首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Variable range of motion (ROM) training consists of partial ROM resistance training with the countermovement being performed at a different phase of the movement for each set. In this study, we assessed the effect of this method of training on peak force, load lifted, and concentric work performed. Six male subjects with resistance training backgrounds (age 20.2 +/- 1.3 years, height 179.4 +/- 4.6 cm, weight 89.6 +/- 9.9 kg, 6-repetition maximum [6RM] bench press 92.5 +/- 14.3 kg) participated in this study. Testing consisted of 6RM bench press strength tests during full (FULL), three quarter ((3/4)), one half ((1/2)), and one quarter ((1/4)) ROM from full elbow extension bench press performed on a Smith machine. The 6RM load, peak force (PF), and concentric work (W) performed during each ROM was examined using a one-way analysis of variance performed at an alpha level of p < 0.05. The 6RM load increased significantly as the ROM was decreased for all tests (FULL = 92.5 +/- 14.3 kg, (3/4) = 102.1 +/- 14.3 kg, (1/2) = 123.3 +/- 23.6 kg, (1/4) = 160.9 +/- 26.2 kg). PF during each test was significantly higher during the (1/4) (1924.8 +/- 557.9 N) and (1/2) (1859.4 +/- 317.1 N) ROM from full elbow extension bench press when compared with the (3/4) (1242.2 +/- 254.6 N) and FULL (1200.5 +/- 252.5 N) ROM exercise. Although higher force levels were evident, the restriction in barbell displacement resulted in a subsequent reduction in W as the lifting ROM was reduced. These results suggest that variable ROM resistance training results in increased force production as the ROM diminishes.  相似文献   

2.
Previous studies have suggested that resistance training exercise under unstable conditions decreases the isometric force output, yet little is known about its influence on muscular outputs during dynamic movement. The objective of this study was to investigate the effect of an unstable condition on power, force, and velocity outputs during the bench press. Twenty male collegiate athletes (mean age, 21.3 +/- 1.5 years; mean height, 167.7 +/- 7.7 cm; mean weight, 75.9 +/- 17.5 kg) participated in this study. Each subject attempted 3 sets of single bench presses with 50% of 1 repetition maximum (1RM) under a stable condition with a flat bench and an unstable condition with a Swiss ball. Acceleration data were obtained with an accelerometer attached to the center of a barbell shaft, and peak outputs of power, force, and velocity were computed. Although significant loss of the peak outputs was found under the unstable condition (p < 0.017), their reduction rates remained relatively low, approximately 6% for force and 10% for power and velocity outputs, compared with previous findings. Such small reduction rates of muscular outputs may not compromise the training effect. Prospective studies are necessary to confirm whether the resistance training under an unstable condition permits the improvement of dynamic performance and trunk stability.  相似文献   

3.
The purpose of this study was to investigate the force-velocity response of the neuromuscular system to a variety of concentric only, stretch-shorten cycle, and ballistic bench press movements. Twenty-seven men of an athletic background (21.9 +/- 3.1 years, 89.0 +/- 12.5 kg, 86.3 +/- 13.6 kg 1 repetition maximum [1RM]) performed 4 types of bench presses, concentric only, concentric throw, rebound, and rebound throw, across loads of 30-80% 1RM. Average force output was unaffected by the technique used across all loads. Greater force output was recorded using higher loading intensities. The use of rebound was found to produce greater average velocities (12.3% higher mean across loads) and peak forces (14.1% higher mean across loads). Throw or ballistic training generated greater velocities across all loads (4.4% higher average velocity and 6.7% higher peak velocity), and acceleration-deceleration profiles provided greater movement pattern specificity. However, the movement velocities (0.69-1.68 m.s(-1)) associated with the loads used in this study did not approach actual movement velocities associated with functional performance. Suggestions were made as to how these findings may be applied to improve strength, power, and functional performance.  相似文献   

