首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of this study was to assess the usefulness of the vertical jump and estimated vertical-jump power as a field test for weightlifting. Estimated PP output from the vertical jump was correlated with lifting ability among 64 USA national-level weightlifters (junior and senior men and women). Vertical jump was measured using the Kinematic Measurement System, consisting of a switch mat interfaced with a laptop computer. Vertical jumps were measured using a hands-on-hips method. A counter-movement vertical jump (CMJ) and a static vertical jump (SJ, 90 degrees knee angle) were measured. Two trials were given for each condition. Test-retest reliability for jump height was intra-class correlation (ICC) = 0.98 (CMJ) and ICC = 0.96 (SJ). Athletes warmed up on their own for 2-3 minutes, followed by 2 practice jumps at each condition. Peak power (PP) was estimated using the equations developed by Sayers et al. (24). The athletes' current lifting capabilities were assessed by a questionnaire, and USA national coaches checked the listed values. Differences between groups (i.e., men versus women, juniors versus resident lifters) were determined using t-tests (p < or = 0.05). Correlations were determined using Pearson's r. Results indicate that vertical jumping PP is strongly associated with weightlifting ability. Thus, these results indicate that PP derived from the vertical jump (CMJ or SJ) can be a valuable tool in assessing weightlifting performance.  相似文献   

2.
The primary aim of this study was to determine reliability and factorial validity of squat (SJ) and countermovement jump (CMJ) tests. The secondary aim was to compare 3 popular methods for the estimation of vertical jumping height. Physical education students (n = 93) performed 7 explosive power tests: 5 different vertical jumps (Sargent jump, Abalakow's jump with arm swing and without arm swing, SJ, and CMJ) and 2 horizontal jumps (standing long jump and standing triple jump). The greatest reliability among all jumping tests (Cronbach's alpha = 0.97 and 0.98) had SJ and CMJ. The reliability alpha coefficients for other jumps were also high and varied between 0.93 and 0.96. Within-subject variation (CV) in jumping tests ranged between 2.4 and 4.6%, the values being lowest in both horizontal jumps and CMJ. Factor analysis resulted in the extraction of only 1 significant principal component, which explained 66.43% of the variance of all 7 jumping tests. Since all jumping tests had high correlation coefficients with the principal component (r = 0.76-0.87), it was interpreted as the explosive power factor. The CMJ test showed the highest relationship with the explosive power factor (r = 0.87), that is, the greatest factorial validity. Other jumping tests had lower but relatively homogeneous correlation with the explosive power factor extracted. Based on the results of this study, it can be concluded that CMJ and SJ, measured by means of contact mat and digital timer, are the most reliable and valid field tests for the estimation of explosive power of the lower limbs in physically active men.  相似文献   

3.
The purpose of this study was to evaluate the reliability of a new anaerobic athletic performance system. This system is proposed to assess vertical jump height, anaerobic power through repetitive jumping, and reaction to both an auditory and visual stimulus. One hundred twenty-three subjects (92 men and 31 women; mean +/- SD: age, 20.5 +/- 2.1 years; body weight, 83.1 +/- 20.4 kg; height, 176.0 +/- 9.2 cm) volunteered to participate. To assess reliability of the new testing device, subjects were tested on 3 separate occasions (T1, T2, and T3). At least 72 hours but not more than 1 week separated each laboratory visit. During each testing session subjects performed a countermovement jump (CMJ), a 30 consecutive jumps anaerobic power test (30JT), and reaction to both an auditory and visual stimulus. Results showed no differences between T1, T2, and T3 in either CMJ height or 30JT assessments. However, reaction to an audible or visual stimulus significantly improved during each testing session. Intraclass reliability of the CMJ and the 30JT was greater than 0.96 across the 3 trials. Pearson correlation coefficients of r > 0.90 were seen for the CMJ and 30JT, indicating a high test-retest reliability. The test-retest reliability for the reaction tests were lower (r ranging from 0.72 to 0.83). A Bland-Altman plot showed limited agreement between methods of vertical jump height assessment. Results indicate that this new testing device shows high reliability to assess both CMJ height and anaerobic power. In addition, anaerobic power assessment in a jump test provides a specific measure of anaerobic power for many sports incorporating similar performance patterns.  相似文献   

