首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Daily variations in core temperature (Tc) within the normothermic range imply thermoregulatory processes that are essential for optimal function and survival. Higher susceptibility towards cold exposure in older animals suggests that these processes are disturbed with age. In the mouse lemur, a long-day breeder, we tested whether aging affected circadian rhythmicity of Tc, locomotor activity (LA), and energy balance under long-day conditions when exposed to cold. Adult (N?=?7) and aged (N?=?5) mouse lemurs acclimated to LD14/10 were exposed to 10–day periods at 25 and 12°C. Tc and LA rhythms were recorded by telemetry, and caloric intake (CI), body mass changes, and plasma IGF-1 were measured. During exposure to 25°C, both adult and aged mouse lemurs exhibited strong daily variations in Tc. Aged animals exhibited lower levels of nocturnal LA and nocturnal and diurnal Tc levels in comparison to adults. Body mass and IGF-1 levels remained unchanged with aging. Under cold exposure, torpor bout occurrence was never observed whatever the age category. Adult and aged mouse lemurs maintained their Tc in the normothermic range and a positive energy balance. All animals exhibited increase in CI and decrease in IGF-1 in response to cold. The decrease in IGF-1 was delayed in aged mouse lemurs compared to adults. Moreover, both adult and aged animals responded to cold exposure by increasing their diurnal LA compared to those under Ta?=?25°C. However, aged animals exhibited a strong decrease in nocturnal LA and Tc, whereas cold effects were only slight in adults. The temporal organization and amplitude of the daily phase of low Tc were particularly well preserved under cold exposure in both age groups. Sexually active mouse lemurs exposed to cold thus seemed to prevent torpor exhibition and temporal disorganization of daily rhythms of Tc, even during aging. However, although energy balance was not impaired with age in mouse lemurs after cold exposure, aging was associated with lower LA and Tc during the night and delayed decrease in IGF-1. This might reflect that adaptive strategies to cold exposure differ with age in mouse lemurs acclimated to a summer-like photoperiod.  相似文献   

2.
3.
Daily heterothermia is used by small mammals for energy and water savings, and seems to be preferentially exhibited during winter rather than during summer. This feature induces a trade-off between the energy saved during daily heterothermia and the energy cost of arousal, which can impact energy balance and survival under harsh environmental conditions. Especially, aging may significantly affect such trade off during cold-induced energy stress, but direct evidences are still lacking. We hypothesized that aging could alter the energetics of daily heterothermia, and that the effects could differ according to season. In the gray mouse lemur (Microcebus murinus), a non-human primate species which exhibits daily heterothermia, we investigated the effects of exposures to 25 and 12°C on body composition, energy balance, patterns of heterothermia and water turnover in adult (N = 8) and aged animals (N = 7) acclimated to winter-like or summer-like photoperiods.Acclimation to summer prevented animals from deep heterothermia, even during aging. During winter, adult animals at 12°C and aged animals at 25°C exhibited low levels of energy expenditure with minor modulations of heterothermia. The major effects of cold were observed during winter, and were particularly pronounced in aged mouse lemurs which exhibited deep heterothermia phases. Body composition was not significantly affected by age and could not explain the age-related differences in heterothermia patterns. However, aging was associated with increased levels of energy expenditure during cold exposure, in concomitance with impaired energy balance. Interestingly, increased energy expenditure and depth of heterothermia phases were strongly correlated.In conclusion, it appeared that the exhibition of shallow heterothermia allowed energy savings during winter in adult animals only. Aged animals exhibited deep heterothermia and increased levels of energy expenditure, impairing energy balance. Thus, an impaired control of the heterothermic process induced high energy costs in the aging mouse lemur exposed to cold.  相似文献   

