首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gastric emptying is a major determinant of glycemia, gastrointestinal hormone release, and appetite. We determined the effects of different intraduodenal glucose loads on glycemia, insulinemia, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and cholecystokinin (CCK), antropyloroduodenal motility, and energy intake in healthy subjects. Blood glucose, plasma hormone, and antropyloroduodenal motor responses to 120-min intraduodenal infusions of glucose at 1) 1 ("G1"), 2) 2 ("G2"), and 3) 4 ("G4") kcal/min or of 4) saline ("control") were measured in 10 healthy males in double-blind, randomized fashion. Immediately after each infusion, energy intake at a buffet meal was quantified. Blood glucose rose in response to all glucose infusions (P < 0.05 vs. control), with the effect of G4 and G2 being greater than that of G1 (P < 0.05) but with no difference between G2 and G4. The rises in insulin, GLP-1, GIP, and CCK were related to the glucose load (r > 0.82, P < 0.05). All glucose infusions suppressed antral (P < 0.05), but only G4 decreased duodenal, pressure waves (P < 0.01), resulted in a sustained stimulation of basal pyloric pressure (P < 0.01), and decreased energy intake (P < 0.05). In conclusion, variations in duodenal glucose loads have differential effects on blood glucose, plasma insulin, GLP-1, GIP and CCK, antropyloroduodenal motility, and energy intake in healthy subjects. These observations have implications for strategies to minimize postprandial glycemic excursions in type 2 diabetes.  相似文献   

2.
Oral fructose empties from the stomach more rapidly and may suppress food intake more than oral glucose. The purpose of the study was to evaluate the effects of intraduodenal infusions of fructose and glucose on antropyloric motility and appetite. Ten healthy volunteers were given intraduodenal infusions of 25% fructose, 25% glucose, or 0.9% saline (2 ml/min for 90 min). Antropyloric pressures, blood glucose, and plasma insulin, gastric inhibitory peptide (GIP), and glucagon-like peptide-1 (GLP-1) were measured concurrently; a buffet meal was offered at the end of the infusion. Intraduodenal fructose and glucose suppressed antral waves (P < 0. 0005 for both), stimulated isolated pyloric pressure waves (P < 0.05 for both), and increased basal pyloric pressure (P = 0.10 and P < 0. 05, respectively) compared with saline, without any significant difference between them. Intraduodenal glucose increased blood glucose (P < 0.0005), as well as plasma insulin (P < 0.0005) and GIP (P < 0.005) more than intraduodenal fructose, whereas there was no difference in the GLP-1 response. Intraduodenal fructose suppressed food intake compared with saline (P < 0.05) and glucose (P = 0.07). We conclude that, when infused intraduodenally at 2 kcal/min for 90 min 1) fructose and glucose have comparable effects on antropyloric pressures, 2) fructose tends to suppress food intake more than glucose, despite similar GLP-1 and less GIP release, and 3) GIP, rather than GLP-1, probably accounts for the greater insulin response to glucose than fructose.  相似文献   

3.
BackgroundThe interaction of nutrients with the small intestine stimulates the secretion of numerous enteroendocrine hormones that regulate postprandial metabolism. However, differences in gastrointestinal hormonal responses between the macronutrients are incompletely understood. In the present study, we compared blood glucose and plasma hormone concentrations in response to standardised intraduodenal (ID) fat and glucose infusions in healthy humans.MethodsIn a parallel study design, 16 healthy males who received an intraduodenal fat infusion were compared with 12 healthy males who received intraduodenal glucose, both at a rate of 2 kcal/min over 120 min. Venous blood was sampled at frequent intervals for measurements of blood glucose, and plasma total and active glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), insulin and glucagon.ResultsPlasma concentrations of the incretin hormones (both total and active GLP-1 and GIP) and glucagon were higher, and plasma insulin and blood glucose concentrations lower, during intraduodenal fat, when compared with intraduodenal glucose, infusion (treatment by time interaction: P < 0.001 for each).ConclusionsCompared with glucose, intraduodenal fat elicits substantially greater GLP-1, GIP and glucagon secretion, with minimal effects on blood glucose or plasma insulin in healthy humans. These observations are consistent with the concept that fat is a more potent stimulus of the ‘gut-incretin’ axis than carbohydrate.  相似文献   

