首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to investigate the covariance between perceived exertion (recorded using Borg's category-ratio scale CR-10) and the relative oxygen uptake, and lactate and ammonia concentrations in blood from a peripheral vein. Ratings of perceived exertion (RPE) at 25%, 50%, 75% and 90% maximal oxygen uptake and lactate and ammonia concentrations were compared in well-trained women distance runners (n = 22) and untrained women (n = 10). Ammonia concentrations in peripheral venous blood were significantly correlated with RPE (P less than 0.05), both in the trained and untrained women. Differences between the trained and untrained subjects occurred when the ammonia concentration increased to 148 mumol.l-1 in both groups investigated; similarly, the mean RPE correlated significantly with the lactate concentration (P less than 0.05), both in the trained and untrained women and there was a difference in RPE between groups when lactate concentration in the blood had risen to 4.4 mmol.l-1. It would seem that the correlation of blood ammonia and lactate concentrations with RPE during exercise could be a useful indicator of the development of fatigue.  相似文献   

2.
An interesting aspect, when comparing athletes, is the effect of specialized training upon both physiological performance and perceptual responses. To study this, four groups (with six individuals each) served as subjects. Two of these consisted of highly specialized individuals (racing cyclists and marathon runners) and the other two of non-specialized individuals (sedentary and all-round trained). Cycling on a cycle ergometer and running on a treadmill were chosen as modes of exercise. Variables measured included heart rate, blood lactate and perceived exertion, rated on two different scales. Results show a linear increase of both heart rate and perceived exertion (rated on the RPE scale) in all four groups, although at different absolute levels. Blood lactate accumulation, during cycling and running, differentiates very clearly between the groups. When heart rate and perceived exertion were plotted against each other, the difference at the same subjective rating (RPE 15) between cycling and running amounted to about 15-20 beats.min-1 in the non-specialized groups. The cyclists exhibited almost no difference at all as compared to 40 beats.min-1 for the runners. It can be concluded that specialized training changes both the physiological as well as the psychological response to exercise.  相似文献   

3.
To determine the effects of cycle and run training on rating of perceived exertion at the lactate threshold (LT), college men completed a 40-session training program in 10 weeks (n = 6 run training, n = 5 cycle training, n = 5 controls). Pre- and post-training variables were measured during graded exercise tests on both the bicycle ergometer and treadmill. ANOVA on the pre- and post-training difference scores resulted in similar improvements in VO2max for both testing protocols, regardless of training mode. The run training group increased VO2 at the LT by 58.5% on the treadmill protocol and by 20.3% on the cycle ergometer. Cycle trainers increased VO2 LT only during cycle ergometry (+38.7%). No changes were observed in the control group. No differences for RPE at the LT were found before or after training, or between testing protocols for any group. Perception of exercise intensity at the LT ranged from "very light" to "light". The relationship between RPE and %VO2max was altered by the specific mode of training, with trained subjects having a lower RPE at a given %VO2max (no change in RPE at max.). It was concluded that RPE at the LT was not affected by training, despite the fact that after training the LT occurs at a higher work rate and was associated with higher absolute and relative metabolic and cardiorespiratory demands.  相似文献   