4.
We hypothesized that resistance training with combined eccentric and concentric actions, and concentric action only, should yield similar changes in muscular strength. Subjects in a free weight group trained three times a week for 12 wk with eccentric and concentric actions (FW, n = 16), a second group trained with concentric-only contractions using hydraulic resistance (HY; n = 12), and a control group did not train (n = 11). Training for FW and HY included five sets of supine bench press and upright squat at an intensity of 1-6 repetition maximum (RM) plus five supplementary exercises at 5-10 RM for a total of 20 sets per session for approximately 50 min. Testing at pre-, mid-, and posttraining included 1) 1 RM bench press and squat with and 2) without prestretch using free weights; 3)isokinetic peak force and power for bench press and squat at 5 degrees/s, and isotonic peak velocity and power for bench press with 20-kg load and squat with 70-kg load; 4) hydraulic peak bench press force and power, and peak knee extension torque and power at fast and slow speeds; and 5) surface anthropometry (fatfolds and girths to estimate upper arm and thigh volume and muscle area). Changes in overall fatness, muscularity, and muscle + bone cross-sectional area of the limbs did not differ between groups (P greater than 0.05). Improvements in free weight bench press and squat were similar (P greater than 0.05) in FW (approximately 24%) and HY (approximately 22%, P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The purpose of this study was to determine if high-dose glutamine ingestion affected weightlifting performance. In a double-blind, placebo-controlled, crossover study, 6 resistance-trained men (mean +/- SE: age, 21.5 +/- 0.3 years; weight, 76.5 +/- 2.8 kg(-1)) performed weightlifting exercises after the ingestion of glutamine or glycine (0.3 g x kg(-1)) mixed with calorie-free fruit juice or placebo (calorie-free fruit juice only). Each subject underwent each of the 3 treatments in a randomized order. One hour after ingestion, subjects performed 4 total sets of exercise to momentary muscular failure (2 sets of leg presses at 200% of body weight, 2 sets of bench presses at 100% of body weight). There were no differences in the average number of maximal repetitions performed in the leg press or bench press exercises among the 3 groups. These data indicate that the short-term ingestion of glutamine does not enhance weightlifting performance in resistance-trained men.  相似文献   

6.
The aim of this study was to propose and validate a post-hoc correction method to obtain maximal power values taking into account inertia of the flywheel during sprints on friction-loaded cycle ergometers. This correction method was obtained from a basic postulate of linear deceleration-time evolution during the initial phase (until maximal power) of a sprint and included simple parameters as flywheel inertia, maximal velocity, time to reach maximal velocity and friction force. The validity of this model was tested by comparing measured and calculated maximal power values for 19 sprint bouts performed by five subjects against 0.6-1 N kg(-1) friction loads. Non-significant differences between measured and calculated maximal power (1151+/-169 vs. 1148+/-170 W) and a mean error index of 1.31+/-1.20% (ranging from 0.09% to 4.20%) showed the validity of this method. Furthermore, the differences between measured maximal power and power neglecting inertia (20.4+/-7.6%, ranging from 9.5% to 33.2%) emphasized the usefulness of power correcting in studies about anaerobic power which do not include inertia, and also the interest of this simple post-hoc method.  相似文献   

7.
The purpose of this investigation was to examine the influence of upper-body static stretching and dynamic stretching on upper-body muscular performance. Eleven healthy men, who were National Collegiate Athletic Association Division I track and field athletes (age, 19.6 +/- 1.7 years; body mass, 93.7 +/- 13.8 kg; height, 183.6 +/- 4.6 cm; bench press 1 repetition maximum [1RM], 106.2 +/- 23.0 kg), participated in this study. Over 4 sessions, subjects participated in 4 different stretching protocols (i.e., no stretching, static stretching, dynamic stretching, and combined static and dynamic stretching) in a balanced randomized order followed by 4 tests: 30% of 1 RM bench throw, isometric bench press, overhead medicine ball throw, and lateral medicine ball throw. Depending on the exercise, test peak power (Pmax), peak force (Fmax), peak acceleration (Amax), peak velocity (Vmax), and peak displacement (Dmax) were measured. There were no differences among stretch trials for Pmax, Fmax, Amax, Vmax, or Dmax for the bench throw or for Fmax for the isometric bench press. For the overhead medicine ball throw, there were no differences among stretch trials for Vmax or Dmax. For the lateral medicine ball throw, there was no difference in Vmax among stretch trials; however, Dmax was significantly larger (p 相似文献   

