首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
No studies have examined the effects of an unstable surface on push-up and push-up plus exercises in terms of the two parts of the serratus anterior muscle. We hypothesized that the lower part of the serratus anterior would have greater activity with an unstable surface, which requires stabilizing the scapular position. The present study was performed to investigate the intramuscular differences between parts of the serratus anterior muscle during push-up and push-up plus exercises. Twelve healthy subjects were included in the study. The upper and lower parts of the serratus anterior and upper and lower parts of the trapezius were investigated by surface EMG during four types of exercise. Repeated one-way ANOVA was used for statistical analyses. Maintaining the push-up plus phase caused significant increases in EMG activity of the upper serratus anterior compared with the push-up ascending phase on both of stable and unstable bases (P < 0.05). The lower serratus anterior showed increased activation on an unstable surface, which required more joint stability than did the stable base. Upper trapezius/upper serratus anterior ratio was significantly lower in the PUP than in the PUA phase with both stable and unstable bases of support (P < 0.05).Further studies are required to investigate the intramuscular variation in activation of the serratus anterior during exercises for rehabilitation.  相似文献   

2.
The present study was performed to assess the electromyographic activity of the scapular muscles during push-ups on a stable and unstable surface, in subjects with scapular dyskinesis. Muscle activation (upper trapezius [UT]; lower trapezius [LT]; upper serratus anterior [SA_5th]; lower serratus anterior [SA_7th]) and ratios (UT/LT; UT/SA_5th; UT/ SA_7th) levels were determined by surface EMG in 30 asymptomatic men with scapular dyskinesis, during push-up performed on a stable and unstable surface. Multivariate analysis of variance with repeated measures was used for statistical analyses. The unstable surface caused a decrease in the EMG activity of the serratus anterior and an increase in EMG activity of the trapezius (p = 0.001). UT/SA_5th and UT/ SA_7th ratios were higher during unstable push-ups (p = 0.001). The results suggest that, in individuals with scapular dyskinesis, there is increased EMG activity of the trapezius and decreased EMG activity of the serratus anterior in response to an unstable surface. These results suggest that the performance of the push up exercise on an unstable surface may be more favorable to produce higher levels of trapezius activation and lower levels of serratus anterior activation. However, if the goal of the exercise program is the strengthening of the SA muscle, it is suggested to perform the push up on a stable surface.  相似文献   

3.
4.
BackgroundMuscle imbalance between serratus anterior (SA), upper trapezius (UA), middle trapezius (MT), and lower trapezius (LT) muscles has been observed in subjects with subacromial impingement syndrome (SAIS).Objective(1) To investigate the effect of electromyography (EMG) biofeedback training on muscle balance ratios and scapular kinematics in healthy adults and subjects with SAIS. (2) To investigate whether the effects of EMG biofeedback on muscle balance ratios are different between groups.DesignTwelve healthy adults and 13 subjects with SAIS were recruited in this study. EMG was used to record the activity of scapular muscles. The ratios (UT/SA, UT/MT, and UT/LT) during exercises with/without EMG biofeedback were calculated. Scapular kinematics were recorded before and after exercises with/without EMG biofeedback.ResultsFor the subjects with SAIS, muscle balance ratios were lower during forward flexion with EMG biofeedback than during exercise only (UT/SA: 70.3–45.2; UT/LT: 124.8–94.6). Additionally, similar results were found during side-lying external rotation (UT/MT: 58.5–36.4). For the scapular upward rotation and tipping in both groups, there were no significant differences with and without EMG biofeedback.ConclusionEMG biofeedback improved the scapular muscular balance during training exercises in both groups. Further clinical trials should investigate the long-term effects of EMG biofeedback.  相似文献   