4.
The purpose of this investigation was to determine the concurrent validity of a commonly used electronic switch mat (ESM), or jump mat, compared with force plate (FP) data. The efficiency of collection and accuracy of data are paramount to athlete and player field testing for the strength and conditioning coach who often has access only to a jump mat. Ten subjects from 5 different sporting backgrounds completed 3 squat jumps (SJs), 3 countermovement jumps (CMJs), and 3 drop jumps (DJs). The jumps were performed on an AMTI FP operating at 1,000 Hz with an ESM positioned on top of the platform. All the subjects were experienced with the protocols involved with jump testing. The resulting absolute errors between FP and ESM data were 0.01, 0.02, and 0.01 m for CMJ, SJ, and DJ heights, respectively. However, the coefficient of variation for the DJ contact time (CT) was 57.25%, CMJ (r = 0.996), and SJ (r = 0.958) heights correlated very strongly with force platform data, and DJ data were not as strong (r = 0.683). Confidence interval tests revealed bias toward CMJ and SJ (p < 0.05). The jump mat can accurately calculate the CMJ height, SJ height, and reactive strength index for all the 3 jump protocols. However, the faster CTs and rapid movements involved in a DJ may limit its reliability when giving measures of CT, flight time, and height jumped for DJs. Strength and conditioning coaches can use such a jump mat device with the confidence that it is accurately producing valid measurements of their athlete's performance for CMJ and SJ slow SSC protocols.  相似文献   

5.
The maximum velocity (Vmax) reached during countermovement jumps (CMJ) has been considered a performance indicator to evaluate vertical jump ability. The aim of this study was to compare Vmax during loaded CMJ (CMJloaded) using three different technologies to show a criterion for selecting the more appropriate depending on its use. Nine recreationally active men performed a CMJloaded test. Five jumps were made in each of 6 series with a 20- kg barbell + 0, + 5, + 10, + 15, + 20 and + 25 kg, with 2 seconds rest between the jumps and 5 minutes rest between the series to explore a wide range of speeds. Vmax was obtained from force platform, inertial device and linear encoder technologies. Bland-Altman plots and mean differences were used to compare devices. Reproducibility was tested using the intraclass correlation coefficient (ICC) for single measures and typical error (TE). All technologies showed high levels of reproducibility, ICC higher than 0.75 and TE lower than 10 %. There were non-significant differences in Vmax between each pair of technologies (linear encoder 2.11 ± 0.24 m·s-1, accelerometer 2.11 ± 0.26 m·s-1, force platform 2.12 ± 0.24 m·s-1) reporting a very low bias. However the limits of agreement between the different technologies evaluated were high (± 0.33 m·s-1). In conclusion, the accelerometer, linear encoder and force platform were suitably reliable to be used to measure Vmax during loaded vertical jumps but their values were not interchangeable.  相似文献   

6.
The objective of this study was to compare bilateral and unilateral hurdle jumps with traditional countermovement jumps (CMJs). Thirteen athletes were tested during continuous forward bilateral and unilateral hurdle jumps and single CMJ. Countermovement jump height was used to establish the hurdle height. Subjects jumped forward over 4 hurdles with the force plate positioned after the second hurdle to measure vertical ground reaction force (VGRF), contact time (CT), and rate of force development (RFD). For bilateral jumps, hurdle height was established at maximal (100%) CMJ height and at 120, 140, and 160% of the CMJ height. The athletes were instructed to jump as fast as possible to mimic a training session drill. For unilateral jumps, hurdle height was set at 70, 80, and 90% of the CMJ height. Bilateral 160% jumps showed a significantly longer CT than bilateral 100, 120, and 140% jumps. The bilateral 100, 120, and 140% jumps had significantly shorter CT than the unilateral jumps and CMJ. The VGRF during bilateral jumps was higher than unilateral jumps and CMJ. Bilateral 160% jump RFD was significantly higher than CMJ and unilateral jumps but significantly lower than the other bilateral jumps. In conclusion, the characteristics of the bilateral jumps were substantially different from those of the CMJ and unilateral hurdle jumps. As bilateral hurdle jumps with a height between 100 and 140% of the CMJ provide similar CTs and VGRF as many reported sprint or jump actions, they may be considered a more training-specific power training drill than the CMJ.  相似文献   