8.
The objective of this study was to design and validate a three degrees of freedom model in the sagittal plane for the bench press exercise. The mechanical model was based on rigid segments connected by revolute and prismatic pairs, which enabled a kinematic approach and global force estimation. The method requires only three simple measurements: (i) horizontal position of the hand (x0); (ii) vertical displacement of the barbell (Z) and (iii) elbow angle (θ). Eight adult male throwers performed maximal concentric bench press exercises against different masses. The kinematic results showed that the vertical displacement of each segment and the global centre of mass followed the vertical displacement of the lifted mass. Consequently, the vertical velocity and acceleration of the combined centre of mass and the lifted mass were identical. Finally, for each lifted mass, there were no practical differences between forces calculated from the bench press model and those simultaneously measured with a force platform. The error was lower than 2.5%. The validity of the mechanical method was also highlighted by a standard error of the estimate (SEE) ranging from 2.0 to 6.6 N in absolute terms, a coefficient of variation (CV) ?0.8%, and a correlation between the two scores ?0.99 for all the lifts (p<0.001). The method described here, which is based on three simple parameters, allows accurate evaluation of the force developed by the upper limb muscles during bench press exercises in both field and laboratory conditions.  相似文献   

9.
The purpose of this study was to investigate the effects of a competitive wrestling season on body composition, muscular strength, and muscular power in National Collegiate Athletic Association (NCAA) Division III college wrestlers. A total of 10 wrestlers were assessed throughout 2 consecutive wrestling seasons in late October, late January (midseason), and late March (postseason). Measurements included body weight, body composition (6-site skinfold), muscular strength (back squats and bench press), and muscular power (e.g., power cleans, vertical jump, seated medicine ball put). A repeated-measures analysis of variance (ANOVA) showed no significant changes in body weight, percentage of body fat, or fat-free mass (FFM) from pre- to mid- to postseason (body weight, 77.9 +/- 12.4, 75.7 +/- 11.0, and 79.9 +/- 12.8 kg; percentage of body fat, 11.6 +/- 3.9, 10.5 +/- 3.0, and 12.0 +/- 3.4; FFM, 68.5 +/- 8.7, 67.5 +/- 8.2, and 70.0 +/- 9.0 kg). A statistically significant main effect of time (p < 0.01) was observed for muscular strength, as both the back squat and bench press measures were lower at midseason (back squat, 150.8 +/- 25.2 kg; bench press, 98.3 +/- 25.4 kg) than at pre- and postseason (back squat, 157.9 +/- 25.5 and 161.4 +/- 25.6; bench press, 103.4 +/- 25.5 and 106.4 +/- 26.0). Muscular power did not change significantly throughout the wrestling season. These data indicate that Division III college wrestlers remain relatively weight stable with little change in body composition during a competitive wrestling season. While muscular power is apparently maintained, muscular strength may decline slightly. Our findings suggest that these wrestlers benefit from a training program that emphasizes in-season strength maintenance.  相似文献   

10.
The purpose of this study was to compare the peak force and force curve characteristics during a traditional bench press (BP) and a ballistic bench throw (BT). Eight (age = 21.0 +/- 2.3 years, height = 182.3 +/- 7.4 cm, body mass = 85.9 +/- 5.5 kg) semi-professional rugby league players with resistance and power training experience performed both BP and BT exercises at loads of 55 and 80% of their predicted one-repetition maximum. The force curves for each test were then divided into three intensity levels, set at low to moderate (0-75%), high (75-95%), and near-maximal force (95-100%). These values were obtained by determining the percentage of the range of motion (ROM) in which the force produced during each test was within these thresholds. The BT exercise produced significantly (p < 0.05) higher peak force than BP under both loading conditions. A significantly greater portion of the ROM during the 80% BT was at a high intensity in comparison with the BP. No significant differences were found between force intensity conditions at 55% loads. It can be concluded that performing the BT exercise results in a greater peak force output when compared with the traditional BP movement under both resistance training and maximal power loading conditions. Furthermore, performing the BT exercise with heavy loads results in a more efficient training method for maintaining high force levels throughout the ROM.  相似文献   

11.
Twelve experienced male weight lifters performed a rebound bench press and a purely concentric bench press lift. Data were obtained pertaining to 1) the benefits to concentric motion derived from a prior stretch and 2) the movement frequency adopted during performance of the stretch-shorten cycle (SSC) portion of the rebound bench press lift. The subjects also performed a series of quasi-static muscular actions in a position specific to the bench press movement. A brief perturbation was applied to the bar while these isometric efforts were maintained, and the resulting damped oscillations provided data pertaining to each subject's series elastic component (SEC) stiffness and natural frequency of oscillation. A significant correlation (r = -0.718, P less than 0.01) between maximal SEC stiffness and augmentation to concentric motion derived from prior stretch was observed. Subjects were also observed to perform the SSC portion of the rebound bench press movement to coincide with the natural frequency of oscillation of their SEC. These results are interpreted as demonstrating that the optimal stiffness in a rebound bench press lift was a resonant-compliant SEC.  相似文献   