5.
The aim of this study was to determine the effect of isometric horizontal abduction using Thera-Band during three exercises (forward flexion, scaption, and wall push-up plus) in subjects with scapular winging by investigating the electromyographic (EMG) amplitude of the pectoralis major, serratus anterior and the pectoralis major/serratus anterior activity ratio. Twenty-four males with scapular winging participated in this study. The subjects performed the forward flexion, scaption, and wall push-up plus with and without isometric horizontal abduction using Thera-Band. Surface EMG was used to collect the EMG data of the pectoralis major and serratus anterior during the three exercises. Two-way repeated analyses of variance with two within-subject factors (isometric horizontal abduction condition and exercise type) were used to determine the statistical significance of pectoralis major and serratus anterior EMG activity and the pectoralis major/serratus anterior EMG activity ratio. Pectoralis major EMG activity was significantly lower during forward flexion and wall push-up plus with isometric horizontal abduction, and serratus anterior EMG activity was significantly greater with isometric horizontal abduction. Additionally, the pectoralis major/serratus anterior activity ratio was significantly lower during the forward flexion and wall push-up plus with isometric horizontal abduction. The results of this study suggest that isometric horizontal abduction using Thera-Band can be used as an effective method to facilitate the serratus anterior activity and to reduce excessive pectoralis major activity during exercises for activating serratus anterior.  相似文献   

6.
Impairments in muscle activation have been linked to increased risk of developing shoulder pathologies such as subacromial impingement syndrome (SIS) and associated rotator cuff injuries. Individuals with SIS have demonstrated increased upper trapezius (UT) muscle activation and reduced serratus anterior (SA) and lower trapezius (LT) muscle activation, which can be collectively represented as ratios (UT/SA and UT/LT). Targeted exercise is an important component of shoulder rehabilitation programs to re-establish optimal muscle activation and ratios. Electromyography (EMG) biofeedback during exercise has been shown to reduce UT activation and favorably alter scapular muscle activation ratios, however, a literature gap exists regarding the efficacy of other types of biofeedback. Therefore, we compared the effects of three types of biofeedback (visual EMG, auditory, verbal cues) on UT/SA and UT/LT ratios during a seated resisted scaption exercise in fifteen subjects without shoulder pain. Baseline muscle activation was recorded and compared to real-time muscle activation during each randomized biofeedback trial. All biofeedback types showed improvements in the UT/SA and UT/LT ratios, with visual EMG demonstrating a significant change in UT/LT ratio (p < 0.05). These results suggest that biofeedback could be utilized as a component of rehabilitation programs to prevent or treat shoulder pain.  相似文献   

7.
The purpose of this study was to determine if performing isometric 3-point kneeling exercises on a Swiss ball influenced the isometric force output and EMG activities of the shoulder muscles when compared with performing the same exercises on a stable base of support. Twenty healthy adults performed the isometric 3-point kneeling exercises with the hand placed either on a stable surface or on a Swiss ball. Surface EMG was recorded from the posterior deltoid, pectoralis major, biceps brachii, triceps brachii, upper trapezius, and serratus anterior muscles using surface differential electrodes. All EMG data were reported as percentages of the average root mean square (RMS) values obtained in maximum voluntary contractions for each muscle studied. The highest load value was obtained during exercise on a stable surface. A significant increase was observed in the activation of glenohumeral muscles during exercises on a Swiss ball. However, there were no differences in EMG activities of the scapulothoracic muscles. These results suggest that exercises performed on unstable surfaces may provide muscular activity levels similar to those performed on stable surfaces, without the need to apply greater external loads to the musculoskeletal system. Therefore, exercises on unstable surfaces may be useful during the process of tissue regeneration.  相似文献   

