首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Energy balance results from the coordination of multiple pathways affecting energy expenditure and food intake. Candidate neuropeptides involved in energy balance are the melanocortins. Several species, including Siberian hamsters studied here, decrease and increase food intake in response to stimulation and blockade of the melanocortin 4-receptor (MC4-R). In addition, central application of the MC3/4-R agonist melanotan-II decreases body fat (increases lipolysis) beyond that accounted for by its ability to decrease food intake. Because an increase in the sympathetic nervous system drive to white adipose tissue (WAT) is the principal initiator of lipolysis, we tested whether the sympathetic outflow circuitry from brain to WAT contained MC4-R mRNA expressing cells. This was accomplished by labeling the sympathetic outflow to inguinal WAT using the pseudorabies virus (PRV), a transneuronal retrograde viral tract tracer, and then processing the brain for colocalization of PRV immunoreactivity with MC4-R mRNA, the latter assessed by in situ hybridization. MC4-R mRNA was impressively colocalized in PRV-labeled cells (approximately greater than 60%) in many brain areas across the neuroaxis, including those typically implicated in lipid mobilization (e.g., hypothalamic paraventricular, suprachiasmatic, arcuate and dorsomedial nuclei, lateral hypothalamic area), as well as those not traditionally identified with lipolysis (e.g., preoptic area, subzona incerta of the lateral hypothalamus, periaqueductal gray, solitary nucleus). These data provide compelling neuroanatomical evidence that could underlie a direct central modulation of the sympathetic outflow to WAT by the melanocortins through the MC4-Rs resulting in changes in lipid mobilization and adiposity.  相似文献   

2.
The sympathetic nervous system (SNS) innervation of white adipose tissue (WAT) is the principal initiator of lipolysis. Using pseudorabies virus, a transneuronal viral tract tracer, brain sites involved in the SNS outflow to WAT have been identified previously by us. One of these sites, the hypothalamic paraventricular nucleus (PVH) that shows predominantly unilateral sympathetic outflow from each half of the nucleus to ipsilaterally located WAT depots, was tested for laterality in lipid accumulation/mobilization in Siberian hamsters. First we tested whether unilateral PVH electrolytic lesions (PVHx) would increase lipid accumulation in WAT pads ipsilateral to the side of the PVHx. PVHx significantly increased body and WAT pad masses compared with sham PVHx; however, there was no laterality effect. In addition, bilateral PVHx increased body and WAT pad masses, as well as food intake, to a greater extent than did unilateral PVHx. We next tested for possible laterality effects on WAT lipid mobilization using food deprivation as the lipolytic stimulus in hamsters bearing unilateral or bilateral PVHx. Lipid mobilization was not prevented, as indicated indirectly by WAT mass and thus laterality of lipid mobilization could not be tested. We then tested whether removal of adrenal catecholamines via adrenal demedullation (ADMEDx) alone, or combined with bilateral PVHx, would block food deprivation–induced lipid mobilization, but neither did so. These results suggest that an intact PVH is not necessary for food deprivation–induced lipid mobilization and support the primacy of the SNS innervation of WAT, rather than adrenal medullary catecholamines, for lipid mobilization from WAT.  相似文献   