4.
The rate of gastric emptying of glucose-containing liquids is a major determinant of postprandial glycemia. The latter is also dependent on stimulation of insulin secretion by glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). Although overall emptying of glucose approximates 1-3 kcal/min, the "early phase" of gastric emptying is usually more rapid. We have evaluated the hypothesis that increased stimulation of incretin hormones and insulin by a more rapid initial rate of small intestinal glucose delivery would reduce the overall glycemic response to a standardized enteral glucose load. Twelve healthy subjects were studied on two separate days in which they received an intraduodenal (id) glucose infusion for 120 min. On one day, the infusion rate was variable, being more rapid (6 kcal/min) between t = 0 and 10 min and slower (0.55 kcal/min) between t = 10 and 120 min, whereas on the other day the rate was constant (1 kcal/min) from t = 0-120 min, i.e., on both days 120 kcal were given. Between t = 0 and 75 min, plasma insulin, GIP, and GLP-1 were higher with the variable infusion. Despite the increase in insulin and incretin hormones, blood glucose levels were also higher. Between t = 75 and 180 min, blood glucose and plasma insulin were lower with the variable infusion. There was no difference in the area under the curve 0-180 min for blood glucose. We conclude that stimulation of incretin hormone and insulin release by a more rapid initial rate of id glucose delivery does not lead to an overall reduction in glycemia in healthy subjects.  相似文献   

5.
Stimulation of cholecystokinin and glucagon-like peptide-1 secretion by fat is mediated by the products of fat digestion. Ghrelin, peptide YY (PYY), and pancreatic polypeptide (PP) appear to play an important role in appetite regulation, and their release is modulated by food ingestion, including fat. It is unknown whether fat digestion is a prerequisite for their suppression (ghrelin) or release (PYY, PP). Moreover, it is not known whether small intestinal exposure to fat is sufficient to suppress ghrelin secretion. Our study aimed to resolve these issues. Sixteen healthy young males received, on two separate occasions, 120-min intraduodenal infusions of a long-chain triglyceride emulsion (2.8 kcal/min) 1) without (condition FAT) or 2) with (FAT-THL) 120 mg of tetrahydrolipstatin (THL, lipase inhibitor), followed by a standard buffet-style meal. Blood samples for ghrelin, PYY, and PP were taken throughout. FAT infusion was associated with a marked, and progressive, suppression of plasma ghrelin from t = 60 min (P < 0.001) and stimulation of PYY from t = 30 min (P < 0.01). FAT infusion also stimulated plasma PP (P < or = 0.01), and the release was immediate. FAT-THL completely abolished the FAT-induced changes in ghrelin, PYY, and PP. In response to the meal, plasma ghrelin was further suppressed, and PYY and PP stimulated, during both FAT and FAT-THL infusions. In conclusion, in healthy humans, 1) the presence of fat in the small intestine suppresses ghrelin secretion, and 2) fat-induced suppression of ghrelin and stimulation of PYY and PP is dependent on fat digestion.  相似文献   

6.
We have evaluated the effects of fatty acid chain length on ghrelin, peptide YY (PYY), glucagon-like peptide-2 (GLP-2) and pancreatic polypeptide (PP) secretion and hypothesized that intraduodenal administration of dodecanoic ("C12"), but not decanoic ("C10"), acid would decrease plasma ghrelin and increase PYY, GLP-2 and PP concentrations. Plasma hormone concentrations were measured in seven healthy men during 90-min intraduodenal infusions of: (i) C12, (ii) C10 or (iii) control (rate: 2 ml/min, 0.375 kcal/min for C12/C10) and after a buffet-meal consumed following the infusion. C12 markedly suppressed plasma ghrelin and increased both PYY and GLP-2 (all P < 0.05) compared with control and C10, while C10 had no effect. Both C10 and C12 increased PP concentrations slightly (P < 0.05). We conclude that the effects of intraduodenal fatty acids on ghrelin, PYY and GLP-2 secretion are dependent on their chain length.  相似文献   