7.
The purpose of the present study was to determine the number of familiarization sessions required to obtain an accurate measure of reliability associated with loaded vertical jump and 20-m sprint running performance. Ten physically active men attended 5 separate testing sessions over a 3-week period where they performed unloaded and loaded (10-kg extra load) countermovement (CMJ) and static (SJ) jumps, followed by straight-line 20-m sprints. Jump height was recorded for the vertical jumps using a jump mat, while the time for 10 m and 20 m was recorded during the sprints using photocells. The highest (jump conditions) and fastest (sprint) of 3 trials performed during each of the 5 testing sessions was used in the subsequent analysis. Familiarization was assessed using the scores obtained during the 5 separate testing sessions. Reliability was assessed by calculating intraclass correlation coefficients (ICCs) and coefficient of variation (CV). No significant differences were obtained between the testing sessions for any of the measures. ICCs ranged from 0.89 to 0.95, while CVs ranged from 1.9 to 2.6%. These results indicate that high levels of reliability can be achieved without the need for familiarization sessions when using loaded and unloaded CMJ and SJ and 20-m sprint performance with physically active men.  相似文献   

8.
The ability to jump high is considered important in a number of sports. It is commonly accepted that the use of the arms and a counter movement increase jump height. In some sport situations (e.g., volley ball block, basketball rebound), athletes may not be able to utilize a counter movement or arm swing. The purpose of this study is to examine gender differences in the contribution of the arm swing and counter movement to vertical jump height. Fifty college students, 25 men (age = 21.4 +/- 1.7 years, height = 182.2 +/- 8 cm, weight = 83.7 +/- 12.4 kg) and 25 women (age = 20.7 +/- 1.6 years, height = 166.7 +/- 6.3 cm, weight = 61.5 +/- 7.0 kg), performed 4 jumping movements: squat jumps with hands on hips (SNA), counter movement jump with hands on hips (CMNA), squat jump with arm swing (SA), and counter movement with arm swing (CMA). Significant differences were found between men's and women's performance, as well as between each type of jump within each gender. A mixed-model analysis of variance detected gender differences with respect to changes in the jumping movement. For both sexes the jumps in order from worst to best were SNA, CMNA, SA, and CMA. Peak power values for men were 4,057, 4,020, 4,644, and 4,747 W, respectively, for the 4 jumps. The female power values were 2,543, 2,445, 2,842, and 2,788 W, respectively, for the 4 jumps. Arms increased jump height more than a counter movement for both genders, with jump heights for men at 29.6, 31, 36, and 38 cm, respectively, and those of women 21, 22, 26, and 27 cm, respectively. Use of the arms was found to increase the jump height of the men significantly more than that of women. Changes in jumping movements affect men and women differently. The greater increase in jump height for the men when using the arm swing could be because of greater upper body strength of men compared with women. This could have applications to training and upper body strength and also to modeling of jumping movements.  相似文献   

9.
The reliability of three devices used for measuring vertical jump height   总被引:1,自引:0,他引:1  
The purpose of this investigation was to assess the intrasession and intersession reliability of the Vertec, Just Jump System, and Myotest for measuring countermovement vertical jump (CMJ) height. Forty male and 39 female university students completed 3 maximal-effort CMJs during 2 testing sessions, which were separated by 24-48 hours. The height of the CMJ was measured from all 3 devices simultaneously. Systematic error, relative reliability, absolute reliability, and heteroscedasticity were assessed for each device. Systematic error across the 3 CMJ trials was observed within both sessions for males and females, and this was most frequently observed when the CMJ height was measured by the Vertec. No systematic error was discovered across the 2 testing sessions when the maximum CMJ heights from the 2 sessions were compared. In males, the Myotest demonstrated the best intrasession reliability (intraclass correlation coefficient [ICC] = 0.95; SEM = 1.5 cm; coefficient of variation [CV] = 3.3%) and intersession reliability (ICC = 0.88; SEM = 2.4 cm; CV = 5.3%; limits of agreement = -0.08 ± 4.06 cm). Similarly, in females, the Myotest demonstrated the best intrasession reliability (ICC = 0.91; SEM = 1.4 cm; CV = 4.5%) and intersession reliability (ICC = 0.92; SEM = 1.3 cm; CV = 4.1%; limits of agreement = 0.33 ± 3.53 cm). Additional analysis revealed that heteroscedasticity was present in the CMJ when measured from all 3 devices, indicating that better jumpers demonstrate greater fluctuations in CMJ scores across testing sessions. To attain reliable CMJ height measurements, practitioners are encouraged to familiarize athletes with the CMJ technique and then allow the athletes to complete numerous repetitions until performance plateaus, particularly if the Vertec is being used.  相似文献   