4.
This study examined the effect of dietary consumption of carbohydrates (CHO) on the blood lactate to rating of perceived exertion (La:RPE) ratio during an intense micro-cycle of exercise training. This ratio is a proposed biomarker of exercise training stress and potential indicator for under- or overtraining in athletes. Sixteen male athletes were randomly assigned into two groups; high CHO (H-CHO; 60% of daily caloric intake) and low CHO (L-CHO; 30% of daily caloric intake). Diets were controlled the day before and for the three days of the micro-cycle. The micro-cycle consisted of three successive days of 60 minutes of intense cycling (~70% of VO2peak). Blood samples were obtained immediately before and after exercise (post) on each day of exercise training (D1, D2, D3) and were analyzed for blood lactate. Rating of perceived exertion (RPE) scores were taken at the end of each exercise session and combined with the post exercise lactate value to form the La:RPE ratio. An analysis of variance (ANOVA) showed a significant difference between the La:RPE ratio for the H-CHO and L-CHO groups at D3 even though the exercise intensity was not significantly different between the groups. Specifically, the ratio was significantly (p < 0.02) lower on D3 in the L-CHO group (~31% lower) than in the H-CHO group. From these findings it is recommended that diet needs to be monitored when using the La:RPE ratio as an exercise training biomarker to determine whether an athlete is truly under-training or overtraining. Athletes or coaches that use the La:RPE ratio as a training biomarker, but do not monitor dietary CHO intake need to interpreted their findings carefully.  相似文献   

5.
The purpose of this study was to evaluate the usefulness of ratings of perceived exertion (RPE) as an indicator of exercise intensity in patients with chronic obstructive pulmonary disease (COPD). The subjects were ten male patients with COPD, whose mean forced expiratory volume in 1 s was 1.09 1, SD 0.41, and ten healthy middle-aged men. Ramp incremental exercise on a cycle-ergometer was performed and RPE was determined by the Borg 15-point scale. The absolute oxygen uptake at each RPE was significantly greater in the healthy subjects than in the patients with COPD. However, oxygen uptake calculated as a percentage of maximal at any RPE did not differ significantly between the two groups. Arterial blood lactate concentration at points 15 to 19 on the RPE scale was increased in healthy subjects (P less than 0.05-P less than 0.001), while the dyspnoea index at points 11 to 19 on the RPE scale was higher in patients with COPD (P less than 0.05-P less than 0.001). The main complaints on stopping exercise were dyspnoea in the patients with COPD and fatigue in the healthy subjects. Although the nature of RPE may have been different in the two groups, RPE could be a possible indicator of exercise intensity when physicians prescribe exercise to patients with COPD.  相似文献   

6.
This study examined the effects of delayed-onset muscle soreness (DOMS) on selected physiological responses to submaximal exercise. Seven male and four female subjects (Ss) aged 21-37 years completed two submaximal running sessions at an individualized pace corresponding to a blood lactate concentration (bLa) of approximately 2.5 mmol x L(-1). Following the first session (T1), Ss performed a series of lower extremity resistance exercises designed to induce DOMS. Subjects were then retested (T2) 24-30 hours later, during which time all Ss experienced DOMS. Oxygen uptake, heart rate (HR), respiratory exchange ratio, rating of perceived exertion (RPE), and bLa were measured every 6 minutes. Significant trial effects (p < 0.05) were observed for HR and RPE. HR was significantly higher during T1 at minutes 6 and 12 (p < 0.05), and RPE values were significantly higher at T2 during all recording periods (p < 0.05). Results from this study suggest that DOMS does not affect submaximal oxygen uptake. However, DOMS does appear to affect one's perception of effort.  相似文献   

7.
The purpose of this study was to determine the reliability and validity of regulating exercise intensity by ratings of perceived exertion in step dance sessions. Ten male college-aged students voluntarily participated in 2 step dance sessions for 45 minutes at 70-80% of their heart rate (HR) reserves with a 1-week interval between sessions. The step dance sessions included the same choreography with 10 minutes of warm-up, 25 minutes of the main part, 5 minutes of calisthenics for legs and abdomen, and 5 minutes of cool-down. In each session, subjects' ratings of perceived exertion (RPEs) were determined by Borg's 6-20 scale together with HR and lactic acid (LA) levels with 10-minute intervals. Values for RPE, HR, and LA increased nonlinearly in both sessions, and their trends were explained by polynomial equations to the second degree. The RPE values increased throughout each session, whereas HR and LA showed a decrease in the last time interval, which indicated that RPE did not maintain exercise intensity at proper range. Reliability coefficients for RPE scores in the first and last session ranged from 0.602 to 0.684. These findings suggest that RPE was a reliable but not a valid method for regulating exercise intensity in step dance sessions.  相似文献   

