首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Several promising agents have been synthesized and evaluated for in vivo imaging probes of beta-amyloid plaques in Alzheimer's disease (AD) brain. Recently, we have developed flavone derivatives, which possess the basic structure of the 2-phenylchromone, as useful candidates for amyloid imaging agents. In an attempt to further develop novel tracers, we synthesized and evaluated a series of 2-styrylchromone derivatives, which replace the 2-phenyl substituent of flavone backbone with the 2-styryl. A series of radioiodinated styrylchromone derivatives were designed and synthesized. The binding affinities for amyloid plaques were assessed by in vitro binding assay using pre-formed synthetic Abeta(1-40) aggregates. The new series of styrylchromone derivatives showed high binding affinity to Abeta aggregates at the K(d) values of 32.0, 17.5 and 8.7nM for [(125)I]6, [(125)I]9, and [(125)I]12, respectively. In biodistribution studies using normal mice, [(125)I]6 and [(125)I]9 examined in normal mice displayed high brain uptakes with 4.9 and 2.8%ID/g at 2min post injection. The radioactivity washed out from the brain rapidly (1.6 and 1.0%ID/g at 60min post injection for [(125)I]6 and [(125)I]9, respectively). But [(125)I]12 did not show marked brain uptake, and the washout rate from the brain was relatively slow throughout the time course (1.1 and 1.4%ID/g at 2 and 30min post injection, respectively). Although additional modifications are necessary to improve the brain uptake and rapid clearance of non-specifically bound radiotracer, the styrylchromone backbone may be useful as a backbone structure to develop novel beta-amyloid imaging agents.  相似文献   

2.
A series of novel chalcones and their related derivatives were synthesized and evaluated as beta-amyloid imaging probes. In the structure-activity relationship of binding affinities to synthetic Abeta(1-42) aggregates, compound 14 displayed the highest binding affinity in vitro. beta-Amyloid plaques in the Alzheimer's model mouse brain were visualized with 14. In biodistribution studies using normal mice, [(125)I]14 showed good brain uptake (2.56% ID/g, 2min postinjection) and rapid washout from the brain (0.21% ID/g, 60min postinjection). These results suggest that [(125)I]14 should be further investigated as a potentially useful beta-amyloid imaging probe.  相似文献   

3.
We report the synthesis and evaluation of a series of N-benzoylindole derivatives as novel potential imaging agents for β-amyloid plaques. In vitro binding studies using Aβ(1-40) aggregates versus [(125)I]TZDM showed that all these derivatives demonstrated high binding affinities (K(i) values ranged from 8.4 to 121.6 nM). Moreover, two radioiodinated compounds [(125)I]7 and [(125)I]14 were prepared. Autoradiography for [(125)I]14 displayed intense and specific labeling of Aβ plaques in the brain sections of AD model mice (C57, APP/PS1) with low background. In vivo biodistribution in normal mice exhibited sufficient initial brain uptake for imaging (2.19% and 2.00%ID/g at 2 min postinjection for [(125)I]7 and [(125)I]14, respectively). Although additional modifications are necessary to improve brain uptake and clearance from the brain, the N-benzoylindole may be served as a backbone structure to develop novel β-amyloid imaging probes.  相似文献   

4.
A novel series of aurone derivatives for in vivo imaging of beta-amyloid plaques in the brain of Alzheimer's disease (AD) were synthesized and characterized. When in vitro binding studies using Abeta(1-42) aggregates were carried out with aurone derivatives, they showed high binding affinities for Abeta(1-42) aggregates at the K(i) values ranging from 1.2 to 6.8 nM. When in vitro plaque labeling was carried out using double transgenic mice brain sections, the aurone derivatives intensely stained beta-amyiloid plaques. Biodistribution studies in normal mice after i.v. injection of the radioiodinated aurones displayed high brain uptake (1.9-4.6% ID/g at 2 min) and rapid clearance from the brain (0.11-0.26% ID/g at 60 min), which is highly desirable for amyloid imaging agents. The results in this study suggest that novel radiolabeled aurones may be useful amyloid imaging agents for detecting beta-amyloid plaques in the brain of AD.  相似文献   