4.
During daily torpor in the dwarf Siberian hamster, Phodopus sungorus, metabolic rate is reduced by 65% compared with the basal rate, but the mechanisms involved are contentious. We examined liver mitochondrial respiration to determine the possible role of active regulated changes and passive thermal effects in the reduction of metabolic rate. When assayed at 37 degrees C, state 3 (phosphorylating) respiration, but not state 4 (nonphosphorylating) respiration, was significantly lower during torpor compared with normothermia, suggesting that active regulated changes occur during daily torpor. Using top-down elasticity analysis, we determined that these active changes in torpor included a reduced substrate oxidation capacity and an increased proton conductance of the inner mitochondrial membrane. At 15 degrees C, mitochondrial respiration was at least 75% lower than at 37 degrees C, but there was no difference between normothermia and torpor. This implies that the active regulated changes are likely more important for reducing respiration at high temperatures (i.e., during entrance) and/or have effects other than reducing respiration at low temperatures. The decrease in respiration from 37 degrees C to 15 degrees C resulted predominantly from a considerable reduction of substrate oxidation capacity in both torpid and normothermic animals. Temperature-dependent changes in proton leak and phosphorylation kinetics depended on metabolic state; proton leakiness increased in torpid animals but decreased in normothermic animals, whereas phosphorylation activity decreased in torpid animals but increased in normothermic animals. Overall, we have shown that both active and passive changes to oxidative phosphorylation occur during daily torpor in this species, contributing to reduced metabolic rate.  相似文献   

5.
Ageing can progress at different rates according to an individual's physiological state. Natural hypothermia, including torpor and hibernation, is a common adaptation of small mammals to survive intermittent or seasonal declines in environmental conditions. In addition to allowing energy savings, hypothermia and torpor have been associated with retarded ageing and increased longevity. We tested the hypothesis that torpor use slows ageing by measuring changes in the relative telomere length (RTL) of Djungarian hamsters, Phodopus sungorus, a highly seasonal rodent using spontaneous daily torpor, over 180 days of exposure to a short-day photoperiod and warm (approx. 20°C) or cold (approx. 9°C) air temperatures. Multi-model inference showed that change in RTL within individuals was best explained by positive effects of frequency of torpor use, particularly at low body temperatures, as well as the change in body mass and initial RTL. Telomere dynamics have been linked to future survival and proposed as an index of rates of biological ageing. Our results therefore support the hypothesis that daily torpor is associated with physiological changes that increase somatic maintenance and slow the processes of ageing.  相似文献   

6.
With the exception of some data for common poorwills (Phalaenoptilus nuttallii) and anecdotal reports for a few other species, knowledge about the use of torpor by free-ranging birds is limited. Our study was designed to assess the use of torpor by free-ranging Australian owlet-nightjars (Aegotheles cristatus). We selected this species for study because of their relatively small body size (50 g), arthropod diet, nocturnal sedentary nature, taxonomic affiliation with other birds for whom the use of torpor is well documented, use of cavity roosts, and because of the cold winter (mean July minimum ambient temperature [T(a)] of approximately 0 degrees C) in the study area. We tracked 12 owlet-nightjars carrying temperature-sensitive transmitters for a total of 906 bird-days (range of 15-115 d per individual). Five different individuals entered torpor on 96 d in total. Torpor bouts occurred only between May 8 and September 8, the coldest period of the year. The lowest skin temperature (T(skin)) recorded for any bird was 19.6 degrees C, and the lowest core temperature was 22.4 degrees C. Surprisingly, torpor was rarely used at night because birds usually foraged then. Instead, torpor typically began near dawn, even on cold nights. Torpor bouts beginning at dawn lasted approximately 4 h. On 36% of days when torpor was used at dawn, birds reentered torpor later in the day. Torpor was not used during the breeding season, but this period also corresponds to the warm part of the year. There were no distinct daily minimum, maximum, or mean T(a) thresholds that could be used to reliably distinguish days when dawn torpor was used from those when it was not, although torpor was commonly employed when daily minimum T(a) fell below 3.9 degrees C. Our results show that even though Australia is typically thought of as a warm continent, at least some of the avifauna use torpor as a regular means of saving energy. We hypothesise that the reasons for this species' use of torpor include its ability to remain active all night foraging, either for terrestrial arthropods while walking or for flying insects taken on the wing, and/or its habit of roosting in cavities, which allows them to remain hidden in the daytime.  相似文献   