7.
Postprandial hypotension is an important clinical problem, particularly in the elderly. 5-Hydroxytryptamine3 (5-HT3) mechanisms may be important in the regulation of splanchnic blood flow and blood pressure (BP), and in mediating the effects of small intestinal nutrients on gastrointestinal motility. The aims of this study were to evaluate the effects of the 5-HT3 antagonist granisetron on the BP, heart rate (HR), and antropyloroduodenal (APD) motility responses to intraduodenal glucose in healthy older subjects. Ten subjects (5 male, 5 female, aged 65-76 yr) received an intraduodenal glucose infusion (3 kcal/min) for 60 min (t = 0-60 min), followed by intraduodenal saline for a further 60 min (t = 60-120 min) on 2 days. Granisetron (10 microg/kg) or control (saline) was given intravenously at t = -25 min. BP (systolic and diastolic), HR, and APD pressures were measured. Pressure waves in the duodenal channel closest ("local") to the infusion site were quantified separately. During intraduodenal glucose, there were falls in systolic and diastolic BP and a rise in HR (P < 0.0001 for all); granisetron had no effect on these responses. Granisetron suppressed the number and amplitude (P < 0.05 for both) of local duodenal pressures during intraduodenal glucose. Otherwise, the effects of intraduodenal glucose on APD motility did not differ between study days. We conclude that in healthy older subjects, 5-HT3 mechanisms modulate the local duodenal motor effects of, but not the cardiovascular responses to, small intestinal glucose.  相似文献   

8.
INTRODUCTION: Ghrelin is an orexigenic peptide predominantly secreted by the stomach. Ghrelin plasma levels rise before meal ingestion and sharply decline afterwards, but the mechanisms controlling ghrelin secretion are largely unknown. Since meal ingestion also elicits the secretion of the incretin hormone glucagon-like peptide 1 (GLP-1), we examined whether exogenous GLP-1 administration reduces ghrelin secretion in humans. PATIENTS AND METHODS: 14 healthy male volunteers were given intravenous infusions of GLP-1(1.2 pmol x kg(-1) min(-1)) or placebo over 390 min. After 30 min, a solid test meal was served. Venous blood was drawn frequently for the determination of glucose, insulin, C-peptide, GLP-1 and ghrelin. RESULTS: During the infusion of exogenous GLP-1 and placebo, GLP-1 plasma concentrations reached steady-state levels of 139+/-15 pmol/l and 12+/-2 pmol/l, respectively (p<0.0001). During placebo infusion, ghrelin levels were significantly reduced in the immediate postprandial period (p<0.001), and rose again afterwards. GLP-1 administration prevented the initial postprandial decline in ghrelin levels, possibly as a result of delayed gastric emptying, and significantly reduced ghrelin levels 150 and 360 min after meal ingestion (p<0.05). The patterns of ghrelin concentrations in the experiments with GLP-1 and placebo administration were inversely related to the respective plasma levels of insulin and C-peptide. CONCLUSIONS: GLP-1 reduces the rise in ghrelin levels in the late postprandial period at supraphysiological plasma levels. Most likely, these effects are indirectly mediated through its insulinotropic action. The GLP-1-induced suppression of ghrelin secretion might be involved in its anorexic effects.  相似文献   

9.
Postprandial hypotension is an important problem, particularly in the elderly. The fall in blood pressure is dependent on small intestinal glucose delivery and, possibly, changes in splanchnic blood flow, the release of glucagon-like peptide-1 (GLP-1), and sympathetic nerve activity. We aimed to determine in healthy older subjects, the effects of variations in small intestinal glucose load on blood pressure, superior mesenteric artery flow, GLP-1, and noradrenaline. Twelve subjects (6 male, 6 female; ages 65-76 yr) were studied on four separate occasions, in double-blind, randomized order. On each day, subjects were intubated via an anesthetized nostril, with a nasoduodenal catheter, and received an intraduodenal infusion of either saline (0.9%) or glucose at a rate of 1, 2, or 3 kcal/min (G1, G2, G3, respectively), for 60 min (t = 0-60 min). Between t = 0 and 60 min, there were falls in systolic and diastolic blood pressure following G2 and G3 (P = 0.003 and P < 0.001, respectively), but no change during saline or G1. Superior mesenteric artery flow increased slightly during G1 (P = 0.01) and substantially during G2 (P < 0.001) and G3 (P < 0.001), but not during saline. The GLP-1 response to G3 was much greater (P < 0.001) than to G2 and G1. Noradrenaline increased (P < 0.05) only during G3. In conclusion, in healthy older subjects the duodenal glucose load needs to be > 1 kcal/min to elicit a significant fall in blood pressure, while the response may be maximal when the rate is 2 kcal/min. These observations have implications for the therapeutic strategies to manage postprandial hypotension by modulating gastric emptying.  相似文献   