5.
Two new iodinated fluoro- and hydroxy-pegylated aza-diphenylacetylene derivatives, 1 and 2, targeting beta-amyloid (Abeta) plaques have been successfully prepared. In vitro binding carried out in tissue homogenates prepared from postmortem AD brains with [(125)I]IMPY (6-iodo-2-(4'-dimethylamino)phenyl-imidazo[1,2-a]pyridine) as the radioligand indicated good binding affinities (K(i)=9.2 and 16.8 nM for 1 and 2, respectively). Brain penetrations of the corresponding radioiodinated ligands, evaluated in the normal mice, showed good initial brain penetrations (3.55% and 5.67% ID/g for [(125)I]1 and [(125)I]2 at 2 min post-injection). The washout from normal mice brain was relatively fast (0.33% and 0.91% ID/g at 2h post-injection). The specific binding of these radioiodinated ligands to beta-amyloid plaques was clearly demonstrated using film autoradiography of AD brain sections. Taken together, these preliminary results strongly suggest that these novel iodinated aza-diphenylacetylenes may be potentially useful for imaging Abeta plaques in the living human brain.  相似文献   

6.
In this study a novel series of isoindol-1-one and isoindol-1,3-dione derivatives for beta-amyloid-specific binding agents is described. Twelve compounds were synthesized and evaluated via a competitive binding assay with [(125)I]TZDM against beta-amyloid 1-42 (Abeta42) aggregates. Two new [(18)F]-labeled isoindole derivatives were synthesized and evaluated as potential beta-amyloid imaging probes based on the in vivo pharmacokinetic profiles. The preliminary results suggest that these [(18)F]18b and [(18)F]18c are promising positron emission tomography (PET) imaging probes for studying accumulation of Abeta fibrils in the brains of Alzheimer's disease (AD) patients.  相似文献   

7.
A novel series of chalcone derivatives for in vivo imaging beta-amyloid plaques in the brain of Alzheimer's disease (AD) were synthesized and characterized. When in vitro binding studies using Abeta aggregates were carried out with chalcone derivatives, the binding affinities for Abeta aggregate varied from 3 to 105 nM. The radioiodinated chalcones were successfully prepared through an iododestannylation reaction from the corresponding tributyltin derivatives using hydrogen peroxide as the oxidant in high yields and with high radiochemical purities. Biodistribution studies in normal mice after iv injection of the radioiodinated chalcones displayed high brain uptake (2.0-4.7% ID/g at 2 min) and rapid clearance from the brain (0.2-0.6% ID/g at 30 min), which is highly desirable for amyloid imaging agents. The results in this study suggest that the novel radioiodinated chalcones may be useful amyloid imaging agents for detecting beta-amyloid plaques in the brain of AD.  相似文献   

8.
A series of benzofuran-2-yl(phenyl)methanone derivatives were synthesized and evaluated as novel probes for β-amyloid plaques. These derivatives were produced by a Rap-Stoermer condensation reaction. Compounds with a N,N-dimethylamino group displayed high affinity for Aβ(1-42) aggregates with K(i) values in the nanomolar range. Autoradiography with brain sections of AD model mice (APP/PS1) revealed that a radioiodinated probe, [(125)I]10, labeled β-amyloid plaques selectively and displayed good brain uptake (3.53% ID/g) at 2 min. The results suggest that benzofuran-2-yl(phenyl)methanone derivatives should be investigated further as potential probes for detecting β-amyloid plaques in the AD brain.  相似文献   