7.
Daily rhythms of pineal and serum melatonin content were characterized for adult female Turkish hamsters (Mesocricetus brandti) exposed to long days (16L:8D, 22 degrees C) or after transfer to short days (10L:14D, 22 degrees C). The nocturnal peak of pineal melatonin content was found to be approximately 3 b greater in duration on short than on long days. Changes in levels of serum melatonin closely paralleled those of pineal melatonin. Thus, an effect of photoperiod on synthesis and secretion of pineal melatonin was demonstrated. In a separate experiment, female hamsters were induced to hibernate by exposure to a short-day, cold environment (10L:14D, 6 degrees C). During the 4 to 5-mo hibernation season, Turkish hamsters are known to display 4 to 8-day hours of torpor (body temperature = 7-9 degrees C) alternating with 1 to 3-day intervals of euthermia (body temperature = 35-37 degrees C). Little evidence of nocturnal synthesis or secretion of pineal melatonin was detected in females sampled during torpor. However, animals sampled during the first day after arousal from a torpor bout displayed melatonin rhythms no different in phase or amplitude from those seen in females held at 22 degrees C. Thus, despite the absence of pineal melatonin output during torpor, the pineal gland of hibernating Turkish hamsters produces an appropriately phased, rhythmic melatonin signal during intervals of euthermia.  相似文献   

8.
1. Male and female Djungarian hamsters (Phodopus sungorus) were gonadectomized or sham-operated after 12 weeks of exposure to short photoperiods (10L:14D). Half of the animals were single housed and transferred to a cold environment (7 degrees C) at week 13 of short days and half were transferred to cold at week 21. The time courses of short photoperiod induced seasonal changes in body weight, pelage color stage, and daily torpor were monitored periodically until the experiment was terminated after 34 weeks of short days. 2. The total duration of short photoperiod exposure was of primary importance compared to the duration of cold exposure in regulating seasonal changes in the frequency of daily torpor, body weight and pelage color exhibited by male and female Djungarian hamsters; that is, the change from long to short days was much more effective as a seasonal time cue than was the onset of cold exposure. 3. Gonadectomy did not prevent the occurrence of seasonal torpor in hamsters of either sex, indicating that these cycles are regulated by a time measuring mechanism (seasonal clock) that is largely independent of the gonadal cycle. However, castration did influence certain aspects of the body weight and torpor cycles exhibited by male hamsters. 4. Some castrated animals showed a delay in terminating the torpor season lending further support to the hypothesis that the spontaneous recrudescence of the testes which occurs toward the end of the torpor season may play a role in the termination of torpor in males.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Yellow-bellied marmots (Rodentia: Sciuridae) typically hibernate for eight months. This study explored energetic costs of hibernation in young and adults at 10 and 6 degrees C. Age significantly affected the percent time torpid, total and mass-specific VO(2), use of energy during torpor, and daily mass loss at 6 degrees C. Thus young had a higher mass-specific VO(2) during a torpor bout, which was attributed to higher metabolism during deep torpor. Total VO(2) during a bout was higher in young and there were significant temperature/age interactions; young had a higher VO(2) during torpor and deep torpor at 6 degrees C than at 10 degrees C. VO(2) increased at T(E)s below 6 degrees C. Young had a higher daily mass loss than adults at 6 degrees C. Euthermy increased energetic costs 19.3 times over those of torpor and 23.5 times over those of deep torpor. Energy costs are minimized by spending 88.6% of the hibernation period in torpor, by the rapid decline of VO(2) from euthermy to torpor and by allowing T(B) to decline at low T(E). Torpidity results in average energy savings during winter of 83.3% of the costs of maintaining euthermy. Energy savings are greater than those reported for Marmota marmota and M. monax.  相似文献   

