mass due to the football equipment was significantly greater for backs (7.2% +/- 0.7%) than for linemen (6.5% +/- 1.0%), but produced a significantly greater impairment in sprint performance in linemen (-3.3% +/- 1.1%) as compared with backs (-2.5% +/- 1.5%). Sprint performance was significantly and equivalently impaired when running on grass (backs: -2.5 +/- 1.1%; linemen: -2.8 +/- 1.4%) as compared with the track. Thus, running a 40-yd sprint in football equipment on a natural grass field impairs performance by an average of 5.5% (+/- 2.3%) compared with running indoors with minimal apparel. Football equipment and running surface significantly impair sprint performance in college football players, the effect being greater in linemen than in backs, and is likely related to differences in muscle strength/power and body fat.  相似文献   

6.
We investigated the movement patterns of small-sided training games and compared these movement patterns with domestic, national, and international standard competition in elite women soccer players. In addition, we investigated the repeated-sprint demands of women's soccer with respect to the duration of sprints, number of sprint repetitions, recovery duration, and recovery intensity. Thirteen elite women soccer players [age (mean +/- SD) 21 +/- 2 years] participated in this study. Time-motion analysis was completed during training (n = 39) consisting of small-sided (i.e., three versus three and five versus five) training games, domestic matches against male youth teams (n = 10), Australian national-league matches (n = 9), and international matches (n = 12). A repeated-sprint bout was defined as a minimum of three sprints, with recovery of less than 21 seconds between sprints. The overall exercise to rest ratios for small-sided training games (1:13) were similar to or greater than domestic competition against male youth teams (1:15) and national-league (1:16) and international (1:12) competitions. During the international matches analyzed, 4.8 +/- 2.8 repeated-sprint bouts occurred per player, per match. The number of sprints within the repeated-sprint bouts was 3.4 +/- 0.8. The sprint duration was 2.1 +/- 0.7 seconds, and the recovery time between sprints was 5.8 +/- 4.0 seconds. Most recovery between sprints was active in nature (92.6%). In contrast to international competition, repeated-sprint bouts were uncommon in small-sided training games, domestic competition against male youth teams, and national-league competition. These findings demonstrate that small-sided training games simulate the overall movement patterns of women's soccer competition but offer an insufficient training stimulus to simulate the high-intensity, repeated-sprint demands of international competition.  相似文献   

7.
The purpose of this investigation was to determine whether performing high force or explosive force movements prior to sprinting would improve running speed. Fifteen NCAA Division III football players performed a heavy-load squat (HS), loaded countermovement jump (LCMJ), or control (C) warm-up condition in a counterbalanced randomized order over the course of 3 weeks. The HS protocol consisted of 1 set of 3 repetitions at 90% of the subject's 1 repetition maximum (1RM). The LCMJ protocol was 1 set of 3 repetitions at 30% of the subject's 1RM. At 4 minutes post-warm-up, subjects completed a timed 40-m dash with time measured at 10, 30, and 40 m. The results of the study indicated that when preceded by a set of HS, subjects ran 0.87% faster (p < or = 0.05) in the 40-m dash (5.35 +/- 0.32 vs. 5.30 +/- 0.34 seconds) in comparison to C. No significant differences were observed in the 10-m or 30-m split times between the 3 conditions. The data from this study suggest that an acute bout of low-volume heavy lifting with the lower body may improve 40-m sprint times, but that loaded countermovement jumps appear to have no significant effect.  相似文献   

8.
Previous research has shown that static stretching (SS) can diminish the peak force output of stretch-shortening cycle actions while performing a dynamic warm-up (DW) protocol has been shown to enhance performance in similar activities. The purpose of this study was to establish whether the deleterious effects of SS would wash out the performance enhancements obtained from the DW. Eleven males and 11 females, who were athletes of a NCAA Division I track team, performed a DW followed with either a SS or rest (NS) condition. After warm-up was completed, three 40 m sprints were performed to investigate the effects of the SS condition on sprint performance when preceded by DW. Time(s) were obtained from timing gates placed at 0, 20, and 40 m respectively. Testing was conducted over 2 days with a 1 week washout period. Testing order was balanced to eliminate possible order effect. Time for the NS versus the SS group was significantly faster for the second 20 m with a time of 2.41 versus 2.38 seconds (P < or = .05), and for the entire 40 m with a time of 5.6 +/- 0.4 versus 5.7 +/- 0.4 seconds (P < or = .05). The results of this study suggest that performing a SS protocol following a DW will inhibit sprint performance in collegiate athletes.  相似文献   