3.
Converging evidence indicates that white adipose tissue (WAT) is innervated by the sympathetic nervous system (SNS) based on immunohistochemical labeling of a SNS marker (tyrosine hydroxylase [TH]), tract tracing of WAT sympathetic postganglionic innervation, pseudorabies virus (PRV) transneuronal labeling of WAT SNS outflow neurons, and functional evidence from denervation studies. Recently, WAT para-SNS (PSNS) innervation was suggested because local surgical WAT sympathectomy (sparing hypothesized parasympathetic innervation) followed by PRV injection yielded infected cells in the vagal dorsomotor nucleus (DMV), a traditionally-recognized PSNS brain stem site. In addition, local surgical PSNS WAT denervation triggered WAT catabolic responses. We tested histologically whether WAT was parasympathetically innervated by searching for PSNS markers in rat, and normal (C57BL) and obese (ob/ob) mouse WAT. Vesicular acetylcholine transporter, vasoactive intestinal peptide and neuronal nitric oxide synthase immunoreactivities were absent in WAT pads (retroperitoneal, epididymal, inguinal subcutaneous) from all animals. Nearly all nerves innervating WAT vasculature and parenchyma that were labeled with protein gene product 9.5 (PGP9.5; pan-nerve marker) also contained TH, attesting to pervasive SNS innervation. When Siberian hamster inguinal WAT was sympathetically denervated via local injections of catecholaminergic toxin 6-hydroxydopamine (sparing putative parasympathetic nerves), subsequent PRV injection resulted in no central nervous system (CNS) or sympathetic chain infections suggesting no PSNS innervation. By contrast, vehicle-injected WAT subsequently inoculated with PRV had typical CNS/sympathetic chain viral infection patterns. Collectively, these data indicate no parasympathetic nerve markers in WAT of several species, with sparse DMV innervation and question the claim of PSNS WAT innervation as well as its functional significance.  相似文献   

4.
White adipose tissue (WAT) is innervated by the sympathetic nervous system (SNS), and the central origins of this innervation have been demonstrated for inguinal and epididymal WAT (iWAT and eWAT, respectively) using a viral transneuronal tract tracer, the pseudorabies virus (PRV). Although the more established role of this sympathetic innervation of WAT is as a major stimulator of lipid mobilization, this innervation also inhibits WAT fat cell number (FCN); thus, local denervation of WAT leads to marked increases in WAT mass and FCN. The purpose of this study was to extend our understanding of the SNS regulation of FCN using neuroanatomical and functional analyses. Therefore, we injected PRV into retroperitoneal WAT (rWAT) to compare the SNS outflow to this pad from what already is known for iWAT and eWAT. In addition, we tested the ability of local unilateral denervation of rWAT or iWAT to promote increases in WAT mass and FCN vs. their contralateral neurally intact counterparts. Although the overall pattern of innervation was more similar than different for rWAT vs. iWAT or eWAT, its SNS outflow appeared to involve more neurons in the suprachiasmatic and solitary tract nuclei. Denervation produced significant increases in WAT mass and FCN for both iWAT and rWAT, but FCN was increased significantly more in iWAT than in rWAT. These data suggest differences in origins of the sympathetic outflow to WAT and functional differences in the WAT SNS innervation that could contribute to the differential propensity for fat cell proliferation across WAT depots in vivo.  相似文献   

5.
Brown adipose tissue (BAT) thermogenic activity and growth are controlled by its sympathetic nervous system (SNS) innervation, but nerve fibers containing sensory-associated neuropeptides [substance P, calcitonin gene-related peptide (CGRP)] also suggest sensory innervation. The central nervous system (CNS) projections of BAT afferents are unknown. Therefore, we used the H129 strain of the herpes simplex virus-1 (HSV-1), an anterograde transneuronal viral tract tracer used to delineate sensory nerve circuits, to define these projections. HSV-1 was injected into interscapular BAT (IBAT) of Siberian hamsters and HSV-1 immunoreactivity (ir) was assessed 24, 48, 72, 96, and 114 h postinjection. The 96- and 114-h groups had the most HSV-1-ir neurons with marked infections in the hypothalamic paraventricular nucleus, periaqueductal gray, olivary areas, parabrachial nuclei, raphe nuclei, and reticular areas. These sites also are involved in sympathetic outflow to BAT suggesting possible BAT sensory-SNS thermogenesis feedback circuits. We tested the functional contribution of IBAT sensory innervation on thermogenic responses to an acute (24 h) cold exposure test by injecting the specific sensory nerve toxin capsaicin directly into IBAT pads and then measuring core (T(c)) and IBAT (T(IBAT)) temperature responses. CGRP content was significantly decreased in capsaicin-treated IBAT demonstrating successful sensory nerve destruction. T(IBAT) and T(c) were significantly decreased in capsaicin-treated hamsters compared with the saline controls at 2 h of cold exposure. Thus the central sensory circuits from IBAT have been delineated for the first time, and impairment of sensory feedback from BAT appears necessary for the appropriate, initial thermogenic response to acute cold exposure.  相似文献   