10.
Factors affecting cold-induced hypertension in rats   总被引:3,自引:0,他引:3  
A 3- to 4-week exposure of rats to a cold environment (5 +/- 2 degrees C) induces hypertension, including elevation of systolic, diastolic, and mean blood pressures and cardiac (left ventricular) hypertrophy. The studies described here were designed to investigate some factors affecting both the magnitude and the time course for development of cold-induced hypertension. The objective of the first study was to determine whether there was an ambient temperature at which the cold-induced elevation of blood pressure did not occur. The objective of the second experiment was to determine whether body weight at the time of exposure to cold affected the magnitude and time course for development of hypertension. To assess the first objective, male rats were housed in a chamber whose temperature was maintained at 5 +/- 2 degrees C while others were housed in an identical chamber at 9 +/- 2 degrees C. After 7 days of exposure to cold, the rats exposed to the colder temperature had a significant elevation of blood pressure (140 +/- 2 mm Hg) compared with the group maintained at 9 degrees C (122 +/- 3 mm Hg). The rats exposed to 9 degrees C had no significant elevation of systolic blood pressure at either 27 or 40 days after initiation of exposure to cold. At the latter time, the temperature in the second chamber was reduced to 5 +/- 2 degrees C. By the 25th day of exposure to this ambient temperature, the rats had a significant increase in systolic blood pressure above their levels at 9 degrees C. Thus, there appears to be a threshold ambient temperature for elevation of blood pressure during exposure to cold. That temperature appears to lie somewhere between 5 and 9 degrees C. The second objective was assessed by placing rats varying in weight from approximately 250 to 430 g in air at 5 degrees C. There was a highly significant direct relationship (r = 0.96) between body weight at the time of introduction to cold and the number of days required to increase systolic blood pressure by 10 mm Hg above pre-cold exposure level. The third objective was to make an initial assessment of potential differences among strains of rats with respect to development of cold-induced hypertension. To this end, rats of the Fischer 344 strain were used. Systolic blood pressures of these rats also increased during chronic exposure to cold.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
During hibernation at ambient temperatures (T(a)) above 0 degrees C, rodents typically maintain body temperature (T(b)) approximately 1 degrees C above T(a), reduce metabolic rate, and suspend or substantially reduce many physiological functions. We tested the extent to which the presence of an insulative pelage affects hibernation. T(b) was recorded telemetrically in golden-mantled ground squirrels (Spermophilus lateralis) housed at a T(a) of 5 degrees C; food intake and body mass were measured at regular intervals throughout the hibernation season and after the terminal arousal. Animals were subjected to complete removal of the dorsal fur or a control procedure after they had been in hibernation for 3-4 wk. Shaved squirrels continued to hibernate with little or no change in minimum T(b), bout duration, duration of periodic normothermic bouts, and food intake during normothermia. Rates of rewarming from torpor were, however, significantly slower in shaved squirrels, and rates of body mass loss were significantly higher, indicating increased depletion of white adipose energy stores. An insulative pelage evidently conserves energy over the course of the hibernation season by decreasing body heat loss and reducing energy expenditure during periodic arousals from torpor and subsequent intervals of normothermia. This prolongs the hibernation season by several weeks, thereby eliminating the debilitating consequences associated with premature emergence from hibernation.  相似文献   

12.
Torpor was monitored daily in adult male and female European hamsters (Cricetus cricetus) induced to hibernate by exposure to a cold environment (6 degrees C). The effect of photoperiodic manipulations or administration of exogenous gonadal steroids was examined in gonadectomized or intact hamsters. 1. Gonadal regression occurred in all short day, but only in some long day, cold-exposed hamsters. Entry into hibernation was not observed until reproductive regression had occurred. Thus, gonadal atrophy appears to be a necessary precondition for hibernation. 2. Castrated hamsters in the short day cold condition showed a significantly greater incidence of torpor than those in the long day cold condition. Hence, photoperiod affected torpor independently of its effect on the gonadal cycle. 3. Testosterone, when administered via silastic capsules at near physiological levels, completely inhibited torpor in gonadectomized male and female hamsters hibernating in the short day cold condition. 4. In ovariectomized females, torpor was unaffected by progesterone treatment, but partially inhibited by estradiol. A greater inhibition of torpor was observed when estradiol-primed females were administered both estradiol and progesterone simultaneously. Thus, the effect of both hormones may be functionally comparable to that of the single testicular hormone. 5. Estradiol inhibited torpor to a greater extent in intact and ovariectomized female hamsters hibernating in long days than those in short days, suggesting an effect of photoperiod on responsiveness to estradiol. These results indicate an inverse relationship between the gonadal and hibernation cycles, and a probable role for gonadal steroids to influence the timing of the hibernation season. However, non-gonadal factors must also be involved in controlling hibernation, since photoperiod affected the incidence of torpor in gonadectomized animals and because hamsters were able to terminate hibernation in the absence of gonadal hormones.  相似文献   