10.
Obestatin, a recently discovered 23-amino acid peptide, is involved in the regulation of appetite and body weight in antagonistic fashion to ghrelin, both deriving from a common precursor peptide. Ghrelin was shown to be associated with insulin resistance, which may also affect obestatin. We investigated the association between insulin resistance and plasma concentrations of obestatin and ghrelin in nondiabetic individuals with high (IS; n = 18, 13 females and 5 males, age 47 +/- 2 yr, BMI = 25.5 +/- 0.9 kg/m(2)) and low (IR; n = 18, 12 females and 6 males, age 45 +/- 2 yr, P = 0.49, BMI = 27.5 +/- 1.1 kg/m(2), P = 0.17) insulin-stimulated glucose disposal (M), measured by 2-h hyperinsulinemic (40 mU.min(-1).m(-2)) isoglycemic clamp tests. M(100-120 min) was higher in IS (10.7 +/- 0.7) than in IR (4.4 +/- 0.2 mg.min(-1).kg(-1), P < 10(-9)), whereas insulin-dependent suppression of free fatty acids (FFA) in plasma was reduced in IR (71 +/- 6% vs. IS: 82 +/- 5%, P < 0.02). In both groups, plasma ghrelin concentrations were comparable at fasting and similarly reduced by 24-28% during insulin infusion. IR had lower fasting plasma obestatin levels (383 +/- 26 pg/ml vs. IS: 469 +/- 23 pg/ml, P < 0.02). Clamp insulin infusion reduced plasma obestatin to approximately 81% of basal values in IS (P < 0.00002), but not in IR. Fasting plasma obestatin was correlated positively with M (r = 0.34, P = 0.04), HDL cholesterol (r = 0.45, P = 0.01), and plasma ghrelin concentrations (r = 0.80, P < 0.000001) and negatively with measures of adiposity, plasma FFA during clamp (r = -0.42, P < 0.01), and systolic blood pressure (r = -0.33, P < 0.05). In conclusion, fasting plasma concentrations of obestatin, but not of ghrelin, are reduced in insulin resistance and are positively associated with whole body insulin sensitivity in nondiabetic humans. Furthermore, plasma obestatin is reduced by insulin in insulin-sensitive but not in insulin-resistant persons.  相似文献   

11.
The effect of high multivitamin intake during pregnancy on the metabolic phenotype of rat offspring was investigated. Pregnant Wistar rats (n=10 per group) were fed the AIN-93G diet with the recommended vitamin (RV) content or a 10-fold increase [high vitamin (HV) content]. In experiment 1, male and female offspring were followed for 12 wk after weaning; in experiment 2, only males were followed for 28 wk. Body weight (BW) was measured weekly. Every 4 wk, after an overnight fast, food intake over 1 h was measured 30 min after a gavage of glucose or water. An oral glucose tolerance test was performed every 3-5 wk. Postweaning fasting glucose, insulin, ghrelin, glucagon-like peptide-1, and systolic blood pressure were measured. No difference in BW at birth or litter size was observed. Food intake was greater in males born to HV dams (P<0.05), and at 28 wk after weaning, BW was 8% higher (P<0.05) and fat pad mass was 27% higher (P<0.05). Food intake reduction after the glucose preload was nearly twofold less in males born to HV dams at 12 wk after weaning (P<0.05). Fasting glucose, insulin, and ghrelin were 11%, 62%, and 41% higher in males from HV dams at 14 wk after weaning (P<0.05). Blood glucose response was 46% higher at 23 wk after weaning (P<0.01), and systolic blood pressure was 16% higher at 28 wk after weaning (P<0.05). In conclusion, high multivitamin intake during pregnancy programmed the male offspring for the development of the components of metabolic syndrome in adulthood, possibly by its effects on central mechanisms of food intake control.  相似文献   