9.
This cross-sectional study investigated the effects of participation in various sports on side-to-side (contralateral) differences in bone mineral density (BMD) of the upper and lower limbs. The BMD of the arms and legs was measured using dual energy X-ray absorptiometry. The subjects were 184 collegiate athletes, both men and women, who participated in NCAA Division I-A baseball, basketball, football, golf, soccer, tennis, cross-country, indoor/outdoor track, and volleyball. Results revealed greater BMD of the right arms compared with the left arms for all teams, with the most pronounced differences observed in men's and women's tennis and men's baseball. Differences in the lower limbs were less common. No significant differences in lower limb BMD were found in the women. In men, differences in lower limb BMD were found in the football and tennis teams, with the nondominant leg having greater bone mass. Recognition of contralateral differences in bone density may be of particular interest to strength and conditioning professionals as they consider the need to include bilateral and unilateral training programs in an effort to maximize performance and minimize stress-related injuries.  相似文献   

10.
The purpose of this study was to examine the effects of creatine supplementation on the incidence of injury observed during 3-years of NCAA Division IA college football training and competition. In an open label manner, athletes participating in the 1998–2000 football seasons elected to take creatine or non-creatine containing supplements following workouts/practices. Subjects who decided to take creatine were administered 15.75 g of creatine for 5 days followed by ingesting an average of 5 g/day thereafter administered in 5–10 g doses. Creatine intake was monitored and recorded by research assistants throughout the study and ranged between 34–56% of players during the course of the study. Subjects practiced or played in environmental conditions ranging from 8–40°C (mean 24.7 ± 9°C) and 19–98% relative humidity (49.3 ± 17%). Injuries treated by the athletic training staff were recorded and categorized as cramping, heat/dehydration, muscle tightness, muscle strains/pulls, non-contact joint injuries, contact injuries, and illness. The number of missed practices due to injury/illness was also recorded. Data are presented as the total number of treated injuries for creatine users/total injuries observed and percentage occurrence rate of injuries for creatine users for all seasons. The incidence of cramping (37/96, 39%), heat/dehydration (8/28, 36%), muscle tightness (18/42, 43%), muscle pulls/strains (25/51, 49%), non-contact joint injuries (44/132, 33%), contact injuries (39/104, 44%), illness (12/27, 44%), number of missed practices due to injury (19/41, 46%), players lost for the season (3/8, 38%), and total injuries/missed practices (205/529, 39%) were generally lower or proportional to the creatine use rate among players. Creatine supplementation does not appear to increase the incidence of injury or cramping in Division IA college football players.  相似文献   

11.
Strength and conditioning training for football has become year-round in virtually all levels of play, but none so much as contemporary NCAA DI football. Football players spend more off-season months and weeks in preparation for sport than is given to in-season practice, let alone play. A present peculiarity to NCAA Football Bowl Subdivision is conditioning and off-season football training is the sole setting for non-traumatic death in its participant players. Training regimens are too often built on tradition versus based on science and place players at-risk.  相似文献   

12.
This study investigated the activity profile of young soccer players (mean age 11.8 +/- 0.6 years; N = 12) with the aim of providing information for the development of training strategies. Data for movements of each player were obtained using 2 cameras that aimed at the subject throughout the match (Play Controller, Phromos, Italy). Encoders transmitted camera movements to a computer. The collected signals were then converted into distances, times, and speed attained at arbitrarily selected match categories. Players were monitored during official 11 vs. 11 matches (N = 12), with each match consisting of 2 halves, each lasting 30 minutes played on a regular soccer pitch. Mean total match distance amounted to 6,175 +/- 318 m. During the second half, players covered 5.5% less distance (p > 0.05). At speeds between 13.1 and 18.0 km.h(-1), players covered 12% less distance during the second half (p < 0.05). Players stood still 11% of the total time played (3,789 +/- 109 seconds). At speeds faster than 18 km.h(-1), players performed 33 +/- 4 bouts during match play, with a mean time length of 2.3 +/- 0.6 seconds per bout. Mean time interval between two successive maximal sprint bouts was 118.5 +/- 20.5 seconds. Players stood still longer during the course of the second half (229 +/- 76 seconds vs. 173 +/- 61 seconds, p < 0.05). Players tended to play in small areas of the football pitch and spent 9% of the total match time at high intensity. In order to promote a more active space coverage of the young player, at least for the age considered in the present study, the dimensions of the football pitch and the number of players should be reduced.  相似文献   

13.
The relationships between football playing ability (FPA) and selected anthropometric and performance measures were determined among NCAA Division I-A football players (N = 40). Football playing ability (determined by the average of coaches' rankings) was significantly correlated with vertical jump (VJ) in all groups (offense, defense, and position groups of wide receiver-defensive back, offensive linemen-defensive linemen, and running back-tight end-linebacker). Eleven of 50 correlations (groups by variables), or 22%, were important for FPA. Five of the 11 relationships were related to VJ. Forward stepwise regression equations for each group explained over half of the criterion variable, FPA, as indicated by the R(2) values for each model. Vertical jump was the prime predictor variable in the equations for all groups. The findings of this study are discussed in relation to the specificity hypothesis. Strength and conditioning programs that facilitate the capacity for football players to develop forceful and rapid concentric action through plantar flexion of the ankle, as well as extension of the knee and hip, may be highly profitable.  相似文献   