13.
G. Körtner  F. Geiser 《Oecologia》2000,125(3):350-357
Almost all studies on daily torpor in mammals have been conducted in the laboratory under constant environmental conditions. We investigated torpor and activity patterns in free-ranging sugar gliders (Petaurus breviceps, 100 g) using temperature telemetry and compared field data with published information obtained in the laboratory. Body and/or skin temperature and activity patterns of 12 sugar gliders were monitored from autumn to spring. Healthy sugar gliders were active between sunset and sunrise, but on cold or rainy nights activity was substantially reduced. Animals in poor condition occasionally foraged during the day. Eleven gliders were monitored for 8–171 days and all of these entered daily torpor. Torpor was observed on 103 days (17% of observation days), usually occurred on rainy or cold nights, and frequency of torpor changed with season. Torpor bouts lasted between 2 and 23 h (average 13 h) and the body temperature fell to a minimum of 10.4°C. Torpor was thus much deeper, longer and more frequent than in laboratory studies on the same species. Our study shows that cold or wet conditions curtail foraging in wild sugar gliders and that they employ daily torpor regularly during adverse weather. This suggests that minimisation of energy loss by the use of torpor in sugar gliders is pivotal for their survival in the wild. Received: 8 July 1999 / Accepted: 23 December 1999  相似文献   

14.
Summary In Djungarian hamsters,Phodopus sungorus, daily torpor occurs spontaneously in winter in the presence of abundant food, but individuals show different tendencies to enter torpor. The results show that in hamsters fed rodent chow ad libitum individual torpor frequencies were negatively correlated with both food consumption and the amount of nocturnal locomotor activity. Provision of cafeteria diet at ambient temperatures below thermoneutrality significantly lowered torpor frequencies and induced body weight gains. However, in hamsters fed seeds with a high fat or carbohydrate content (i.e., sunflower seeds or wheat, respectively) neither a decrease of torpor frequencies nor an increase of body weights was observed. The results suggest that in Djungarian hamsters, daily torpor is an intrinsic component of energy balance control and is functionally linked to individual physiological adjustments of food consumption and foraging activity. In addition, the employment of daily torpor can be affected by social interactions, since the long-term pattern of alternations between torpor and normothermia was found to be synchronized in breeding pairs caged together.Abbreviations T a ambient temperature - DIT diet-induced thermogenesis  相似文献   

15.
Many birds and mammals drastically reduce their energy expenditure during times of cold exposure, food shortage, or drought, by temporarily abandoning euthermia, i.e. the maintenance of high body temperatures. Traditionally, two different types of heterothermy, i.e. hypometabolic states associated with low body temperature (torpor), have been distinguished: daily torpor, which lasts less than 24 h and is accompanied by continued foraging, versus hibernation, with torpor bouts lasting consecutive days to several weeks in animals that usually do not forage but rely on energy stores, either food caches or body energy reserves. This classification of torpor types has been challenged, suggesting that these phenotypes may merely represent extremes in a continuum of traits. Here, we investigate whether variables of torpor in 214 species (43 birds and 171 mammals) form a continuum or a bimodal distribution. We use Gaussian‐mixture cluster analysis as well as phylogenetically informed regressions to quantitatively assess the distinction between hibernation and daily torpor and to evaluate the impact of body mass and geographical distribution of species on torpor traits. Cluster analysis clearly confirmed the classical distinction between daily torpor and hibernation. Overall, heterothermic endotherms tend to be small; hibernators are significantly heavier than daily heterotherms and also are distributed at higher average latitudes (~35°) than daily heterotherms (~25°). Variables of torpor for an average 30 g heterotherm differed significantly between daily heterotherms and hibernators. Average maximum torpor bout duration was >30‐fold longer, and mean torpor bout duration >25‐fold longer in hibernators. Mean minimum body temperature differed by ~13°C, and the mean minimum torpor metabolic rate was ~35% of the basal metabolic rate (BMR) in daily heterotherms but only 6% of BMR in hibernators. Consequently, our analysis strongly supports the view that hibernators and daily heterotherms are functionally distinct groups that probably have been subject to disruptive selection. Arguably, the primary physiological difference between daily torpor and hibernation, which leads to a variety of derived further distinct characteristics, is the temporal control of entry into and arousal from torpor, which is governed by the circadian clock in daily heterotherms, but apparently not in hibernators.  相似文献   