8.
The purpose of this study was to compare SEMG activities during axial load exercises on a stable base of support and on a medicine ball (relatively unstable). Twelve healthy male volunteers were tested (x = 23 ± 7y). Surface EMG was recorded from the biceps brachii, anterior deltoid, clavicular portion of pectoralis major, upper trapezius and serratus anterior using surface differential electrodes. All SEMG data are reported as percentage of RMS mean values obtained in maximal voluntary contractions for each muscle studied. A 3-way within factor repeated measures analysis of variance was performed to compare RMS normalized values. The RMS normalized values of the deltoid were always greater during the exercises performed on a medicine ball in relation to those performed on a stable base of support. The trapezius showed greater mean electric activation amplitude values on the wall-press exercise on a medicine ball, and the pectoralis major on the push-up. The serratus and biceps did not show significant differences of electric activation amplitude in relation to both tested bases of support. Independent of the base of support, none of the studied muscles showed significant differences of electric activation amplitude during the bench-press exercise. The results contribute to the identification of the levels of muscular activation amplitude during exercises that are common in clinical practice of rehabilitation of the shoulder and the differences in terms of type of base of support used.  相似文献   

9.
BackgroundTo compare the activation of shoulder and trunk muscles between six pairs of closed (CC) and open chain (OC) exercises for the upper extremity, matched for performance characteristics. The secondary aims were to compare shoulder and trunk muscle activation and shoulder activation ratios during each pair of CC and OC exercise.MethodsTwenty-two healthy young adults were recruited. During visit 1, the 5-repetition maximum resistance was established for each CC and OC exercise. During visit 2, electromyography activation from the infraspinatus (INF), deltoid (DEL), serratus anterior (SA), upper, middle and lower trapezius (UT, MT, LT), erector spinae (ES) and external oblique (EO) muscles was collected during 5-repetition max of each exercise. Average activation was calculated during the concentric and eccentric phases of each exercises. Activation ratios (DEL/INF, UT/LT, UT/MT, UT/SA) were also calculated. Linear mixed models compared the activation by muscle collapsed across CC and OC exercises. A paired t-test compared the activation of each muscle and the activation ratios (DEL/INF, UT/LT, UT/MT, UT/SA) between each pair of CC and OC exercises.ResultsThe INF, LT, ES, and EO had greater activation during both concentric (p = 0.03) and eccentric (p < 0.01) phases of CC versus OC exercises. Activation ratios were lower in CC exercises compared to OC exercises (DEL/INF, 3 pairs; UT/LT, 2 pairs; UT/MT, 1 pair; UT/SA, 3 pairs).ConclusionUpper extremity CC exercises generated greater activation of shoulder and trunk muscles compared to OC exercises. Some of the CC exercises produced lower activation ratios compared to OC exercises.  相似文献   

10.
Motor control and learning possibilities of scapular muscles are of clinical interest for restoring scapular muscle balance in patients with neck and shoulder disorders. The aim of the study was to investigate whether selective voluntary activation of intra-muscular parts within the serratus anterior can be learned with electromyographical (EMG) biofeedback, and whether the lower serratus anterior and the lower trapezius muscle comprise the lower scapula rotation force couple by synergistic activation. Nine healthy males practiced selective activation of intra-muscular parts within the serratus anterior with visual EMG biofeedback, while the activity of four parts of the serratus anterior and four parts of the trapezius muscle was recorded. One subject was able to selectively activate both the upper and the lower serratus anterior respectively. Moreover, three subjects managed to selectively activate the lower serratus anterior, and two subjects learned to selectively activate the upper serratus anterior. During selective activation of the lower serratus anterior, the activity of this muscle part was 14.4 ± 10.3 times higher than the upper serratus anterior activity (P < 0.05). The corresponding ratio for selective upper serratus vs. lower serratus anterior activity was 6.4 ± 1.7 (P < 0.05). Moreover, selective activation of the lower parts of the serratus anterior evoked 7.7 ± 8.5 times higher synergistic activity of the lower trapezius compared with the upper trapezius (P < 0.05). The learning of complete selective activation of both the lower and the upper serratus anterior of one subject, and selective activation of either the upper or lower serratus anterior by five subjects designates the promising clinical application of EMG biofeedback for restoring scapular muscle balance. The synergistic activation between the lower serratus anterior and the lower trapezius muscle was observed in only a few subjects, and future studies including more subjects are required before conclusions of a lower scapula rotation couple can be drawn.  相似文献   