14.
Strength and conditioning professionals who work with collegiate football players focus much of their time and effort on developing programs to enhance athletic performance. Although there has been much speculation, there is little scientific evidence to suggest which combination of physical characteristics best predicts athletic performance in this population. The purpose of this investigation was to examine the relationship among 6 physical characteristics and 3 functional measures in college football players. Data were gathered on 46 NCAA Division I college football players. The 3 response variables were 36.6-m sprint, 18.3-m shuttle run, and vertical jump. The 6 regressor variables were height, weight, percentage of body fat, hamstring length, bench press, and hang clean. A stepwise multiple regression analysis was performed to screen for variables that predict physical performance. Regression analysis revealed clear prediction models for the 36.6-m sprint and 18.3-m shuttle run. The results of this investigation will help strength and conditioning specialists better understand the variables that predict athletic performance in Division I college football players.  相似文献   

15.
The purpose of this study was to investigate the effectiveness of 4 weeks of low-intensity resistance training with blood-flow occlusion on upper and lower body muscular hypertrophy and muscular strength in National Collegiate Athletic Association Division IA football players. There were 32 subjects (average age 19.2 ± 1.8 years) who were randomized to an occlusion group or control group. The athletes performed 4 sets of bench press and squat in the following manner with or without occlusion: 30 repetitions of 20% predetermined 1 repetition maximum (1RM), followed by 3 sets of 20 repetitions at 20% 1RM. Each set was separated by 45 seconds. The training duration was 3 times per week, after the completion of regular off-season strength training. Data collected included health history, resting blood pressure, pretraining and posttraining bench press and squat 1RM, upper and lower chest girths, upper and lower arm girths, thigh girth, height, and body mass. The increases in bench press and squat 1RM (7.0 and 8.0%, respectively), upper and lower chest girths (3 and 3%, respectively), and left upper arm girth were significantly greater in the experiment group (p < 0.05). Occlusion training could provide additional benefits to traditional strength training to improve muscular hypertrophy and muscular strength in collegiate athletes.  相似文献   

16.
The vertical jump is a performance test commonly used to assess explosive power and predict athletic ability. Typically, the vertical jump is performed with a countermovement from a stationary stance. We hypothesized that taking a quick step back before initiating the jump, known as the drop-step technique, would result in a higher vertical jump. The purpose of this study was to compare countermovement vertical jumps (CMJs) done from the stationary-stance position to CMJs performed with the drop-step with trained athletes. NCAA Division I football players (N = 56) performed 3 trials each of stationary-stance and drop-step CMJs in a random order. A paired t test revealed that a significantly (p < 0.01) higher jump height was achieved with the drop-step CMJ (69.3 +/- 8.0 cm) compared to the stationary-stance CMJ (66.5 +/- 8.0 cm). The 2 jump conditions were highly related (r = 0.95), and the rank order of the athletes tended to be similar from 1 condition to the other (rho = 0.94). Trial-to-trial reliability was similar for each condition (coefficient of variation [CV] = 3.5% stationary stance; CV = 4.1% drop step). It is important to standardize CMJ testing procedures because a significant difference in the height achieved exists between the stationary-stance and drop-step techniques.  相似文献   

17.
The purpose of this study was to compare anthropometric and athletic performance variables during the playing career of NCAA Division III college football players. Two hundred and eighty-nine college football players were assessed for height, body mass, body composition, 1-repetition-maximum (1RM) bench press, 1RM squat, vertical jump height (VJ), vertical jump peak, and vertical jump mean (VJMP) power, 40-yd sprint speed (40S), agility, and line drill (LD) over an 8-year period. All testing occurred at the beginning of summer training camp in each of the seasons studied. Data from all years of testing were combined. Players in their fourth and fifth (red-shirt year) seasons of competition were significantly (p < 0.05) heavier than first-year players. Significant increases in strength were seen during the course of the athletes' collegiate career (31.0% improvement in the 1RM bench press and 36.0% increase in squat strength). The VJ was significantly greater during the fourth year of competition compared to in the previous 3 years of play. Vertical jump peak and VJMP were significantly elevated from years 1 and 2 and were significantly higher during year 4 than during any previous season of competition. No significant changes in 40S or LD time were seen during the athletes playing career. Fatigue rate for the LD (fastest time/slowest time of 3 LD) significantly improved from the first (83.4 ± 6.4%) to second season (85.1 ± 6.5%) of competition. Fatigue rates in the fourth (88.3 ± 4.8%) and fifth (91.2 ± 5.2%) seasons were significantly greater than in any previous season. Strength and power performance improvements appear to occur throughout the football playing career of NCAA Division III athletes. However, the ability to significantly improve speed and agility may be limited.  相似文献   