10.
The purpose of this study was to determine the efficacy of estimating peak lower body power from a maximal jump squat using 3 different vertical jump prediction equations. Sixty physically active college students (30 men, 30 women) performed jump squats with a weighted bar's applied load of 20, 40, and 60% of body mass across the shoulders. Each jump squat was simultaneously monitored using a force plate and a contact mat. Peak power (PP) was calculated using vertical ground reaction force from the force plate data. Commonly used equations requiring body mass and vertical jump height to estimate PP were applied such that the system mass (mass of body + applied load) was substituted for body mass. Jump height was determined from flight time as measured with a contact mat during a maximal jump squat. Estimations of PP (PP(est)) for each load and for each prediction equation were compared with criterion PP values from a force plate (PP(FP)). The PP(est) values had high test-retest reliability and were strongly correlated to PP(FP) in both men and women at all relative loads. However, only the Harman equation accurately predicted PP(FP) at all relative loads. It can therefore be concluded that the Harman equation may be used to estimate PP of a loaded jump squat knowing the system mass and peak jump height when more precise (and expensive) measurement equipment is unavailable. Further, high reliability and correlation with criterion values suggest that serial assessment of power production across training periods could be used for relative assessment of change by either of the prediction equations used in this study.  相似文献   

11.
12.
The purpose of this study was to evaluate the immediate influence of eccentric muscle action on vertical jump performance in athletes performing sports with a high demand of explosive force development. In this randomized, controlled crossover trial, 13 Swiss elite athletes (national team members in ski jump, ski alpine, snowboard freestyle and alpine, ski freestyle, and gymnastics) with a mean age of 22 years (range 20-28) were randomized into 2 groups. After a semistandardized warm-up, group 1 did 5 jumps from a height of 60 cm, landing with active stabilization in 90 degrees knee flexion. One minute after these modified drop jumps, they performed 3 single squat jumps (SJ) and 3 single countermovement jumps (CMJ) on a force platform. The athletes repeated the procedure after 1 hour without the modified drop jumps. In a crossover manner, group 2 did the first warm-up without and the second warm-up with the modified drop jumps. Differences of the performance (jump height and maximal power) between the different warm-ups were the main outcomes. The mean absolute power and absolute height (without drop jumps) were CMJ 54.9 W.kg(-1) (SD = 4.1), SJ 55.0 W.kg(-1) (SD = 5.1), CMJ 44.1 cm (SD = 4.1), and SJ 40.8 cm (SD = 4.1). A consistent tendency for improvement with added drop jumps to the warm-up routine was observed compared with warm-up without drop jumps: maximal power CMJ +1.02 W.kg(-1) (95% confidence interval [CI] = +0.03 to +2.38), p = 0.045; maximal power SJ +0.8 W.kg(-1) (95% CI = -0.34 to +2.02), p = 0.148; jump height CMJ +0.48 cm (95% CI = -0.26 to +1.2), p = 0.182; SJ +0.73 cm (95% CI = -0.36 to +1.18), p = 0.169. Athletes could add modified drop jumps to the warm-up before competitions to improve explosive force development.  相似文献   

13.
The purpose of the present study was to investigate the intersession reliability of vertical jump height in women and men recorded from a contact mat. Thirty-five women and 35 men performed four testing sessions across a 4-week period, with each session separated by 1 week. Within each testing session, subjects completed three countermovement vertical jumps (CMJs) for maximum height. Reliability statistics were calculated using the highest jump (HIGH) and also from the mean of all three jumps (3 MEAN) during each session. Reliability was calculated as a change in the mean, coefficients of variation (CVs), and intraclass correlations coefficients (ICCs) between testing sessions. For women, jump heights were not substantially different between sessions for either the HIGH or 3 MEAN data. The CVs for women ranged from 4.4 to 6.6% for HIGH and 4.1 to 6.0% for 3 MEAN, with the corresponding ICCs ranging from 0.87 to 0.94 for HIGH and 0.90 to 0.95 for 3 MEAN. For men, jump heights were not substantially different between sessions for HIGH. However, jump heights during session 1 were substantially greater than those during session 2 when using the 3 MEAN data. CVs between sessions for HIGH ranged from 4.0 to 5.6%, and those for 3 MEAN ranged from 4.2 to 5.2%. The ICCs ranged from 0.87 to 0.93 for HIGH and from 0.89 to 0.93 for 3 MEAN. Given the maximal nature of vertical jump tests, it seems appropriate to use the highest jump from a number of trials for women and men when using a contact mat. Practitioners and researchers can use the data to identify the range in which the true value of an athlete's score lies and calculate sample sizes for studies assessing height during CMJs recorded from a contact mat.  相似文献   