9.
Neocortical beta-amyloid (Abeta) aggregates in Alzheimer's disease (AD) are enriched in transition metals that mediate assembly. Clioquinol (CQ) targets metal interaction with Abeta and inhibits amyloid pathology in transgenic mice. Here, we investigated the binding properties of radioiodinated CQ ([(125)I]CQ) to different in vitro and in vivo Alzheimer models. We observed saturable binding of [(125)I]CQ to synthetic Abeta precipitated by Zn(2+) (K(d)=0.45 and 1.40 nm for Abeta(1-42) and Abeta(1-40), respectively), which was fully displaced by free Zn(2+), Cu(2+), the chelator DTPA (diethylene triamine pentaacetic acid) and partially by Congo red. Sucrose density gradient of post-mortem AD brain indicated that [(125)I]CQ concentrated in a fraction enriched for both Abeta and Zn, which was modulated by exogenous addition of Zn(2+) or DTPA. APP transgenic (Tg2576) mice injected with [(125)I]CQ exhibited higher brain retention of tracer compared to non-Tg mice. Autoradiography of brain sections of these animals confirmed selective [(125)I]CQ enrichment in the neocortex. Histologically, both thioflavine-S (ThS)-positive and negative structures were labeled by [(125)I]CQ. A pilot SPECT study of [(123)I]CQ showed limited uptake of the tracer into the brain, which did however, appear to be more rapid in AD patients compared to age-matched controls. These data support metallated Abeta species as the neuropharmacological target of CQ and indicate that this drug class may have potential as in vivo imaging agents for Alzheimer neuropathology.  相似文献   

10.
We report a fluorinated and iodinated radiotracer as a probe for PET/SPECT to detect of β-amyloid (Aβ) plaques in the brain of patients with Alzheimer's disease (AD). We successfully designed and synthesized the fluorinated and iodinated aurone derivative (3) and its radiolabels ([(125)I]3 and [(18)F]3). In binding experiments in vitro, 3 showed high affinity for Aβ aggregates (K(i)=6.81nM). In brain sections of AD model mice, 3 intensely stained Aβ plaques. Furthermore, a specific plaque labeling signal was observed on the autoradiography of postmortem AD brain sections using [(125)I]3. In biodistribution experiments using normal mice, [(125)I]3 and [(18)F]3 displayed good uptake into and a rapid washout from the brain, properties highly desirable for Aβ imaging agents. These results suggest that 3 may function as a PET/SPECT dual imaging agent for detecting Aβ plaques in AD brains.  相似文献   

11.
This paper describes a novel series of stilbenylbenzoxazole (SBO) and stilbenylbenzothiazole (SBT) derivatives for beta-amyloid specific binding probes. These 24 compounds were synthesized and evaluated by competitive binding assay against beta-amyloid 1-42 (Abeta42) aggregates using [(125)I]TZDM. All the derivatives displayed higher binding affinities with K(i) value in the subnanomolar range (0.10-0.74 nM) than Pittsburgh Compound-B (PIB) (0.77 nM). Among these derivatives, SBT-2, 5-fluoroethoxy-2-{4-[2-(4-methylaminophenyl)vinyl]phenyl}benzothiazole, showed lowest K(i) value (0.10 nM). In conclusion, the preliminary results suggest that these compounds are implying a possibility as a probe for detection of Abeta fibrils in Alzheimer's disease (AD) patients.  相似文献   

12.
We synthesized a novel series of phenylindole (PI) derivatives and evaluated their biological activities as probes for imaging Aβ plaques in vivo. The affinity for Aβ plaques was assessed by an in vitro-binding assay using pre-formed synthetic Aβ aggregates. 2-Phenyl-1H-indole (2-PI) derivatives showed high affinity for Aβ42 aggregates with Ki values ranging from 4 to 32 nM. 2-PI derivatives clearly stained Aβ plaques in an animal model of AD. In biodistribution experiments using normal mice, 2-PI derivatives displayed sufficient uptake for imaging, ranging from 1.1% to 2.6% ID/g. Although additional modifications are necessary to improve uptake by and clearance from the brain, 2-PI derivatives may be useful as a backbone structure to develop novel Aβ imaging agents.  相似文献   

13.
In a search for new probes to detect β-amyloid plaques in the brain of patients with Alzheimer’s disease (AD), we have synthesized and evaluated a series of quinoxaline derivatives containing a ‘6+6−6’ ring system. These quinoxaline derivatives showed excellent affinity for Aβ1-42 aggregates with Ki values ranging from 2.6 to 10.7 nM. Autoradiography with sections of brain tissue from an animal model of AD mice (APP/PS1) and AD patients revealed that [125I]5 labeled β-amyloid plaques specifically. In biodistribution experiments using normal mice, [125I]5 displayed high uptake (6.03% ID/g at 2 min) into and a moderately fast washout from the brain. Although additional refinements are needed to decrease the lipophilicity and improve the washout rate, the quinoxaline scaffold may be useful as a backbone structure to develop novel β-amyloid imaging agents.  相似文献   