6.
During our study of the reversal of seasonal obesity in Siberian hamsters, we found an interaction between receptors for the pineal hormone melatonin and the sympathetic nervous system (SNS) outflow from brain to white adipose tissue (WAT). This ultimately led us and others to conclude that the SNS innervation of WAT is the primary initiator of lipid mobilization in these as well as other animals, including humans. There is strong neurochemical (norepinephrine turnover), neuroanatomical (viral tract tracing), and functional (sympathetic denervation-induced blockade of lipolysis) evidence for the role of the SNS in lipid mobilization. Recent findings suggest the presence of WAT sensory innervation based on strong neuroanatomical (viral tract tracing, immunohistochemical markers of sensory nerves) and suggestive functional (capsaicin sensory denervation-induced WAT growth) evidence, the latter implying a role in conveying adiposity information to the brain. By contrast, parasympathetic nervous system innervation of WAT is characterized by largely negative neuroanatomical evidence (viral tract tracing, immunohistochemical and biochemical markers of parasympathetic nerves). Functional evidence (intraneural stimulation and in situ microdialysis) for the role of the SNS innervation in lipid mobilization in human WAT is convincing, with some controversy regarding the level of sympathetic nerve activity in human obesity.  相似文献   

7.
To clarify whether cigarette smoke stimulates the sympathetic nervous system (SNS) and thermogenesis in interscapular brown adipose tissue (IBAT), we measured norepinephrine (NE) turnover, an indicator of SNS activity, guanosine-5'-diphosphate (GDP) binding, a thermogenic indicator, and oxygen consumption in IBAT in monosodium-L-glutamate (MSG)-induced obese and saline control mice following a two-week exposure to cigarette smoke. Cigarette smoke significantly increased NE turnover, GDP binding and oxygen consumption in IBAT, and significantly reduced body weight in MSG obese mice as well as in control mice. However, food intake was unchanged in the MSG group. These results suggest that cigarette smoke stimulates NE turnover and thermogenesis in BAT, which contribute to the mitigation of obesity.  相似文献   

8.
Interscapular brown adipose tissue (IBAT) activity is controlled by sympathetic nervous system, and factors that influence thermogenesis appear to be centrally connected to the sympathetic outflow to IBAT. Cold exposure produces a rise in BAT temperature, which is associated with an increased thyroid activity, elevated serum levels of 3,5,3'-triiodothyronine (T3), and an increased rate of T3 production. This study evaluated the effect of swimming training on 5'-triiodothyronine deiodinase (5'-D) activity in IBAT under normal environmental conditions and after short (30 min) cold exposure (TST stimulation test). 5'-D activity is lower in trained rats at basal condition, and TST increases 5'-D in IBAT of both untrained and trained rats. However, this increase is lower in trained rats. Training reduces the deiodinating activity in normal environmental conditions as well as after short cold exposure. Probably, other compensatory mechanisms of heat production are active in trained rodents.  相似文献   