8.
This study examined the construct validity of the Adult OMNI Perceived Exertion Scale for Resistance Exercise (OMNI-RES). Forty (20 men and 20 women) subjects performed 1 repetition of the knee extension exercise at 40, 50, 60, 70, 80, and 90% of the 1 repetition maximum. Active muscle and overall body ratings of perceived exertion (RPE) were collected from the Borg 15-category RPE scale and the OMNI-RES immediately following each repetition. Construct validity was established by correlating RPE from the OMNI-RES with RPE from the Borg RPE scale using regression analysis. The results indicated a positive and linear relationship between RPE from the OMNI-RES and RPE from the Borg scale for both men and women. Validity coefficients ranged from r = 0.94 to 0.97. The high level of construct validity indicates that the OMNI-RES measures the same properties of exertion as the Borg RPE scale during resistance exercise and suggests that the 2 scales can be used interchangeably during resistance exercise.  相似文献   

9.
10.
The purpose of this study was to evaluate the use of the rating of perceived exertion (RPE) as a means of regulating the intensity of exercise during running. The subjects were healthy, relatively fit young adults (16 men and 12 women). Estimates of effort were recorded using the Borg 6-20 Scale whilst the maximal oxygen uptake of the subjects was measured as they ran on an electrically driven treadmill. In a further session, the same subjects were requested to run on the treadmill at constant exercise intensity based on their interpretation of levels 9, 13 and 17 of the Borg Scale. They regulated their running speed and the treadmill gradient but had no knowledge of performance from the equipment display panel. A linear regression analysis was carried out to examine the relationship between heart rate, perceived exertion and relative metabolic demand. This revealed that the rating of perceived exertion was at least as good a predictor of exercise intensity as heart rate in both the graded exercise test and effort production test. The results support the view that RPE may be used to predict relative metabolic demand, especially at higher workloads and could be a useful medium for controlling intensity of effort during vigorous exercise in such subjects.  相似文献   

11.
ABSTRACT: Rey, E, Lago-Pe?as, C, Lago-Ballesteros, L, and Casáis, L. The effect of recovery strategies on contractile properties using tensiomyography and perceived muscle soreness in professional soccer players. J Strength Cond Res 26(11): 3081-3088, 2012-The capacity to recover from intense training and matches is considered an important determinant in soccer performance. At present, there is no consensus on the effect of posttraining recovery interventions on subsequent training session. The aim of this study was to determine the effectiveness of active (12 minutes of submaximal running and 8 minutes of static stretching) and passive recovery (20 minutes sit on a bench) interventions performed immediately after a training session on muscle contractile properties using tensiomyography (TMG) and perceived muscle soreness 24 hours after the training. During 2 experimental sessions, 31 professional soccer players participated in a randomized fully controlled trial design. The first session was designed to collect the player's TMG and muscle soreness measurements (pretest). After baseline measurements, the participants performed a standardized soccer training during which the heart rate (HR) and rating of perceived exertion (RPE) were recorded to evaluate the training load. At the end of training unit, all the players were randomly assigned to the active recovery group and the passive recovery group. A second experimental session was organized to obtain the posttest values. The players performed the same test, administered in the same order than in the first trial. The results showed that no differences between groups were observed in the HR and RPE. No significant effect because of recovery strategy was found on TMG parameters and perceived muscle soreness.  相似文献   