12.
Previous observations suggest that glucagon-like peptide-1 (GLP-1) is released into the bloodstream only when dietary carbohydrate enters the duodenum at rates that exceed the absorptive capacity of the proximal small intestine to contact GLP-1 bearing mucosa in more distal bowel. The aims of this study were to determine the effects of modifying the length of small intestine exposed to glucose on plasma concentrations of GLP-1 and also glucose-dependent insulinotropic peptide (GIP), insulin, cholecystokinin (CCK) and ghrelin, and antropyloric pressures. Glucose was infused at 3.5 kcal/min into the duodenum of eight healthy males (age 18-59 yr) over 60 min on the first day into an isolated 60-cm segment of the proximal small intestine ("short-segment infusion"); on the second day, the same amount of glucose was infused with access to the entire small intestine ("long-segment infusion"). Plasma GLP-1 increased and ghrelin decreased (P < 0.05 for both) during the long-, but not the short-, segment infusion. By contrast, increases in plasma CCK and GIP did not differ between days. The rises in blood glucose and plasma insulin were greater during the long- than during the short-segment infusion (P < 0.05). During the long- but not the short-segment infusion, antral pressure waves (PWs) were suppressed (P < 0.05). Isolated pyloric PWs and basal pyloric pressure were stimulated on both days. In conclusion, the release of GLP-1 and ghrelin, but not CCK and GIP, is dependent upon >60 cm of the intestine being exposed to glucose.  相似文献   

13.
We have investigated the effects of exogenous CCK-8 and GLP-1, alone and in combination, on ghrelin and PYY secretion. Nine healthy males were studied on four occasions. Plasma ghrelin and PYY concentrations were measured during 150 min intravenous infusions of: (i) isotonic saline, (ii) CCK-8 at 1.8 pmol/kg/min, (iii) GLP-1 at 0.9 pmol/kg/min or (iv) CCK-8 and GLP-1 combined. CCK-8 markedly suppressed ghrelin and stimulated PYY when compared with control between t=0-120 min (P<0.001 for both). GLP-1 had no effect on ghrelin, but decreased PYY slightly at 120 min (P<0.05). During infusion of CCK-8+GLP-1, there was comparable suppression of ghrelin (P<0.001), but the stimulation of PYY was less (P<0.001), than that induced by CCK-8, between t=20-120 min. In conclusion, in healthy subjects, in the doses evaluated, exogenous CCK-8 suppresses ghrelin and stimulates PYY, and exogenous GLP-1 has no effect on ghrelin and attenuates the effect of CCK-8 on PYY.  相似文献   

14.
The rate of liver glucokinase (GK) translocation from the nucleus to the cytoplasm in response to intraduodenal glucose infusion and the effect of physiological rises of plasma glucose and/or insulin on GK translocation were examined in 6-h-fasted conscious rats. Intraduodenal glucose infusion (28 mg.kg(-1).min(-1) after a priming dose at 500 mg/kg) elevated blood glucose levels (mg/dl) in the artery and portal vein from 90 +/- 3 and 87 +/- 3 to 154 +/- 4 and 185 +/- 4, respectively, at 10 min. At 120 min, the levels had decreased to 133 +/- 6 and 156 +/- 5, respectively. Plasma insulin levels (ng/ml) in the artery and the portal vein rose from 0.7 +/- 0.1 and 1.8 +/- 0.3 to 11.8 +/- 1.5 and 20.2 +/- 2.0 at 10 min, respectively, and 12.4 +/- 3.1 and 18.0 +/- 4.8 at 30 min, respectively. GK was rapidly exported from the nucleus as determined by measuring the ratio of the nuclear to the cytoplasmic immunofluorescence (N/C) of GK (2.9 +/- 0.3 at 0 min to 1.7 +/- 0.2 at 10 min, 1.5 +/- 0.1 at 20 min, 1.3 +/- 0.1 at 30 min, and 1.3 +/- 0.1 at 120 min). When plasma glucose (arterial; mg/dl) and insulin (arterial; ng/ml) levels were clamped for 30 min at 93 +/- 7 and 0.7 +/- 0.1, 81 +/- 5 and 8.9 +/- 1.3, 175 +/- 5 and 0.7 +/- 0.1, or 162 +/- 5 and 9.2 +/- 1.5, the N/C of GK was 3.0 +/- 0.5, 1.8 +/- 0.1, 1.5 +/- 0.1, and 1.2 +/- 0.1, respectively. The N/C of GK regulatory protein (GKRP) did not change in response to the intraduodenal glucose infusion or the rise in plasma glucose and/or insulin levels. The results suggest that GK but not GKRP translocates rapidly in a manner that corresponds with changes in the hepatic glucose balance in response to glucose ingestion in vivo. Additionally, the translocation of GK is induced by the postprandial rise in plasma glucose and insulin.  相似文献   