9.
《Hormones and behavior》2008,53(5):612-620
Food deprivation triggers a constellation of physiological and behavioral changes including increases in peripherally-produced ghrelin and centrally-produced agouti-related protein (AgRP). Upon refeeding, food intake is increased in most species, however hamsters primarily increase food hoarding. Food deprivation-induced increases in food hoarding by Siberian hamsters are mimicked by peripheral ghrelin and central AgRP injections. Because food deprivation stimulates ghrelin as well as AgRP synthesis/release, food deprivation-induced increases in hoarding may be mediated by melanocortin 3 or 4 receptor (MC3/4-R) antagonism via AgRP, the MC3/4-R inverse agonist. Therefore, we asked: Can a MC3/4-R agonist block food deprivation- or ghrelin-induced increases in foraging, food hoarding and food intake? This was accomplished by injecting melanotan II (MTII), a synthetic MC3/4-R agonist, into the 3rd ventricle in food deprived, fed or peripheral ghrelin injected hamsters and housed in a running wheel-based food delivery foraging system. Three foraging conditions were used: a) no running wheel access, non-contingent food, b) running wheel access, non-contingent food or c) a foraging requirement for food (10 revolutions/pellet). Food deprivation was a more potent stimulator of foraging and hoarding than ghrelin. Concurrent injections of MTII completely blocked food deprivation- and ghrelin-induced increases in food intake and attenuated, but did not always completely block, food deprivation- and ghrelin-induced increases in food hoarding. Collectively, these data suggest that the MC3/4-R are involved in ghrelin- and food deprivation-induced increases in food intake, but other neurochemical systems, such as previously demonstrated with neuropeptide Y, also are involved in increases in food hoarding as well as foraging.  相似文献   

10.
Food deprivation triggers a constellation of physiological and behavioral changes including increases in peripherally-produced ghrelin and centrally-produced agouti-related protein (AgRP). Upon refeeding, food intake is increased in most species, however hamsters primarily increase food hoarding. Food deprivation-induced increases in food hoarding by Siberian hamsters are mimicked by peripheral ghrelin and central AgRP injections. Because food deprivation stimulates ghrelin as well as AgRP synthesis/release, food deprivation-induced increases in hoarding may be mediated by melanocortin 3 or 4 receptor (MC3/4-R) antagonism via AgRP, the MC3/4-R inverse agonist. Therefore, we asked: Can a MC3/4-R agonist block food deprivation- or ghrelin-induced increases in foraging, food hoarding and food intake? This was accomplished by injecting melanotan II (MTII), a synthetic MC3/4-R agonist, into the 3rd ventricle in food deprived, fed or peripheral ghrelin injected hamsters and housed in a running wheel-based food delivery foraging system. Three foraging conditions were used: a) no running wheel access, non-contingent food, b) running wheel access, non-contingent food or c) a foraging requirement for food (10 revolutions/pellet). Food deprivation was a more potent stimulator of foraging and hoarding than ghrelin. Concurrent injections of MTII completely blocked food deprivation- and ghrelin-induced increases in food intake and attenuated, but did not always completely block, food deprivation- and ghrelin-induced increases in food hoarding. Collectively, these data suggest that the MC3/4-R are involved in ghrelin- and food deprivation-induced increases in food intake, but other neurochemical systems, such as previously demonstrated with neuropeptide Y, also are involved in increases in food hoarding as well as foraging.  相似文献   

11.
Surplus energy is principally stored in white adipose tissue (WAT) as triacylglycerol and mobilized via lipolysis through norepinephrine (NE) released from sympathetic nervous system terminals innervating WAT. We demonstrated that central melanocortin receptor agonism provokes differential sympathetic drives across WAT pads and interscapular brown adipose tissue (IBAT). Here we tested for differential WAT and IBAT sympathetic drive to known lipolytic stimuli {glucoprivation [2-deoxy-D-glucose (2-DG)], cold exposure (5 degrees C), food deprivation (16 h), or both cold exposure and food deprivation} by measuring NE turnover (NETO). Only inguinal WAT NETO significantly increased across all stimuli. Dorsal subcutaneous WAT NETO only increased with glucoprivation. Retroperitoneal WAT NETO increased with glucoprivation, cold and cold + food deprivation, but not by food deprivation. Epididymal WAT NETO was unaffected by glucoprivation but increased with cold, cold + food deprivation or food deprivation, but to a small significant degree. IBAT NETO was unaffected by glucoprivation or food deprivation, but increased with cold and cold + food deprivation. Plasma glucose decreased with food deprivation and increased with 2-DG administration or cold exposure. Plasma glycerol was increased with food deprivation, cold, and their combination but not with 2-DG, whereas plasma free fatty acids increased with food deprivation, cold + food deprivation, and 2-DG. These data show differential sympathetic drive to WAT and BAT for four different lipolytic stimuli, exemplifying the fat pad-specific pattern of WAT sympathetic drive across lipid-mobilizing conditions and emphasizing the need to analyze multiple adipose depots for measures of NETO and likely most measures.  相似文献   