12.
This study examined the relationship between mood and rating of perceived exertion (RPE) during a simulated multiple-lap time trial (MLTT). Nineteen male cyclists performed a MLTT consisting of four 9.9 km laps, each lap with a gradient ranging from 0 to 10 %. Mood as measured by the Profile of Mood States Questionnaire (POMS) and perceived exertion as measured by the Borg CR100 scale (RPE) were obtained at the end of each lap. A categorical multiple regressive model, having median of POMS subscales as independent variables, was obtained to explain the variance in median RPE responses. Increases in POMS fatigue scores and decreases in POMS vigour scores were observed throughout the MLTT (P < 0.001). A linear increase in RPE during the MLTT was also observed (P < 0.001). POMS fatigue subscale scores accounted for 88 % of the variance in RPE during the MLTT (R2 = 0.88, P = 0.002), and no other POMS subscale improved the final predictive model. With the exception of fatigue these results suggest that most aspects of mood do not have a discernable effect on RPE during a MLTT. The rate of increase in RPE can predict the MLTT endpoint.  相似文献   

13.
The purpose of this study was to determine the effect of training on the rating of perceived exertion (RPE) at the ventilatory threshold. College students were assigned to either training (n = 17) or control (n = 10) groups. Trainers completed 18 interval training sessions (five X 5 min cycling at 90-100% VO2max) and 8 continuous training sessions (40 min running or cycling) in 6 weeks. Pre- and post-training, cardiorespiratory, metabolic, and perceptual variables were measured at the ventilatory threshold during graded exercise tests on a cycle ergometer. Ventilatory threshold was that point above which VE X VO2-1 increased abruptly relative to work rate. Post-training means of trained and control subjects were compared using analysis of covariance, with pre-training values as covariates. Following training, the adjusted means for the trained subjects were significantly greater (p less than 0.05) than for controls for VO2max (6%), and for work rate (20%), VO2 (23%), and %VO2max (13%) at the ventilatory threshold. However, adjusted means for RPE at the ventilatory threshold were not significantly different (2%). Both before and after training, exercise at the ventilatory threshold was perceived as 'somewhat hard' to 'hard' (RPE = 13-15) by both groups. The relationship between RPE and %VO2max was altered by training, with trained subjects having a lower RPE at a given %VO2max. It is concluded that RPE at the ventilatory threshold is not affected by training, despite that after training the ventilatory threshold occurs at a higher work rate and is associated with higher absolute and relative metabolic and cardiorespiratory demands.  相似文献   

14.
This study was designed to show the general increase in perceived exertion, perception of aches or pain in the legs, heart rate (HR), and blood lactate, and the covariance between these variables during bicycle ergometer work, and to describe individual differences both within and between power levels by testing a large group (28 male students). Estimates of perceived exertion and feelings of aches or pain in the legs were recorded using Borg's category-ratio scale (CR-10). The subjects were tested with a stepwise increase of power levels with 40 W increments up to a voluntary maximum. Though HR increases fairly linearly with power, the other variables follow positively accelerating functions with exponents of about 1.6-2 for the perceptual variables, and an exponent of about 3 for blood lactate. The results from the 8 most fit subjects could be described in the same way as for the whole group except for blood lactate, where there was a need to include a threshold value (b), that, together with a rest value (a), shows the starting point of the function (R = a + c(W - Wo)n). The data support the idea that a combination of heart rate and blood lactate is a better predictor of perceived exertion and feelings of aches and pain in the legs, than is each of the single physiological variables taken alone.  相似文献   

15.
To compare some psychophysiological responses to arm exercise with those to leg exercise, an experiment was carried out on electronically braked bicycle ergometers, one being adapted for arm exercise. Eight healthy males took part in the experiment with stepwise increases in exercise intensity every 4 min: 40-70-100-150-200 W in cycling and 20-35-50-70-100 W in arm cranking. Towards the end of each 4 min period, ratings of perceived exertion were obtained on the RPE scale and on a new category ratio (CR) scale:heart rate (HR) and blood lactate accumulation (BL) were also measured. The responses obtained were about twice as high or more for arm cranking than for cycling. The biggest difference was found for BL and the smallest for HR and RPE. The incremental functions were similar in both activities, with approximately linear increases in HR and RPE and positively accelerating functions for CR (exponents about 1.9) and BL (exponents 2.5 and 3.3 respectively). When perceived exertion (according to the CR scale) was set as the dependent variable and a simple combination of HR and BL was used as the independent variable, a linear relationship was obtained for both kinds of exercise, as has previously been found in cycling, running, and walking. The results thus give support for the following generalization: For exercise of a steady state type with increasing loads the incremental curve for perceived exertion can be predicted from a simple combination of HR and BL.  相似文献   

