首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both jasmonic acid (JA) and its methyl ester, methyl jasmonate (MeJA), are thought to be significant components of the signaling pathway regulating the expression of plant defense genes in response to various stresses. JA and MeJA are plant lipid derivatives synthesized from [alpha]-linolenic acid by a lipoxygenase-mediated oxygenation leading to 13-hydroperoxylinolenic acid, which is subsequently transformed by the action of allene oxide synthase (AOS) and additional modification steps. AOS converts lipoxygenase-derived fatty acid hydroperoxide to allene epoxide, which is the precursor for JA formation. Overexpression of flax AOS cDNA under the regulation of the cauliflower mosaic virus 35S promoter in transgenic potato plants led to an increase in the endogenous level of JA. Transgenic plants had six- to 12-fold higher levels of JA than the nontransformed plants. Increased levels of JA have been observed when potato and tomato plants are mechanically wounded. Under these conditions, the proteinase inhibitor II (pin2) genes are expressed in the leaves. Despite the fact that the transgenic plants had levels of JA similar to those found in nontransgenic wounded plants, pin2 genes were not constitutively expressed in the leaves of these plants. Transgenic plants with increased levels of JA did not show changes in water state or in the expression of water stress-responsive genes. Furthermore, the transgenic plants overexpressing the flax AOS gene, and containing elevated levels of JA, responded to wounding or water stress by a further increase in JA and by activating the expression of either wound- or water stress-inducible genes. Protein gel blot analysis demonstrated that the flax-derived AOS protein accumulated in the chloroplasts of the transgenic plants.  相似文献   

2.
Transgenic tomato (Solanum lycopersicum) plants that overexpress the Prosystemin gene (35S::PS) and plants with a mutation in the JA biosynthetic pathway (def1) are known to exhibit a constitutive or reduced wound response, respectively. Here it is demonstrated that several independent 35S::PS lines emit high levels of specific volatiles in addition to increased accumulation of proteinase inhibitors (PIs). Furthermore, the temporal dynamics of systemically induced volatile compounds including green-leaf volatiles, terpenes, and shikimic acid-derivatives from 35S::PS and def1 plants in response to herbivore wounding and treatment with jasmonic acid (JA) are described. Application of JA induced defense protein accumulation and volatile emissions in wild type plants, but did not further increase systemic volatile emissions from 35S::PS plants. Wounding by Manduca sexta larvae induced synthesis of defense proteins and emission of volatiles in wild type plants, but not in def1 plants. Application of jasmonic acid restored the local and systemic accumulation of defense proteins in def1, as well as enhanced herbivore-induced volatile emissions. These results provide strong support for the role of prosystemin- and JA-signaling in the regulation of volatile emissions in tomato plants.  相似文献   

3.
To create a metabolic sink in the jasmonic acid (JA) pathway, we generated transgenic Nicotiana attenuata lines ectopically expressing Arabidopsis (Arabidopsis thaliana) jasmonic acid O-methyltransferase (35S-jmt) and additionally silenced in other lines the N. attenuata methyl jasmonate esterase (35S-jmt/ir-mje) to reduce the deesterification of methyl jasmonate (MeJA). Basal jasmonate levels did not differ between transgenic and wild-type plants; however, after wounding and elicitation with Manduca sexta oral secretions, the bursts of JA, jasmonoyl-isoleucine (JA-Ile), and their metabolites that are normally observed in the lamina, midvein, and petiole of elicited wild-type leaves were largely absent in both transformants but replaced by a burst of endogenous MeJA that accounted for almost half of the total elicited jasmonate pools. In these plants, MeJA became a metabolic sink that affected the jasmonate metabolic network and its spread to systemic leaves, with major effects on 12-oxo-phytodieonic acid, JA, and hydroxy-JA in petioles and on JA-Ile in laminas. Alterations in the size of jasmonate pools were most obvious in systemic tissues, especially petioles. Expression of threonine deaminase and trypsin proteinase inhibitor, two JA-inducible defense genes, was strongly decreased in both transgenic lines without influencing the expression of JA biosynthesis genes that were uncoupled from the wounding and elicitation with M. sexta oral secretions-elicited JA-Ile gradient in elicited leaves. Taken together, this study provides support for a central role of the vasculature in the propagation of jasmonates and new insights into the versatile spatiotemporal characteristics of the jasmonate metabolic network.  相似文献   