11.
Subacromial impingement syndrome (SAIS) is one of the most diagnosed causes of pain in the upper extremity. The purpose of this study was to investigate muscle activity between asymptomatic and SAIS shoulders on the same subject while understanding the effectiveness of EMG biofeedback training (EBFB) on bilateral overhead movements. Ten participants (7 male), that tested positive for 2/3 SAIS clinical tests, volunteered for the study. Bilateral muscle activity was measured via electrodes on the upper trapezius (UT), lower trapezius (LT), serratus anterior (SA), and lumbar paraspinals (LP). Participants performed bilateral scapular plane overhead movements before and after EBFB. EBFB consisted of 10 bilateral repetitions of I, W, T, and Y exercises focused on reducing UT and increasing LT and SA activity. Prior to EBFB, no significant difference in muscle activity was present between sides. A significant main effect of time indicated that after EBFB both sides exhibited reduced UT activity at 60° (p = 0.003) and 90° (p = 0.036), LT activity was increased at all measured humeral angles (p < 0.0005), and SA muscle activity was increased at 110° (p = 0.001). EBFB in conjunction with scapular based exercise effectively alters muscle activity of asymptomatic and symptomatic scapular musculature.  相似文献   

12.
Altered motor control of the shoulder muscles during performance of a specific motor task in patients with shoulder disorders (SDs) has been an interesting subject to researchers. This study compared shoulder muscle activation patterns by surface electromyography (sEMG), including the upper trapezius (UT), lower trapezius (LT), and serratus anterior (SA) muscles, during four functional tasks in 25 patients with SDs and controls. A voluntary response index (VRI) was calculated, including magnitude and similarity index (SI), to quantify sEMG patterns during four functional tasks. Responsiveness and clinically meaningful levels of discrimination between patients and control for EMG magnitude and SI were determined. An altered pattern of motor control during four functional tasks was evident in the patients, in which greater EMG amplitude and abnormal EMG patterns were found. For SI among four functional tasks, normal subjects ranged from 0.80 to 1.00 while patients ranged from 0.70 to 0.99. High probabilities (97%) of discrimination between patients and normal subjects were found by SI method during an overhead height task (patients: 0.85-0.96, normal subjects: 0.95-1.00). Our results also suggest that an individual can be estimated to be abnormal when lower SI values are observed during the four functional tasks.  相似文献   

13.
Background: Plyometric shoulder exercises are commonly used to progress from slow analytical strength training to more demanding high speed power training in the return to play phase after shoulder injury. The aim of this study was first, to investigate scapular muscle activity in plyometric exercises to support exercise selection in practice and second, to enhance understanding of how scapular muscles are recruited during the back and forth movement phase of these exercises. Methods: Thirty-two healthy subjects performed 10 plyometric exercises while surface EMG-activity of the scapular muscles (upper (UT), middle (MT) and lower trapezius (LT) and serratus anterior (SA)) was registered. A high speed camera tracked start and end of the back and forth movement. Results: Mean scapular EMG activity during the 10 exercises ranged from 14.50% to 76.26%MVC for UT, from 15.19% to 96.55%MVC for MT, from 13.18% to 94.35%MVC for LT and from 13.50% to 98.50%MVC for SA. Anova for repeated measures showed significant differences in scapular muscle activity between exercises (p < 0.001) and between the back and forth movement (p < 0.001) within exercises. Conclusion: Plyometric shoulder exercises require moderate (31–60%MVC) to high (>60%MVC) scapular muscle activity. Highest MT/LT activity was present in prone plyometric external rotation and flexion. Highest SA activity was found in plyometric external rotation and flexion with Xco and plyometric push up on Bosu. Specific exercises can be selected that recruit minimal levels of UT activity (<15%): side lying plyometric external rotation and horizontal abduction or plyometric push up on the Bosu. The results of this study support exercise selection for clinical practice.  相似文献   