16.
Summary Postnatal development of thermoregulatory responses to cold differs between shrews measured singly or in groups as a litter. Single shrews increase their metabolic response to cold within 14 days to maintain normothermia. Shrews measured in groups show little or no metabolic response to cold and do not reach normothermia before the 19th day. Lower body temperatures in groups are explained by torpor, which obviously needs the prerequisite of forming a group. Oxygen consumption of the singly measured shrews depends upon body mass.  相似文献   

17.
The bilateral lobe of interscapular brown adipose tissue of the Djungarian hamster was unilaterally denervated in order to study the role of the sympathetic innervation for maintenance and cold-induced increase of non-shivering thermogenesis. Denervation decreased the noradrenaline content of brown adipose tissue to less than 9% of the intact contralateral pad. This low noradrenaline level was maintained for 1–14 days after denervation. First, to study the role of the sympathetic innervation of brown adipose tissue in the maintenance of the high thermogenic capacity characteristic of the cold acclimated state, brown adipose tissue was denervated in hamsters either kept at thermoneutrality or acclimated to 5°C ambient temperature for 4 weeks. Cold-acclimated hamsters had elevated levels of uncoupling protein messenger ribonucleic acid (8.1-fold) and cytochrom-c oxidase-activity (3-fold). Denervation of brown adipose tissue decreased uncoupling protein-messenger ribonucleic acid level and cytochrom-c-oxidase-activity as compared to the intact pad in thermoneutral and in cold-acclimated hamsters. However, in cold-acclimated hamsters uncoupling protein-messenger ribonucleic acid level and cytochrom-c-oxidase-activity in denervated brown adipose tissue both were maintained on an elevated 6-fold higher levels as compared to thermoneutral controls. Second, to study the role of the sympathetic innervation of brown adipose tissue in the cold-induced increase in thermogenic capacity, hamsters were denervated prior to cold acclimation and responses were measured after 3 and 14 days of cold exposure. Uncoupling protein-messenger ribonucleic acid level and cytochrom-c-oxidase-activity of intact brown adipose tissue increased after 14 days cold acclimation. Denervation did not completely prevent a cold-induced 1.5-fold increase of cytochrom-c-oxidase-activity and a 3.2-fold increase of the uncoupling protein-messenger ribonucleic acid level in denervated brown adipose tissue after 14 days of cold acclimation. In conclusion, high levels of uncoupling protein-messenger ribonucleic acid and cytochrom-c-oxidase activity in brown adipose tissue of cold-acclimated hamsters can partially be maintained without intact sympathetic innervation, suggesting a considerable contribution of trophic factors not requiring sympathetic innervation for maintenance. The cold-induced increase of cytochrom-c-oxidase activity and expression of uncoupling protein-messenger ribonucleic acid largely depends upon sympathetic innervation of brown adipose tissue.Abbreviations ANOVA analysis of variance - BAT brown adipose tissue - COX cytochrom-c-oxidase - HPLC high performance liquid chromatography - mRNA messenger ribonucleie acid - NA noradrenaline - T a ambient temperature - UCP uncoupling protein  相似文献   