12.
To clarify whether hyperinsulinemia accelerates sympathetic nervous system (SNS) activity, norepinephrine (NE) turnover, a reliable indicator of SNS activity, was measured in the interscapular brown adipose tissue (IBAT) and heart of hyperinsulinemic yellow KK and normoinsulinemic C57BL control mice at 12 weeks of age. The yellow KK mice were more obese and had higher levels of plasma glucose (about 2.3 times) and of plasma insulin (about 24 times) than did the control mice. In IBAT, the rate of NE turnover following blockade of NE synthesis with alpha-methyl-p-tyrosine (alpha-MPT) was significantly slower in yellow KK mice than in C57BL mice, although in heart, no significant difference between both groups was observed in NE turnover. These results suggest that hyperinsulinemia dose not always increase NE turnover, and furthermore that the reduced NE turnover in IBAT of yellow KK mice may be one of the important factors in the development of obesity of this animal, as it is recognized that brown adipose tissue is a main effector of diet-induced thermogenesis and its defect or absence would predispose to obesity.  相似文献   

13.
To clarify the neuronal mechanism of the hypothalamic melanocortin system in regulating energy metabolism, we investigated the effects of centrally administered alpha-melanocyte-stimulating hormone (alpha-MSH) and agouti-related protein (AGRP), an agonist and an antagonist for the melanocortin 4 receptor (MC4-R), respectively, on the activity of sympathetic nerves innervating brown adipose tissue (BAT) and on BAT temperature. A bolus infusion of alpha-MSH (1 nmol) into the third cerebral ventricle (i3vt) significantly increased sympathetic nerve activity and elevated BAT temperature (P<0.05). The i3vt infusion of AGRP (1 nmol) gradually suppressed BAT sympathetic nerve activity and was accompanied by a significant reduction in BAT temperature (P<0.05). In conclusion, the hypothalamic melanocortin system may regulate peripheral energy expenditure, as well as thermogenesis, through its influence on BAT sympathetic nerve activity.  相似文献   

14.
The effects of reducing brain serotonin (5-HT) levels by means of intracerebral-ventricular injections of the tryptophan antagonist p-chlorophenylalanine (PCPA) were investigated in male rats. Six days after the operation, PCPA-treated rats, either fedad libitum or pair-fed to the food intake of control rats, showed decreased thermogenic activity and capacity in their interscapular brown adipose tissue (BAT) and also increased fat storage in their white adipose tissue (WAT). These results indicate that serotonergic synapses might play a regulatory role in the sympathetic control of BAT thermogenesis and in the rate of WAT deposition (by an as yet unidentified mechanism), in addition to their well established role in controlling food intake.  相似文献   