14.
A new series of diphenylpropynone (DPP) derivatives for use in vivo to image β-amyloid (Aβ) plaques in the brain of patients with Alzheimer’s disease (AD) were synthesized and characterized. Binding experiments in vitro revealed high affinity for Aβ (1-42) aggregates at a Ki value ranging from 6 to 326 nM. Furthermore, specific labeling of plaques was observed in sections of brain tissue from Tg2576 transgenic mice stained using one of the compounds, 1. In biodistribution experiments with normal mice, [125I]1 displayed moderate uptake (1.55% ID/g at 2 min) and clearance from the brain with time (0.76 ID/g at 60 min). Taken together, DPP can serve as a new molecular scaffold for developing novel Aβ imaging agents by introducing appropriate substituted groups.  相似文献   

15.
A series of chaclone derivatives containing an indole moiety were evaluated in competitive binding assays with Aβ1-42 aggregates versus [125I]IMPY. The affinity of these compounds ranged from 4.46 to >1008 nM, depending on the substitution on the phenyl ring. Fluorescent staining in vitro showed that one compound with a N,N-dimethylamino group intensely stained Aβ plaques within brain sections of AD transgenic mice. The radioiodinated probe [125I]-(E)-3-(1H-indol-5-yl)-1-(4-iodophenyl)prop-2-en-1-one, [125I]4, was prepared and autoradiography in sections of brain tissue from an animal model of AD showed that it labeled Aβ plaques specifically. However, experiments with normal mice indicated that [125I]4 exhibited a low uptake into the brain in vivo (0.41% ID/g at 2 min). Additional chemical modifications of this indole-chalcone structure may lead to more useful imaging agents for detecting β-amyloid plaques in the brains of AD patients.  相似文献   

16.
Compounds 1-4 were synthesized and investigated for selectivity and potency for the oxytocin receptor (OTR) to determine their viability as radioactive ligands. Binding assays determined 1-4 to have high binding affinity for both the human and rodent OTR and also have high selectivity for the human OTR over human vasopressin V1a receptors (V1aR). Inadequate selectivity for OTR over V1aR was found for rodent receptors in all four compounds. The radioactive (C-11, F-18, and I-125) derivatives of 1-4 were synthesized and investigated for use as autoradiography and positron emission tomography (PET) ligands. Receptor autoradiography performed with [(125)I]1 and [(125)I]2 on rodent brain slices provided the first small molecule radioligand images of the OTR and V1aR. Biodistribution studies determined [(125)I]1 and [(125)I]2 were adequate for in vivo peripheral investigations, but not for central investigations due to low uptake within the brain. A biodistribution study with [(18)F]3 suggested brain uptake occurred slowly over time. PET imaging studies with [(18)F]3 and [(11)C]4 using a rat model provided insufficient uptake in the brain over a 90 and 45 min scan times respectively to merit further investigations in non-human primates.  相似文献   

17.
Alzheimer's disease is characterized by the accumulation of β-amyloid (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain. We previously developed [(18)F]fluoropropylcurcumin ([(18)F]FP-curcumin), which demonstrated excellent binding affinity (K(i)=0.07 nM) for Aβ(1-40) aggregates and good pharmacokinetics in normal mouse brains. However, its initial brain uptake was poor (0.52% ID/g at 2 min post-injection). Therefore, in the present study, fluorine-substituted 4,4'-bissubstituted or pegylated curcumin derivatives were synthesized and evaluated. Their binding affinities for Aβ(1-42) aggregates were measured and 1-(4-fluoroethyl)-7-(4'-methyl)curcumin (1) had the highest binding affinity (K(i)=2.12 nM). Fluorescence staining of Tg APP/PS-1 mouse brain sections demonstrated high and specific labeling of Aβ plaques by 1 in the cortex region, which was confirmed with thioflavin-S staining of the same spots in the adjacent brain sections. Radioligand [(18)F]1 was found to have an appropriate partition coefficient (logP(o/w)=2.40), and its tissue distribution in normal mice demonstrated improved brain permeability (1.44% ID/g at 2 min post-injection) compared to that of [(18)F]FP-curcumin by a factor of 2.8 and fast wash-out from mouse brains (0.45% ID/g at 30 min post-injection). These results suggest that [(18)F]1 may hold promise as a PET radioligand for Aβ plaque imaging.  相似文献   