14.
In this study we aimed to determine the reliability of the surface electromyography (EMG) of leg muscles during vertical jumping between two test sessions, held 2 weeks apart. Fifteen females performed three maximal vertical jumps with countermovement. The displacement of the body centre of mass (BCM), duration of propulsion phase (time), range of motion (ROM) and angular velocity of the knee and surface EMG of four leg muscles (rectus femoris, vastus medialis. biceps femoris and gastrocnemius) were recorded during the jumps. All variables were analysed throughout the propulsion and mid-propulsion phases. Intraclass correlation coefficients (ICC) for the rectus femoris, vastus medialis, biceps femoris and gastrocnemius were calculated to be 0.88, 0.70, 0.24 and 0.01, respectively. BCM, ROM and time values all indicated ICC values greater than 0.90, and the mean knee angular velocity was slightly lower, at 0.75. ICCs between displacement of the BCM and integrated EMG (IEMG) of the muscles studied were less than 0.50. The angular velocity of the knee did not correlate well with muscle activity. Factors that may have affected reliability were variations in the position of electrode replacement, skin resistance, cross-talk between muscles and jump mechanics. The results of this study suggest that while kinematic variables are reproducible over successive vertical jumps, the degree of repeatability of an IEMG signal is dependent upon the muscle studied.  相似文献   

15.
The vertical jump is a performance test commonly used to assess explosive power and predict athletic ability. Typically, the vertical jump is performed with a countermovement from a stationary stance. We hypothesized that taking a quick step back before initiating the jump, known as the drop-step technique, would result in a higher vertical jump. The purpose of this study was to compare countermovement vertical jumps (CMJs) done from the stationary-stance position to CMJs performed with the drop-step with trained athletes. NCAA Division I football players (N = 56) performed 3 trials each of stationary-stance and drop-step CMJs in a random order. A paired t test revealed that a significantly (p < 0.01) higher jump height was achieved with the drop-step CMJ (69.3 +/- 8.0 cm) compared to the stationary-stance CMJ (66.5 +/- 8.0 cm). The 2 jump conditions were highly related (r = 0.95), and the rank order of the athletes tended to be similar from 1 condition to the other (rho = 0.94). Trial-to-trial reliability was similar for each condition (coefficient of variation [CV] = 3.5% stationary stance; CV = 4.1% drop step). It is important to standardize CMJ testing procedures because a significant difference in the height achieved exists between the stationary-stance and drop-step techniques.  相似文献   

16.
The aim of this study was to determine the relationships between vertical jumps (VJ) and various on-ice skating performances of junior ice hockey players (n = 19). The three modes of VJ or off-ice measures were countermovement jump with arm swing (CMJ), squat jump (SJ) and depth drop jump (DDJ). The on-ice skating performance was measured by the skating multistage aerobic test (SMAT), forward and backward acceleration test, top speed test, and repeated sprint ability (RSA) test. The relationships between the variables were quantified using Pearson’s product-moment correlation. DDJ showed a significant positive correlation with forward average skating speed (FASS) (r = 0.62) and strong correlations with backward average skating speed (BASS) (r = 0.81), and maximum skating speed (MSS) (r = 0.71). SJ was found to be strongly correlated with BASS (r = 0.82) and MSS (r = 0.76), whereas the only on-ice performance that significantly correlated with CMJ was BASS (r = 0.68). All three modes of VJ were inversely and non-significantly correlated with performance decrement index and fatigue index, as determined by the RSA test. SMAT was not significantly correlated with either VJ or RSA. Correlations between all three modes of VJ tests were significant. Therefore, this study concludes that: (1) DDJ can be used as a predictor of all the ice skating speed tests, whereas SJ can predict BASS and MSS. CMJ, on the other hand, can predict the performance of only BASS. (2) RSA performance cannot be predicted from CMJ, SJ, or DDJ tests, and (3) neither any of the VJ nor RSA can predict skating endurance of junior ice hockey players.  相似文献   