12.
The purpose of this study was to evaluate the early-phase muscular performance adaptations to 5 weeks of traditional (TRAD) and eccentric-enhanced (ECC+) progressive resistance training and to compare the acute postexercise total testosterone (TT), bioavailable testosterone (BT), growth hormone (GH), and lactate responses in TRAD- and ECC+-trained individuals. Twenty-two previously untrained men (22.1 +/- 0.8 years) completed 1 familiarization and 2 baseline bouts, 15 exercise bouts (i.e., 3 times per week for 5 weeks), and 2 postintervention testing bouts. Anthropometric and 1 repetition maximum (1RM) measurements (i.e., bench press and squat) were assessed during both baseline and postintervention testing. Following baseline testing, participants were randomized into TRAD (4 sets of 6 repetitions at 52.5% 1RM) or ECC+ (3 sets of 6 repetitions at 40% 1RM concentric and 100% 1RM eccentric) groups and completed the 5-week progressive resistance training protocols. During the final exercise bout, blood samples acquired at rest and following exercise were assessed for serum TT, BT, GH, and blood lactate. Both groups experienced similar increases in bench press (approximately 10%) and squat (approximately 22%) strength during the exercise intervention. At the conclusion of training, postexercise TT and BT concentrations increased (approximately 13% and 21%, respectively, p < 0.05) and GH concentrations increased (approximately 750-1200%, p < 0.05) acutely following exercise in both protocols. Postexercise lactate accumulation was similar between the TRAD (5.4 +/- 0.4) and ECC+ (5.6 +/- 0.4) groups; however, the ECC+ group's lactate concentrations were significantly lower than those of the TRAD group 30 to 60 minutes into recovery. In conclusion, TRAD training and ECC+ training appear to result in similar muscular strength adaptations and neuroendocrine responses, while postexercise lactate clearance is enhanced following ECC+ training.  相似文献   

13.
Equipment with counterbalance weight systems is commonly used for the assessment of performance in explosive resistance exercise movements, but it is not known if such systems affect performance measures. The purpose of this study was to determine the effect of using a counterbalance weight system on measures of smith machine bench press throw performance. Ten men and 14 women (mean ± SD: age, 25 ± 4 years; height, 173 ± 10 cm; weight, 77.7 ± 18.3 kg) completed maximal smith machine bench press throws under 4 different conditions (2 × 2; counterbalance × load): with or without a counterbalance weight system and using 'light' or 'moderate' net barbell loads. Performance variables (peak force, peak velocity, and peak power) were measured using a linear accelerometer attached to the barbell. The counterbalance weight system resulted in significant (p < 0.001) reductions in measures of peak force (mean difference ± standard error: light: -112 ± 20 N; moderate: -140 ± 23 N), peak velocity (light: -0.49 ± 0.10 m·s; moderate: -0.33 ± 0.07 m·s), and peak power (light: -220 ± 43 W; moderate: -143 ± 28 W) compared with no counterbalance system for both load conditions. Load condition did not affect absolute or percentage reductions from the counterbalance weight system for any variable. In conclusion, the use of a counterbalance weight system reduces accelerometer-based performance measures for the bench press throw exercise at light and moderate loads. This reduction in measures is likely because of an increase in the external resistance during the movement, which results in a discrepancy between the manually input and the actual value for external load. A counterbalance weight system should not be used when measuring performance in explosive resistance exercises with an accelerometer.  相似文献   

14.
The swiss is widely used in the recreational training environment as a supplement to conventional resistance training. One such application is to use the swiss ball as a bench support for bench press exercise. There is no evidence to indicate that the use of a swiss ball is beneficial for resistance training exercise. This study investigated muscle activity using surface electromyography of upper-body and abdominal muscles during the concentric and eccentric phases of the bench press on and off a swiss ball. Volunteers for this study were 14 resistance-trained subjects who performed isolated concentric and eccentric bench press repetitions using the 2 test surfaces with a 2-second cadence at a load equivalent to 60% maximum force output. The average root mean square of the muscle activity was calculated for each movement, and perceived exertion during the tasks was collected using a Borg Scale. The results of the study showed that deltoid and abdominal muscle activity was increased for repetitions performed using the swiss ball. Increased deltoid muscle activity supports previous findings for increased activity when greater instability is introduced to the bench press movement. Abdominal muscle activity increases were not hypothesized, but this finding provides scientific evidence for anecdotal reasoning behind swiss ball use as a potential core stability training device.  相似文献   