15.
Enterally administered lipid modulates antropyloroduodenal motility, gut hormone release, appetite, and energy intake. We hypothesized that these effects would be dependent on both the load, and duration, of small intestinal exposure to lipid. Eleven healthy men were studied on four occasions in a double-blind, randomized, fashion. Antropyloroduodenal motility, plasma CCK and peptide YY (PYY) concentrations, and appetite perceptions were measured during intraduodenal infusion of lipid (Intralipid) at 1) 1.33 kcal/min for 50 min, 2) 4 kcal/min for 50 min, and 3) 1.33 kcal/min for 150 min, or 4) saline for 150 min. Immediately after the infusions, energy intake was quantified. Pressure wave sequences (PWSs) were suppressed, and basal pyloric pressure, isolated pyloric pressure waves (IPPWs), plasma CCK and PYY stimulated (all P < 0.05), during the first 50 min of lipid infusion, in a load-dependent fashion. The effect of the 4 kcal/min infusion was sustained so that the suppression of antral pressure waves (PWs) and PWSs and increase in PYY remained evident after cessation of the infusion (all P < 0.05). The prolonged lipid infusion (1.33 kcal/min for 150 min) suppressed antral PWs, stimulated CCK and PYY and basal pyloric pressure (all P < 0.05), and tended to stimulate IPPWs when compared with saline throughout the entire infusion period. There was no significant effect of any of the lipid infusions on appetite or energy intake, although nausea was slightly higher (P < 0.05) with the 4 kcal/min infusion. In conclusion, both the load, and duration, of small intestinal lipid influence antropyloroduodenal motility and patterns of CCK and PYY release.  相似文献   

16.
We recently reported that intraduodenal infusion of lauric acid (C12) (0.375 kcal/min, 106 mM) stimulates isolated pyloric pressure waves (IPPWs), inhibits antral and duodenal pressure waves (PWs), stimulates release of cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1), and suppresses energy intake and that these effects are much greater than those seen in response to isocaloric decanoic acid (C10) infusion. Administration of C12 was, however, associated with nausea, confounding interpretation of the results. The aim of this study was to evaluate the effects of different intraduodenal doses of C12 on antropyloroduodenal (APD) motility, plasma CCK and GLP-1 concentrations, appetite, and energy intake. Thirteen healthy males were studied on 4 days in double-blind, randomized fashion. APD pressures, plasma CCK and GLP-1 concentrations, and appetite perceptions were measured during 90-min ID infusion of C12 at 0.1 (14 mM), 0.2 (28 mM), or 0.4 (56 mM) kcal/min or saline (control; rate 4 ml/min). Energy intake was determined at a buffet meal immediately following infusion. C12 dose-dependently stimulated IPPWs, decreased antral and duodenal motility, and stimulated secretion of CCK and GLP-1 (r > 0.4, P < 0.05 for all). C12 (0.4 kcal/min) suppressed energy intake compared with control, C12 (0.1 kcal/min), and C12 (0.2 kcal/min) (P < 0.05). These effects were observed in the absence of nausea. In conclusion, intraduodenal C12 dose-dependently modulated APD motility and gastrointestinal hormone release in healthy male subjects, whereas effects on energy intake were only apparent with the highest dose infused (0.4 kcal/min), possibly because only at this dose was modulation of APD motility and gastrointestinal hormone secretion sufficient for a suppressant effect on energy intake.  相似文献   