15.
The rising prevalence of obesity has become a worldwide health concern. Obesity usually occurs when there is an imbalance between energy intake and energy expenditure. However, energy expenditure consists of several components, including metabolism, physical activity, and thermogenesis. Toll-like receptor 4 (TLR4) is a transmembrane pattern recognition receptor, and it is abundantly expressed in the brain. Here, we showed that pro-opiomelanocortin (POMC)-specific deficiency of TLR4 directly modulates brown adipose tissue thermogenesis and lipid homeostasis in a sex-dependent manner. Deleting TLR4 in POMC neurons is sufficient to increase energy expenditure and thermogenesis resulting in reduced body weight in male mice. POMC neuron is a subpopulation of tyrosine hydroxylase neurons and projects into brown adipose tissue, which regulates the activity of sympathetic nervous system and contributes to thermogenesis in POMC-TLR4-KO male mice. By contrast, deleting TLR4 in POMC neurons decreases energy expenditure and increases body weight in female mice, which affects lipolysis of white adipose tissue (WAT). Mechanistically, TLR4 KO decreases the expression of the adipose triglyceride lipase and lipolytic enzyme hormone-sensitive lipase in WAT in female mice. Furthermore, the function of immune-related signaling pathway in WAT is inhibited because of obesity, which exacerbates the development of obesity reversely. Together, these results demonstrate that TLR4 in POMC neurons regulates thermogenesis and lipid balance in a sex-dependent manner.  相似文献   

16.
Functional and histological evidence for the sympathetic nervous system (SNS) innervation of white adipose tissue (WAT) exists for several species; however, its sensory innervation has only been shown in laboratory rats, and its function is unclear. We tested the effects of sensory and SNS innervation of Siberian hamster epididymal and inguinal WAT (EWAT and IWAT) by assessing calcitonin gene-related peptide (CGRP)- and tyrosine hydroxylase-immunoreactivity (ir), respectively. Next, we tested the role of the sensory innervation of WAT on growth and cellularity because WAT surgical denervation increases pad mass via selective increases in fat cell number, an effect ascribed to SNS denervation but that could be due to the accompanying surgical disruption of WAT sensory innervation. Sensory denervation was accomplished via multiple local microinjections of capsaicin into WAT, and its effects were compared with those of surgical denervation. Surgically denervated IWAT and EWAT showed significantly decreased tyrosine hydroxylase-ir and CGRP-ir, whereas capsaicin-treated WAT had only significantly decreased CGRP-ir. Surgically denervated pad masses were significantly increased; this was accompanied by increased total fat cell number in IWAT, with no change in fat cell size. EWAT only showed a significant increase in the number of small- to medium-sized adipocytes (75-125 mum diameter). By contrast, sensory-denervated pad masses were unchanged, but IWAT showed significantly increased average fat cell size. Collectively, these data provide immunohistochemical evidence for sensory and SNS innervation of WAT in Siberian hamsters and differential control of WAT cellularity by these innervations, as well as the ability of locally applied capsaicin to selectively reduce WAT sensory innervation.  相似文献   

17.
It is well-established that the sympathetic nervous system (SNS) regulates adipocyte metabolism and recently it has been reported that sensory afferents from white fat overlap anatomically with sympathetic efferents to white fat. The studies described here characterize the response of intact fat pads to selective sympathectomy (local 6-hydroxydopamine (6OHDA) injections) of inguinal (ING) or epididymal (EPI) fat in male NIH Swiss mice and provide in vivo evidence for communication between individual white and brown fat depots. The contralateral ING pad, both EPI pads, perirenal (PR), and mesenteric (MES) pads were significantly enlarged 4 weeks after denervating one ING pad, but only intrascapular brown adipose tissue (IBAT) increased when both ING pads were denervated. Denervation of one or both EPI pad had no effect on fat depot weights. In an additional experiment, norepinephrine turnover (NETO) was inhibited in ING, retroperitoneal (RP), MES, and IBAT 2 days after denervation of both EPI or of both ING pads. NE content was reduced to 10-30% of control values in all fat depots. There was no relation between early changes in NETO and fat pad weight 4 weeks after denervation, even though the reduction in NE content of intact fat pads was maintained. These data demonstrate that there is communication among individual fat pads, presumably through central integration of activity of sensory afferent and sympathetic efferent fibers, that changes sympathetic drive to white adipose tissue in a unified manner. In specific situations, removal of sympathetic efferents to one pad induces a compensatory enlargement of other intact depots.  相似文献   