18.
The grey mouse lemur (Microcebus murinus) is a small nocturnal primate exhibiting daily torpor. In constant ambient temperature (22-24 degrees C), body temperature (Tb) and locomotor activity were monitored by telemetry in animals exposed to short (SP: 10 h light/day) or long (LP: 14 light/day) photoperiods. They were first fed ad libitum for 8 days and then subjected to 80% restricted feeding for 8 more days. During ad libitum feeding, locomotor activity was significantly lower in SP-exposed animals than in LP-exposed animals. Whatever the photoperiod, animals entered daily hypothermia within the first hours following the light onset. Depth of daily hypothermia increased irregularly under SP exposure, whereas minimal daily Tb was constantly above 35 degrees C under LP exposure. After the transfer from long photoperiod to short photoperiod corresponding to the induction of seasonal fattening, locomotor activity and depth of controlled daily hypothermia did not change significantly. In contrast, food restriction led to a significant increase in locomotor activity and in frequency of daily torpor (Tb<33 degrees C) and body temperature reached minimum values averaging 25 degrees C. However, SP-exposed animals exhibited lower minimal daily Tb and higher torpor duration than LP exposed animals. Therefore, daily torpor appears as a rapid response to food restriction occurring whatever the photoperiod, although enhanced by short photoperiod.  相似文献   

19.
Thermoregulatory capacities of 51 reindeer calves (Rangifer tarandus tarandus L.) aged 1-35 days were studied at -26.5 to +35.0 degrees C ambient temperatures at Kaamanen reindeer research station, Finland (69 degrees 10' N) during calving periods in May 1981 and May-July 1982. The newborn calves aged 1-4 days maintained a high body temperature (Tre) (mean +40.2 degrees C) even at the lowest experimental temperature of -22.5 degrees C by increasing their metabolic rate five-fold above the level at +11.0 degrees C. Heat production of the new-born calves was largely based on the metabolism of brown adipose tissue, stimulated by cold-induced discharge of the sympathetic nervous transmitter, noradrenaline (NA). Sensitivity of the calves to exogenous NA disappeared during the first 3-4 weeks of life. Thermal conductance of the calves was low at low ambient temperatures, but rose strongly as Ta increased above +10 degrees C. The extensive peripheral cooling, especially in the feet, was demonstrated in the calves aged 1-10 days. The lowest foot temperature (+10.5 degrees C) was measured in a 4-day-old calf at -14.5 degrees C. Slight shivering thermogenesis was recorded in the calves aged 1-4 days and occasionally in the older calves at low values of Ta. Shivering appears to be a reserve mechanism against severe cold. At about +20 degrees C and above the calves increased their Tre (approximately 1 degree C), oxygen consumption and heart rate. In the newborn calves oxygen consumption rose four- to five-fold and in 1-month-old calves about two-fold. Fast growing calves (maximum 400 g/day) appear to be more stressed by heat than by cold exposure.  相似文献   

20.
After approximately 10 wk of exposure to decreasing day lengths, Siberian hamsters (Phodopus sungorus) begin to display spontaneous torpor bouts several times each week. Torpor is associated with reduced daily energy expenditure and lower food consumption and ameliorates the thermoregulatory challenges of winter. We tested the extent to which the energy savings conferred by daily torpor depend on the presence of an insulative pelage. Female hamsters were housed in a winter day length (8L:16D) at 5 degrees C; daily food intake and torpor characteristics were recorded for 5 wk in shaved (furless) or normal hamsters. Torpor-bout incidence decreased by 62% in furless hamsters, but the duration of individual bouts and the minimum body temperature attained during torpor were unaffected by loss of pelage. Body temperature declined more rapidly during entry into torpor and increased more slowly during arousal from torpor in furless than in control hamsters. Energy savings per torpor bout, assessed by the amount of food consumed on days that included a torpor bout, was substantially greater in normal than in furless hamsters (16.0% vs. 3.3%); this difference likely reflects the increased cost of thermoregulation during torpor, as well as the increased caloric expenditure incurred by furless hamsters during arousal from torpor. An insulative pelage may be a prerequisite for the energetic benefits derived from heterothermy in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号