17.
The purposes of this study are to examine gender differences in the contribution of the arm swing to jump height in men and women basketball players and to examine the role of upper-body strength in the contribution of arm swing to jump height. National Collegiate Athletic Association Division I basketball players (men n = 13, women n = 12) performed 4 jumping movements: squat jumps with hands on hips (SNA) and with arm swings (SA) and countermovement jumps with hands on hips and with arm swings (CMA). Differences were found between the jump heights of men and women. Use of the arms increased the jump height of men more than women. Compared with the SNA, the SA allowed an increase of 7 cm (23%) for men and 4 cm (17%) for women. The CMA allowed for an increase of 10 cm (30%) for men and 6 cm (24%) for women. General upper-body strength measures did not correlate strongly with the effect of arms on jumping, but peak power did. As in previous studies, peak power had a high correlation with jumping performance. These results show that the arm swing contributes significantly to jump performance in both men and women basketball players and that strength training for jumping should focus on power production and lifting exercises that are jump specific.  相似文献   

18.
Vertical jump height is frequently used by coaches, health care professionals, and strength and conditioning professionals to objectively measure function. The purpose of this study is to determine the concurrent validity of the jump and reach method (Vertec) and the contact mat method (Just Jump) in assessing vertical jump height when compared with the criterion reference 3-camera motion analysis system. Thirty-nine college students, 25 females and 14 males between the ages of 18 and 25 (mean age 20.65 years), were instructed to perform the countermovement jump. Reflective markers were placed at the base of the individual's sacrum for the 3-camera motion analysis system to measure vertical jump height. The subject was then instructed to stand on the Just Jump mat beneath the Vertec and perform the jump. Measurements were recorded from each of the 3 systems simultaneously for each jump. The Pearson r statistic between the video and the jump and reach (Vertec) was 0.906. The Pearson r between the video and contact mat (Just Jump) was 0.967. Both correlations were significant at the 0.01 level. Analysis of variance showed a significant difference among the 3 means F(2,235) = 5.51, p < 0.05. The post hoc analysis showed a significant difference between the criterion reference (M = 0.4369 m) and the Vertec (M = 0.3937 m, p = 0.005) but not between the criterion reference and the Just Jump system (M = 0.4420 m, p = 0.972). The Just Jump method of measuring vertical jump height is a valid measure when compared with the 3-camera system. The Vertec was found to have a high correlation with the criterion reference, but the mean differed significantly. This study indicates that a higher degree of confidence is warranted when comparing Just Jump results with a 3-camera system study.  相似文献   

19.
The purpose of the study was to provide practical suggestions on the effect of stretching on the maximal anaerobic power preceded by active or passive warm-up. To this aim, 15 relatively fit male subjects (age 23 +/- 0.2 years, height 177 +/- 2 cm, body mass 74 +/- 2 kg; [mean +/- SE]) randomly performed a series of squat jumps (SJ) and countermovement jumps (CMJ). Jumps were preceded alternatively by: i) passive stretching of lower limbs muscles; ii) active warm-up (AWU); iii) passive warm up (PWU); and iv) the joining of stretching with either active warm-up (AWU+S) or passive warm-up (PWU+S). In control conditions (C) only jumps were required. For the 2 jumps the flight time (Ft), the peak force (Pf), and the maximal power (Wpmax) were calculated. It resulted that Ft, Pf, and Wmax values were significantly higher: i) after AWU than after PWU and PWU+S in CMJ; and ii) in AWU as compared to those of other protocols of SJ. Stretching did not negatively affect the maximal anaerobic power, per se, but seems to inhibit the effect of AWU. The results suggested that AWU seemed to increase vertical jump performance when compared to PWU, presumably due to an increase in metabolic activity as a consequence of AWU, which did not occur in PWU, despite the same skin temperature. Passive stretching alone seemed not to negatively influence vertical jump performance, whereas, if added after AWU, could reduce the power output.  相似文献   

20.
The aim of this study was to investigate the influence of a 4-week electromyostimulation (EMS) training program on the vertical jump performance of 12 volleyball players. EMS sessions were incorporated into volleyball sessions 3 times weekly. EMS consisted of 20-22 concomitant stimulations of the knee extensor and plantar flexor muscles and lasted approximately 12 minutes. No significant changes were observed after EMS training for squat jump (SJ) and counter movement jump (CMJ) performance, while the mean height and the mean power maintained during 15 seconds of consecutive CMJs significantly increased by approximately 4% (p < 0.05). Ten days after the end of EMS training, the jumping height significantly (p < 0.05) increased compared with baseline also for single jumps (SJ +6.5%, CMJ +5.4%). When the aim of EMS resistance training is to enhance vertical jump ability, sport-specific workouts following EMS would enable the central nervous system to optimize the control to neuromuscular properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号