18.
The activity of antioxidant enzymes, copper-zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD) and catalase (CAT), as well as that of the mitochondrial FAD-dependent alpha-glycerophosphate dehydrogenase (alpha-GPD) in the rat interscapular brown adipose tissue (IBAT) were studied after the treatment with methimazole (MMI) for three weeks or with iopanoic acid (IOP) for five days. Besides, the mitochondrial concentration of uncoupling protein-1 (UCP-1) and the activity of catecholamine degrading enzyme monoamine oxidase (MAO) in the IBAT as well as the activity of the catecholamine synthesizing enzyme, dopamine beta-hydroxylase (DBH) in rat serum were examined. Judging by the significantly enhanced level of serum DBH, which is an index of sympathetic activity, and that of IBAT MAO, the increase in MnSOD and CAT activities in the IBAT of hypothyroid (MMI-treated) rats seems to be due to elevated activity of sympathetic nervous system (SNS). However, CuZnSOD activity is not affected by SNS. On the contrary, IOP, which is a potent inhibitor of T4 deiodination into T3 producing "local" hypothyroidism, did not change either SNS activity or activities of IBAT antioxidant enzyme. However, both treatments significantly decreased IBAT UCP-1 content and alpha-GPD activity suggesting that the optimal T3 concentration in the IBAT is necessary for maintaining basal levels of these key mitochondrial parameters.  相似文献   

19.
Norepinephrine (NE) turnover, an index of sympathetic nervous system (SNS) activity, was measured in interscapular brown adipose tissue (IBAT), heart and pancreas of 3-weeks-old pre-obese monosodium-L-glutamate (MSG) mice and at 6-weeks-old mildly obese MSG mice. In IBAT, rates of NE turnover were slower not only in 3-weeks-old MSG mice but also in older obese MSG mice than in their saline controls. In heart, rates of NE turnover were slower in 6-weeks-old mildly obese MSG mice, but not in pre-obese MSG mice. No significant difference in NE turnover in pancreas was observed at either age. The low NE turnover in IBAT of MSG-treated mice prior to the onset of gross obesity suggests that low SNS activity may be an initial contributor to their high energy efficiency and resultant obesity.  相似文献   

20.
Ye ZY  Li DP 《Regulatory peptides》2011,166(1-3):112-120
Sympathetic nerve activity is increased in obesity-related hypertension. However, the central mechanisms involved in the increased sympathetic outflow remain unclear. The hypothalamic melanocortin system is important for regulating energy balance and sympathetic outflow. To understand the mechanisms by which the melanocortin systems regulates sympathetic outflow, we investigated the role of melanocortin 4 receptors (MC4R) in regulating presympathetic paraventricular nucleus (PVN) neurons. We performed whole-cell patch-clamp recordings on retrogradely labeled PVN neurons projecting to the rostral ventrolateral medulla in brain slices from obese zucker rats (OZRs) and lean zucker rats (LZRs). The MC4R agonists melanotan II (MTII) and α-melanocyte-stimulating hormone (α-MSH) increased the firing activity and depolarized the labeled PVN neurons from both LZRs and OZRs in a concentration-dependent manner. MTII produced significant greater increase in the firing activity in OZRs than in LZRs. Blocking MC4R with the specific antagonist SHU9119 had no effect on the basal firing rate but abolished the MTII-induced increase in the firing rate in both OZRs and LZRs. Furthermore, intracellular dialysis of guanosine 5'-O-(2-thodiphosphate), but not bath application of kynurenic acid and bicuculline, eliminated the MTII-induced increase in firing activity. In addition, MTII had no effect on the frequency and amplitude of glutamatergic excitatory postsynaptic currents and GABAergic inhibitory postsynaptic currents in labeled PVN neurons. Collectively, our findings suggest that MC4R contributes to the elevated excitability of PVN presympathetic neurons, which may be involved in obesity-related hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号