16.
Explosive resistance training (ERT) improves older adults' strength and power, and methods to make this form of training more accessible and useful to older adults are needed. The purpose of this study was to evaluate whether the rating of perceived exertion (RPE) scale would predict a broad range of ERT intensities on the leg press with older adults. If successful, then a load-RPE relationship could be used to regulate the intensity of training loads for ERT with older adults, allowing the elimination of maximal strength testing. Twenty-one older adults (≥65 years) with resistance training experience took part in 2 testing sessions. Session 1: Subjects performed high-velocity repetitions on the leg press for up to 9 loads (from 60 to 140% body weight) presented in quasi-randomized order, and then reported their RPE for each load. Session 2: A 1 repetition maximum (1RM) strength test was conducted. Regression analysis revealed that the average RPE across subjects for each load strongly predicted the average %1RM across subjects (R2 = 99.5%; p < 0.001). This allows the establishment of a load-RPE relationship for use in selecting ERT loads for older adults on the leg press. For example, high-intensity loads (70-90% 1RM) that would elicit both strength and power gains when used with ERT aligned with an RPE of 14-16. Lighter loads that may be useful for training for power, but not strength (<70% 1RM), were identified with RPE scores of 13 and lower. The load-RPE relationship may simplify the regulation of intensity of ERT with older adults on the leg press, where the exercising older adult could be guided to select loads according to their RPE.  相似文献   

17.
This study investigated the reliability of the session rating of perceived exertion (RPE) scale to quantify exercise intensity during high-intensity (H), moderate-intensity (M), and low-intensity (L) resistance training. Nine men (24.7 +/- 3.8 years) and 10 women (22.1 +/- 2.6 years) performed each intensity twice. Each protocol consisted of 5 exercises: back squat, bench press, overhead press, biceps curl, and triceps pushdown. The H consisted of 1 set of 4-5 repetitions at 90% of the subject's 1 repetition maximum (1RM). The M consisted of 1 set of 10 repetitions at 70% 1RM, and the L consisted of 1 set of 15 repetitions at 50% 1RM. RPE was measured following the completion of each set and 30 minutes postexercise (session RPE). Session RPE was higher for the H than M and L exercise bouts (p < or = 0.05). Performing fewer repetitions at a higher intensity was perceived to be more difficult than performing more repetitions at a lower intensity. The intraclass correlation coefficient for the session RPE was 0.88. The session RPE is a reliable method to quantify various intensities of resistance training.  相似文献   

18.
ABSTRACT: Lockie, RG, Murphy, AJ, Scott, BR, and Janse de Jonge, XAK. Quantifying session ratings of perceived exertion for field-based speed training methods in team sport athletes. J Strength Cond Res 26(10): 2721-2728, 2012-Session ratings of perceived exertion (session RPE) are commonly used to assess global training intensity for team sports. However, there is little research quantifying the intensity of field-based training protocols for speed development. The study's aim was to determine the session RPE of popular training protocols (free sprint [FST], resisted sprint [RST], and plyometrics [PT]) designed to improve sprint acceleration over 10 m in team sport athletes. Twenty-seven men (age = 23.3 ± 4.7 years; mass = 84.5 ± 8.9 kg; height = 1.83 ± 0.07 m) were divided into 3 groups according to 10-m velocity. Training consisted of an incremental program featuring two 1-hour sessions per week for 6 weeks. Subjects recorded session RPE 30 minutes post training using the Borg category-ratio 10 scale. Repeated measures analysis of variance found significant (p < 0.05) changes in sprint velocity and session RPE over 6 weeks. All groups significantly increased 0- to 5-m velocity and 0- to 10-m velocity by 4-7%, with no differences between groups. There were no significant differences in session RPE between the groups, suggesting that protocols were matched for intensity. Session RPE significantly increased over the 6 weeks for all groups, ranging from 3.75 to 5.50. This equated to intensities of somewhat hard to hard. Post hoc testing revealed few significant weekly increases, suggesting that session RPE may not be sensitive to weekly load increases in sprint and plyometric training programs. Another explanation, however, could be that the weekly load increments used were not great enough to increase perceived exertion. Nonetheless, the progressive overload of each program was sufficient to improve 10-m sprint performance. The session RPE values from the present study could be used to assess workload for speed training periodization within a team sports conditioning program.  相似文献   