18.
This paper describes the synthesis and biological evaluation of a new series of 2,5-diphenyl-1,3,4-oxadiazole (1,3,4-DPOD) derivatives for detecting β-amyloid plaques in Alzheimer’s brains. The affinity for β-amyloid plaques was assessed by an in vitro binding assay using pre-formed synthetic Aβ42 aggregates. The new series of 1,3,4-DPOD derivatives showed affinity for Aβ42 aggregates with Ki values ranging from 20 to 349 nM. The 1,3,4-DPOD derivatives clearly stained β-amyloid plaques in an animal model of Alzheimer’s disease, reflecting the affinity for Aβ42 aggregates in vitro. Compared to 3,5-diphenyl-1,2,4-oxadiazole (1,2,4-DPOD) derivatives, they displayed good penetration of and fast washout from the brain in biodistribution experiments using normal mice. The novel radioiodinated 1,3,4-DPOD derivatives may be useful probes for detecting β-amyloid plaques in the Alzheimer’s brain.  相似文献   

19.
Novel dibenzothiazole derivatives were synthesized and evaluated as amyloid-imaging agents. In vitro quantitative binding studies using AD brain tissue homogenates showed that the dibenzothiazole derivatives displayed high binding affinities with K(i) values in the nanomolar range (6.8-36 nM). These derivatives are relatively lipophilic with partition coefficients (logP oct) in the range of 1.25-3.05. Preliminary structure-activity relationship studies indicated dibenzothiazole derivatives bearing electron-donating groups exhibited higher binding affinities than those bearing electron-withdrawing groups. A lead compound was selected for its high binding affinity and radiolabeled with [(125)I] through direct radioiodination using sodium [(125)I] iodide in the presence of Chloramine T. The radioligand (4-[2,6']dibenzothiazolyl-2'-yl-2-[(125)I]-phenylamine) displayed moderate lipophilicity (logP oct, 2.70), very good brain uptake (3.71+/-0.63% ID/g at 2 min after iv injection in mice), and rapid washout from normal brains (0.78% and 0.43% ID/g at 30 and 60 min, respectively). These studies indicated that lipophilic dibenzothiazole derivatives represent a promising pharmacophore for the development of novel amyloid-imaging agents for potential application in Alzheimer's disease and related neurodegenerative disorders.  相似文献   

20.
beta-Amyloid (Abeta) concentration in the cerebrospinal fluid (CSF) of the brain may be regulated by the choroid plexus, which forms a barrier between blood and brain CSF. Abeta uptake from CSF was determined as its volume of distribution (V(D)) into isolated rat choroid plexus tissue. The V(D) of [125I]Abeta1-40 was corrected by subtraction of the V(D) of [14C]sucrose, a marker for extracellular space and diffusion. Abeta uptake into choroid plexus was time and temperature dependent. Uptake of [125I]Abeta was saturable. Abeta uptake was not affected by addition of transthyretin or apolipoprotein E3. In studies with primary culture monolayers of choroidal epithelial cells in Transwells, Abeta permeability across cells, corrected by [(14)C]sucrose, was greater from the CSF-facing membrane than from the blood-facing membrane. Similarly, cellular accumulation of [125I]Abeta was concentrative from both directions and was greater from the CSF-facing membrane, suggesting a bias for efflux. Overall, these results suggest the choroid plexus selectively cleanses Abeta from the CSF by an undetermined mechanism(s), potentially reducing Abeta from normal brains and the brains of Alzheimer's disease patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号