15.
Muscle stretch enhances force produced in both single fibers and voluntarily activated human muscle. This study determined how initial conditions of muscle stretch (and associated eccentric work), muscle length, and load inertia contributed to human concentric muscular output during maximal voluntary forearm supination. Outputs of angular velocity and concentric work over specific displacements and times of motion were calculated. Multiple regression analysis was performed using these outputs and initial conditions as dependent and independent variables, respectively. Initial conditions were shown to be significant and systematic determinants of muscle output in concentric contraction. Evidence of a temporary shift in the force-velocity curve was found and discussed regarding its beneficial contribution to load movement. Greater benefit was considered to be due to the fact that muscle stretch allows time for achievement of maximal muscular recruitment prior to concentric contraction. This produces large forces at the onset of the concentric phase, in comparison with contractions starting from rest. These findings were discussed with regard to both single- and multi-segment movement patterns.  相似文献   

16.
Adequately describing the functional consequences of unweighting (e.g., bed rest, immobilization, spaceflight) requires assessing diverse indices of neuromuscular function (i.e., strength, power, endurance, central activation, force steadiness). Additionally, because unweighting increases the susceptibility of muscle to damage, testing should consider supplementary safety features. The purpose of this study was to develop a test battery for quickly assessing diverse indices of neuromuscular function. Commercially available exercise equipment was modified to include data acquisition hardware (e.g., force plates, position transducers) and auxiliary safety hardware (e.g., magnetic brakes). Ten healthy, ambulatory subjects (31 ± 5 years, 173 ± 11 cm, 73 ± 14 kg) completed a battery of lower- and upper-body neuromuscular function tests on 3 occasions separated by at least 48 hours. The battery consisted of the following tests, in order: (1) knee extension central activation, (2) knee extension force steadiness, (3) leg press maximal strength, (4) leg press maximal power, (5) leg press power endurance, (6) bench press maximal strength, (7) bench press force steadiness, (8) bench press maximal power, and (9) bench press power endurance. Central activation, strength, rate of force development, maximal power, and power endurance (total work) demonstrated good-to-excellent measurement reliability (SEM = 3-14%; intraclass correlation coefficient [ICC] = 0.87-0.99). The SEM of the force steadiness variables was 20-35% (ICC = 0.20-0.60). After familiarization, the test battery required 49 ± 6 minutes to complete. In conclusion, we successfully developed a test battery that could be used to quickly and reliably assess diverse indices of neuromuscular function. Because the test battery involves minimal eccentric muscle actions and impact forces, the potential for muscle injury has likely been reduced.  相似文献   

17.
ABSTRACT

We have investigated the magnitude of diurnal variation in back squat and bench press performance using the MuscleLab force velocity transducer. Thirty resistance-trained males (mean ± SD: age 21.7 ± 1.4 years; body mass 80.5 ± 4.5 kg; height 1.79 ± 0.06 m) underwent two sessions at different times of day: morning (M, 07:30 h) and evening (E, 17:30 h). Each session included a period when rectal temperature (Trec) was measured at rest, a 5-min standardized 150 W warm-up on a cycle ergometer, then defined programme of bench press (at 20, 40 and 60 kg) and back squat (at 30, 50 and 70 kg) exercises. A linear encoder was attached to an Olympic bar used for the exercises and average force (AF), peak velocity (PV) and time-to-peak velocity (tPV) were measured (MuscleLab software; MuscleLab Technology, Langesund, Norway) during the concentric phase of the movements. Values for Trec at rest were higher in the evening compared to morning values (0.48°C, P < 0.0005). Daily variations were apparent for both bench press and back squat performance for AF (1.9 and 2.5%), PV (8.3 and 12.7%) and tPV (?16.6 and ?9.8%; where a negative number indicates a decrease in the variable from morning to evening). There was a main effect for load where AF and tPV increased and PV decreased from the lightest load to the heaviest for both bench press and back squat (47.1 and 80.2%; 31.7 and 57.7%; ?42.1 and ?73.9%; P < 0.0005 where a negative number indicates a decrease in the variable with increasing load). An interaction was found only for tPV, such that the tPV occurs earlier in the evening than the morning at the highest loads (60 and 70 kg) for both bench press and back squat, respectively (mean difference of 0.32 and 0.62 s). In summary, diurnal variation in back squat and bench press was shown; and the tPV in complex multi-joint movements occurs earlier during the concentric phase of exercise when back squat or bench press is performed in the evening compared to the morning. This difference can be detected using a low cost, portable and widely available commercial instrument and enables translation of past laboratory/tightly controlled experimental research in to main-stream coaching practice.  相似文献   