18.
The purpose of this study was to examine whether gender differences exist for ventilatory threshold (VT), lactate threshold (LT), and Vo2max during on-ice skating in college hockey players. Ten male and 10 female Division III college hockey players performed a graded exercise skating protocol until reaching volitional fatigue. The graded exercise test employed stages that were 80 seconds in duration, with 40 seconds of rest between each stage to obtain blood lactate samples. Ventilatory threshold occurred at a higher percentage of maximal heart rate (HRmax) in women than in men. The women's VT occurred at 77.3% +/- 1.6% HRmax, while the men's VT occurred at 72.6% +/- 2.0% HRmax (p < 0.02). Men and women had similar HRmax values: 191.3 +/- 2.5 b.min and 185.8 +/- 2.5 b.min, respectively. Vo2max was different between genders, with men at 52.7 +/- 1.3 mL.kg.min and women at 40.1 +/- 1.0 mL.kg.min (p < 0.01). In addition, VT was different between genders when measured as a percentage of Vo2max, with men at 52.7% +/- 3.2% and women at 67.3% +/- 4.0% (p < 0.02). In contrast, LT was similar between genders when expressed as a percentage of HRmax or Vo2max. For each gender, LT occurred at a significantly higher percentage of HRmax or Vo2max than VT did. It can be concluded that VT does not accurately predict LT in male or female hockey players. Additionally, competitive female hockey players have a lower Vo2max but a higher VT than their male counterparts. An increased VT may be a compensatory mechanism to offset the smaller Vo2max values measured in female hockey players. On-ice testing is a practical way to address specific aerobic training needs of hockey players.  相似文献   

19.
The purpose of this study was to evaluate the contribution of anthropometric dimensions to improving the accuracy of repetitions-to-fatigue (RTF) using an absolute load of 225 lbs to predict 1 repetition maximum (1RM) bench press performance in college football players. Sixty-one players from an NCAA Division II team were evaluated for 1RM bench press performance, RTF using an absolute load of 225 lbs, and measured (5 skinfolds, 2 skeletal length, and 2 muscle circumferences). Anthropometric dimensions (percent fat, lean body mass, and arm cross-sectional areas) were derived at the conclusion of 8 weeks of heavy resistance training during the off-season. None of the anthropometric dimensions made a significant additional contribution to RTF (r = 0.96, SEE = 12.3 lbs) for predicting 1RM. Of the currently available NFL-225 prediction equations found in the literature nonsignificantly underestimated 1RM from RTF by an average of 1.1 lbs (+/-12.7 lbs), whereas 5 other RTF equations significantly overpredicted by 3.5-9.0 lbs (+/-12.2-14.1 lbs). Anthropometric dimensions neither reduced the error associated with prediction of 1RM bench press using the NFL-225 test in college football players nor do they explain why some players are significantly over- or underpredicted when using muscle endurance repetitions.  相似文献   

20.
The purpose of this study was to compare percent body fat (%BF) estimated by air displacement plethysmography (ADP) and leg-to-leg bioelectrical impedance analysis (LBIA) with hydrostatic weighing (HW) in a group (n = 25) of NCAA Division III collegiate wrestlers. Body composition was assessed during the preseason wrestling weight certification program (WCP) using the NCAA approved methods (HW, 3-site skinfold [SF], and ADP) and LBIA, which is currently an unaccepted method of assessment. A urine specific gravity less than 1.020, measured by refractometry, was required before all testing. Each subject had all of the assessments performed on the same day. LBIA measurements (Athletic mode) were determined using a Tanita body fat analyzer (model TBF-300A). Hydrostatic weighing, corrected for residual lung volume, was used as the criterion measurement. The %BF data (mean +/- SD) were LBIA (12.3 +/- 4.6), ADP (13.8 +/- 6.3), SF (14.2 +/- 5.3), and HW (14.5 +/- 6.0). %BF estimated by LBIA was significantly (p < 0.01) smaller than HW and SF. There were no significant differences in body density or %BF estimated by ADP, SF, and HW. All methods showed significant correlations (r = 0.80-0.96; p < 0.01) with HW. The standard errors of estimate (SEE) for %BF were 1.68, 1.87, and 3.60%; pure errors (PE) were 1.88, 1.94, and 4.16% (ADP, SF, and LBIA, respectively). Bland-Atman plots for %BF demonstrated no systematic bias for ADP, SF, and LBIA when compared with HW. These preliminary findings support the use of ADP and SF for estimating %BF during the NCAA WCP in Division III wrestlers. LBIA, which consistently underestimated %BF, is not supported by these data as a valid assessment method for this athletic group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号