14.
Changes in muscle activities are commonly associated with shoulder impingement and theoretically caused by changes in motor program strategies. The purpose of this study was to assess for differences in latencies and deactivation times of scapular muscles between subjects with and without shoulder impingement. Twenty-five healthy subjects and 24 subjects with impingement symptoms were recruited. Glenohumeral kinematic data and myoelectric activities using surface electrodes from upper trapezius (UT), lower trapezius (LT), serratus anterior (SA) and anterior fibers of deltoid were collected as subjects raised and lowered their arm in response to a visual cue. Data were collected during unloaded, loaded and after repetitive arm raising motion conditions. The variables were analyzed using 2 or 3 way mixed model ANOVAs. Subjects with impingement demonstrated significantly earlier contraction of UT while raising in the unloaded condition and an earlier deactivation of SA across all conditions during lowering of the arm. All subjects exhibited an earlier activation and delayed deactivation of LT and SA in conditions with a weight held in hand. The subjects with impingement showed some significant differences to indicate possible differences in motor control strategies. Rehabilitation measures should consider appropriate training measures to improve movement patterns and muscle control.  相似文献   

15.
The serratus anterior and trapezius muscles are considered to be the only upward rotators of the scapula and are very important for normal shoulder function. A variety of methods have been used to produce a maximum voluntary isometric contraction (MVIC) of these muscles for normalization of EMG data. The purpose of this study was to quantify the surface EMG activity of the serratus anterior muscle and the upper, middle, and lower parts of the trapezius during 9 manual muscle tests performed with maximum effort in 30 subjects. It was found that no one muscle test produced a MVIC for all individuals. Therefore, to perform normalization within each subject, it is suggested that the 2 or 3 tests identified in this study that produce high levels of EMG activity for each muscle be performed. The scapular protraction muscle test that is often used to normalize data for the serratus anterior muscle produced relatively low levels of EMG activity and was not found to be an optimal test. Muscle tests in which an attempt was made to de-rotate the scapula from an upwardly rotated position produced much higher levels of EMG activity in the serratus anterior muscle.  相似文献   

16.
The importance of arm-raising has been a major consideration in the functional interpretation of differences in shoulder morphology among species of nonhuman primates. Among the characters that have been associated with enhancement of the arm-raising mechanism in hominoid primates are the relative enlargement of cranial trapezius and caudal serratus anterior, as the main scapular rotators, as well as changes in scapular morphology associated with their improved leverage for scapular rotation. Yet in an EMG study of cranial trapezius and caudal serratus anterior function in the great apes, Tuttle and Basmajian (Yrbk. Phys. Anthropol. 20:491-497, 1977) found these muscles to be essentially inactive during arm-raising. Although Tuttle and Basmajian suggest that the cranial orientation of the glenoid fossa in apes has reduced the demand for scapular rotation during arm-raising, subsequent EMG studies on other primate species suggest that these muscles do play a significant role in arm motion during active locomotion. This paper presents a reexamination of muscle recruitment patterns for trapezius and caudal serratus anterior in the chimpanzee. All but the lowest parts of caudal serratus anterior were found to be highly active during arm-raising motions, justifying earlier morphological interpretations of differences in caudal serratus anterior development. The lowest digitations of this muscle, while inactive during arm-raising, displayed significant activity during suspensory postures and locomotion, presumably to control the tendency of the scapula to shift cranially relative to the rib cage. Cranial trapezius did not appear to be involved in arm-raising; instead, its recruitment was closely tied to head position.  相似文献   