18.
The purpose of this study was to determine the vertical and lateral forces applied to the bar during a maximal and a submaximal effort bench press lifts. For this study, 10 male and 8 female recreational lifters were recruited (mean height: 1.71 ± 0.08 m; mass: 73.7 ± 13.6 kg) and were asked to perform a maximal and submaximal (80% of maximal lift) bench press. These lifts were performed with a bar instrumented to record forces applied to it, via the hands, in the vertical direction and along the long axis of the bar. To determine the position of the bar and timing of events, 3D kinematic data were recorded and analyzed for both lifts. The subjects in this study averaged a maximal lift of 63 ± 29 kg (90 ± 31% bodyweight). The peak vertical force was 115 ± 22% (percentage of load), whereas for the submaximal condition it was 113 ± 20%; these forces were statistically different between conditions; they were not when expressed as a percentage of the load (p > 0.05). During all the lifts, the lateral forces were always outward along the bar. The lateral force profile was similar to that of the vertical force, albeit at a lesser magnitude. During the lift phase, the peak lateral force was on average 26.3 ± 3.9% of the vertical force for the maximal lift and 23.7 ± 3.9% of the vertical force for the submaximal lift. Given that the amount of force applied laterally to the bar was a similar percentage of vertical force irrespective of load, it appears that the generation of lateral forces during the bench press is a result of having the muscles engaged in generating vertical force.  相似文献   

19.
We investigated the effect of "psyching-up" on force production during the bench press. Twelve men (mean age +/- SD: 27.4 +/- 11.2 years) and 8 women (20.9 +/- 2.5 years) with strength-training experience performed 5 bench press repetitions on a modified Biodex isokinetic dynamometer during 3 interventions. The interventions were counterbalanced and included a free-choice psych-up, a cognitive distraction, and an attention-placebo. Peak force recorded after psyching-up (mean +/- SD: 764 +/- 269 N.m) was significantly different from both distraction (703 +/- 282 N.m, p = 0.003) and attention-placebo (708 +/- 248 N.m, p = 0.01). The mean percentage increase in peak force from distraction to psyching-up was 11.8% (6 to 18%, 95% confidence interval [CI]) and 8.1% from placebo to psyching-up (3 to 13%, 95% CI). The results of the present study indicate that psyching-up may increase force production during the bench press exercise in participants with at least 1 year strength-training experience.  相似文献   

20.
The goal of the study was to determine the differences between volitional and maximal movement tempo during resistance exercise. Ten healthy men volunteered for the study (age = 26.4 ± 4.8 years; body mass = 93.8 ± 9.6 kg; barbell squat one-repetition maximum (1RM) = 175 ± 16.7 kg; bench press 1RM = 140.5 ± 26.8 kg). In a randomized order, the participants performed six sets of the barbell squat and the bench press exercise at progressive loads from 40% to 90%1RM (step by 10%) under two testing conditions: with volitional movement tempo or with maximal movement tempo. The three-way repeated measures ANOVA showed a statistically significant multi-interaction effect for time under tension (p < 0.001), peak bar velocity (p = 0.04) and for mean bar velocity (p < 0.001). There was also a statistically significant main effect of movement tempo for time under tension (p < 0.001), peak bar velocity (p < 0.001) and for mean bar velocity (p < 0.001). The post hoc analysis for main effect of tempo revealed that time under tension was significantly longer for volitional compared to maximal tempo (0.84 vs 0.67 s, respectively), peak bar velocity was significantly higher for maximal compared to volitional tempo (1.24 m/s vs 0.90 m/s, respectively), and mean bar velocity was significant higher for maximal compared to volitional tempo (0.84 m/s vs 0.67 m/s, respectively). The presented results indicate that there were significant differences between volitional and maximal movement tempos in time under tension and bar velocity (peak and mean), as well as significant differences in those variables between the two exercises. Therefore, the velocity of movement and time under tension is related to movement tempo, external load and type of exercise used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号