19.
The purpose of this investigation was to observe the effect of hypohydration (-4% body mass) on lactate threshold (LAT) in 14 collegiate athletes (8 men and 6 women; age, 20.9 +/- 0.5 years; height, 171.1 +/- 2.4 cm; weight, 64.8 +/- 2.3 kg; V(O)2 max, 62.8 +/- 1.9 ml x kg(-1) x min(-1); percentage of fat, 11.4 +/- 1.5%). Subjects performed 2 randomized, discontinuous treadmill bouts at a dry bulb temperature (T(db)) of 22 degrees C to volitional exhaustion in 2 states of hydration, euhydrated and hypohydrated. The hypohydrated condition was achieved in a thermally neutral environment (T(db), 22 degrees C; humidity, 45%), with exercise conducted at a moderate intensity as defined by rating of perceived exertion (RPE, approximately 12) 12-16 hours before testing. On average, subjects decreased 3.9% of their body mass before the hypohydration test. Blood lactate, hematocrit, V(O)2, minute ventilation (VE), R value, heart rate (HR), and RPE were measured during each 4-minute stage of testing. In the hypohydrated condition, LAT occurred significantly earlier during exercise and at a lower absolute V(O)2, VE, respiratory exchange ratio, RPE, and blood lactate concentration. Also, the blood lactate concentration was significantly lower in the hypohydrated condition (6.7 +/- 0.8 mmol) compared with the euhydrated condition (10.2 +/- 0.9 mmol) at peak exercise. There were no differences in HR or percentage of maximum HR at LAT nor did plots of V(CO2):V(O)2 reveal differences in bicarbonate buffering during exercise between the 2 conditions. From these results, we speculate that hypohydration did not significantly alter cardiovascular function or buffering capacity but did cause LAT to occur at a lower absolute exercise intensity.  相似文献   

20.
This study was designed to evaluate the relative importance of intended effort ("central command") and of the absolute intensity of dynamic exercise to the cutaneous vasoconstrictor response to the onset of exercise in humans. Skin blood flow (laser-Doppler flowmetry) was measured from the forearm in six healthy individuals during 3-min periods of high- and low-intensity exercise with and without partial neuromuscular blockade. Cutaneous vascular conductance (CVC) was calculated from the ratio of skin blood flow to mean arterial pressure and expressed as a percent change from rest. A rating of perceived exertion (RPE) was expressed as a subjective measure of intended effort. Under control conditions, CVC decreased by 22% (median; range 7-42%, P less than 0.05) during high-intensity exercise [218 (186-268) W; RPE 16 (14-19) exertion units]. In contrast, during control low-intensity exercise [106 (88-128) W; RPE 10 (9-14) exertion units], during low-level exercise with curare [77 (54-98) W; RPE 13 (11-16) exertion units], and during maximal exercise with curare [106 (88-124) W; RPE 19 (18-20) exertion units], CVC did not change significantly. These results suggest that factors related to the activity of the exercising muscle and its metabolism rather than intended effort determine the cutaneous vasoconstrictor response to the initiation of intense dynamic exercise in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号