17.
The electromyographic (EMG) activity pattern across the upper trapezius of 22 healthy subjects was investigated during maximal isometric contractions. Eight bipolar surface electrodes with 10 mm distance between adjacent electrode pairs were placed on a line from the clavicle to the scapula. At the region near the clavicle the highest EMG amplitudes were recorded during 90 ° arm abduction. At the more posterior parts the highest amplitudes were found both during arm abduction and shoulder elevation. A double differential recording technique which reduced the EMG cross-talk contribution supported the finding that the upper trapezius was differently activated when the arm posture was changed. The normalized EMG amplitude-force relationship during the shoulder elevation showed a curvilinear relationship on the anterior part of the upper trapezius with a slower increase in EMG amplitude than force at low force. The slope of the curve, at low force, increased gradually in the posterior direction on the upper trapezius. The EMG activity patterns across the upper trapezius indicate a flexibility in motor activation which maybe reflects a functional optimization of the contractions performed by this muscle.  相似文献   

18.
Previous studies show that the scapular muscle recruitment order could possibly change according to the characteristics of the postural task. We aimed to compare the activation latencies of serratus anterior (SA), upper, middle, and lower trapezius (UT, MT and LT, respectively) between an unpredictable perturbation (sudden arm destabilization) and a predictable task (voluntary arm raise) and, to determine the differences in the muscle recruitment order in each task. The electromyographic signals of 23 participants were recorded while the tasks were performed. All scapular muscles showed earlier onset latency in the voluntary arm raise than in the sudden arm destabilization. No significant differences were observed in the muscle recruitment order for the sudden arm destabilization (p > 0.05). Conversely, for voluntary arm raise the MT, LT SA and anterior deltoid (AD) were activated significantly earlier than the UT (p < 0.001). Scapular muscles present a specific recruitment order during a predictable task: SA was activated prior to the AD and the UT after the AD, in a recruitment order of SA, AD, UT, MT, and LT. While in an unpredictable motor task, all muscles were activated after the destabilization without a specific recruitment order, but rather a simultaneous activation.  相似文献   

19.
The gold standard exercise for recruitment of the lower trapezius is the Y prone exercise which is performed above 90° of shoulder elevation. However, clinicians often prescribe exercises that avoid high elevation postures during early stages of rehabilitation. Comparatively little data exists on relative muscle recruitment during lower arm elevation exercises. This study examined the EMG activity of four shoulder girdle muscles during four exercises accomplished below 90° of shoulder elevation and compared them to the Y prone while considering sex effects. Variance across exercises of the ratio between upper trapezius and lower trapezius was also explored. 32 healthy participants completed standardized muscle-specific MVCs and two repetitions of each exercise. The side lying external rotation and the wall slide exercises produced the highest peak EMG for the lower trapezius, both 33 and 29% lower than the Y Prone. For the upper trapezius to lower trapezius ratio, the side lying external rotation elicited the lowest value, followed by the Y prone and wall slide (53 and 59% respectively higher). Sex influenced some EMG values, typically interacting with exercise type. Thus, side lying external rotation and the wall slide are recommended for targeting the lower trapezius muscle during early rehabilitation.  相似文献   

20.
The upper trapezius (UT) has been widely studied and related to alterations in clavicular kinematics in subject with shoulder disorders. However, the most common electrode site used to capture UT EMG is between C7 and the acromion, placing the electrodes over the acromial fibers rather than clavicular ones. Therefore, this study aimed to investigate the relationship between clavicular movements (elevation and retraction) and UT EMG recorded from three electrode sites (traditional electrode positioning and two different sites proposed for clavicular fibers evaluation). Furthermore, the position associated with the highest EMG during maximal isometric voluntary contractions (MVIC), for each electrode site, was determined for normalization purposes. EMG was simultaneously captured in the three electrode sites of 20 healthy subjects, during MVIC at five different positions and during shoulder elevation and abduction in scapular plane. Clavicular kinematics was recorded using an electromagnetic tracking system during the dynamic contractions. Shoulder abduction with head rotation and lateral flexion elicited the highest EMG amplitude on the three electrode sites and was used to normalize the signals. A cross-correlation analysis showed high correlations between all electrode sites and clavicular movements. However, the traditional electrode site seems to record more informative signals in healthy subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号