17.
It is widely accepted that gastric parameters such as gastric distention provide a direct negative feedback signal to inhibit eating; moreover, gastric and intestinal signals have been reported to synergize to promote satiation. However, there are few human data exploring the potential interaction effects of gastric and intestinal signals in the short-term control of appetite and the secretion of satiation peptides. We performed experiments in healthy subjects receiving either a rapid intragastric load or a continuous intraduodenal infusion of glucose or a mixed liquid meal. Intraduodenal infusions (3 kcal/min) were at rates comparable with the duodenal delivery of these nutrients under physiological conditions. Intraduodenal infusions of glucose elicited only weak effects on appetite and the secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). In contrast, identical amounts of glucose delivered intragastrically markedly suppressed appetite (P < 0.05) paralleled by greatly increased plasma levels of GLP-1 and PYY (≤3-fold, P < 0.05). Administration of the mixed liquid meal showed a comparable phenomenon. In contrast to GLP-1 and PYY, plasma ghrelin was suppressed to a similar degree with both intragastric and intraduodenal nutrients. Our data confirm that the stomach is an important element in the short-term control of appetite and suggest that gastric and intestinal signals interact to mediate early fullness and satiation potentially by increased GLP-1 and PYY secretions.  相似文献   

18.
19.
Upper gastrointestinal motor function and incretin hormone secretion are major determinants of postprandial glycemia and insulinemia. However, the impact of small intestinal flow events on glucose absorption and incretin release is poorly defined. Intraluminal impedance monitoring is a novel technique that allows flow events to be quantified. Eight healthy volunteers were studied twice, in random order. A catheter incorporating six pairs of electrodes at 3-cm intervals, and six corresponding manometry sideholes, was positioned in the duodenum. Hyoscine butylbromide (20 mg) or saline was given as an intravenous bolus, followed by a continuous intravenous infusion of either hyoscine (20 mg/h) or saline over 60 min. Concurrently, glucose and 3-O-methylglucose (3-OMG) were infused into the proximal duodenum (3 kcal/min), with frequent blood sampling to measure glucose, 3-OMG, insulin, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). The frequency of duodenal pressure waves and propagated pressure wave sequences was reduced by hyoscine in the first 10 min (P<0.01 for both), but not after that time. In contrast, there were markedly fewer duodenal flow events throughout 60 min with hyoscine (P<0.005). Overall, blood glucose (P<0.01) and plasma 3-OMG concentrations (P<0.05) were lower during hyoscine than saline, whereas plasma insulin, GLP-1, and GIP concentrations were initially (t=20 min) lower during hyoscine (P<0.05). In conclusion, intraluminal impedance measurement may be more sensitive than manometry in demonstrating alterations in duodenal motor function. A reduction in the frequency of duodenal flow events is associated with a decreased rate of glucose absorption and incretin release in healthy subjects.  相似文献   

20.
Whey protein (WP), when consumed in small amounts prior to a meal, improves post-meal glycemic control more than can be explained by insulin-dependent mechanisms alone. The objective of the study was to identify the mechanism of action of WP beyond insulin on the reduction of post-meal glycemia. In a randomized crossover study, healthy young men received preloads (300 ml) of WP (10 and 20 g), glucose (10 and 20 g) or water (control). Paracetamol (1.5 g) was added to the preloads to measure gastric emptying. Plasma concentrations of paracetamol, glucose, and β-cell and gastrointestinal hormones were measured before preloads (baseline) and at intervals before (0–30 min) and after (50–230 min) a preset pizza meal (12 kcal/kg). Whey protein slowed pre-meal gastric emptying rate compared to the control and 10 g glucose (P<.0001), and induced lower pre-meal insulin and C-peptide than the glucose preloads (P<.0001). Glucose, but not WP, increased pre-meal plasma glucose concentrations (P<.0001). Both WP and glucose reduced post-meal glycemia (P=.0006) and resulted in similar CCK, amylin, ghrelin and GIP responses (P<.05). However, compared with glucose, WP resulted in higher post-meal GLP-1 and peptide tyrosine-tyrosine (PYY) and lower insulin concentrations, without altering insulin secretion and extraction rates. For the total duration of this study (0–230 min), WP resulted in lower mean plasma glucose, insulin and C-peptide, but higher GLP-1 and PYY concentrations than the glucose preloads. In conclusion, pre-meal consumption of WP lowers post-meal glycemia by both insulin-dependent and insulin-independent mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号