4.
The allene oxide cyclase (AOC)-catalyzed step in jasmonate (JA) biosynthesis is important in the wound response of tomato. As shown by treatments with systemin and its inactive analog, and by analysis of 35S::prosysteminsense and 35S::prosysteminantisense plants, the AOC seems to be activated by systemin (and JA) leading to elevated formation of JA. Data are presented on the local wound response following activation of AOC and generation of JA, both in vascular bundles. The tissue-specific occurrence of AOC protein and generation of JA is kept upon wounding or other stresses, but is compromised in 35S::AOCsense plants, whereas 35S::AOCantisense plants exhibited residual AOC expression, a less than 10% rise in JA, and no detectable expression of wound response genes. The (i). activation of systemin-dependent AOC and JA biosynthesis occurring only upon substrate generation, (ii). the tissue-specific occurrence of AOC in vascular bundles, where the prosystemin gene is expressed, and (iii). the tissue-specific generation of JA suggest an amplification in the wound response of tomato leaves allowing local and rapid defense responses.  相似文献   

5.
Immunomodulation of jasmonate to manipulate the wound response   总被引:1,自引:0,他引:1  
Jasmonates are signals in plant stress responses and development. The exact mode of their action is still controversial. To modulate jasmonate levels intracellularly as well as compartment-specifically, transgenic Nicotiana tabacum plants expressing single-chain antibodies selected against the naturally occurring (3R,7R)-enantiomer of jasmonic acid (JA) were created in the cytosol and the endoplasmic reticulum. Consequently, the expression of anti-JA antibodies in planta caused JA-deficient phenotypes such as insensitivity of germinating transgenic seedlings towards methyl jasmonate and the loss of wound-induced gene expression. Results presented here suggest an essential role for cytosolic JA in the wound response of tobacco plants. The findings support the view that substrate availability takes part in regulating JA biosynthesis upon wounding. Moreover, high JA levels observed in immunomodulated plants in response to wounding suggest that tobacco plants are able to perceive a reduced level of physiologically active JA and attempt to compensate for this by increased JA accumulation.  相似文献   

6.
Li C  Liu G  Xu C  Lee GI  Bauer P  Ling HQ  Ganal MW  Howe GA 《The Plant cell》2003,15(7):1646-1661
Genetic analysis of the wound response pathway in tomato indicates that systemin and its precursor protein, prosystemin, are upstream components of a defensive signaling cascade that involves the synthesis and subsequent action of the octadecatrienoic acid (18:3)-derived plant hormone jasmonic acid (JA). The suppressor of prosystemin-mediated responses2 (spr2) mutation, which was isolated previously as a suppressor of (pro)systemin-mediated signaling, impairs wound-induced JA biosynthesis and the production of a long-distance signal for the expression of defensive Proteinase inhibitor genes. Using a map-based cloning approach, we demonstrate here that Spr2 encodes a chloroplast fatty acid desaturase involved in JA biosynthesis. Loss of Spr2 function reduced the 18:3 content of leaves to <10% of wild-type levels, abolished the accumulation of hexadecatrienoic acid, and caused a corresponding increase in the level of dienoic fatty acids. The effect of spr2 on the fatty acyl content of various classes of glycerolipids indicated that the Spr2 gene product catalyzes most, if not all, omega3 fatty acid desaturation within the "prokaryotic pathway" for lipid synthesis in tomato leaves. Despite the reduced levels of trienoic fatty acids, spr2 plants exhibited normal growth, development, and reproduction. However, the mutant was compromised in defense against attack by tobacco hornworm larvae. These results indicate that jasmonate synthesis from chloroplast pools of 18:3 is required for wound- and systemin-induced defense responses and support a role for systemin in the production of a transmissible signal that is derived from the octadecanoid pathway.  相似文献   

7.
Hydroxyproline-rich glycopeptides (HypSys peptides) have been isolated recently from tobacco and tomato leaves that are powerful activators of protease inhibitor synthesis. The peptides are processed from polyprotein precursors, two from a single tobacco precursor and three from a single tomato precursor. The precursor genes are expressed in response to wounding and methyl jasmonate, similar to the expression of the systemin precursor prosystemin in tomato leaves. Here we investigate the relationships between systemin and the tomato HypSys peptides in regulating wound signaling in tomato plants. Analysis of transgenic tomato plants over-expressing sense and antisense constructs of the tomato HypSys precursor under the 35S CaMV promoter show that the transgenic plants regulate protease inhibitor gene expression in response to wounding in a manner similar to prosystemin. The evidence indicates that the expression of both the tomato HypSys precursor gene and the prosystemin gene in response to wounding are necessary for strong systemic signaling. The data supports a role for both genes in an amplification loop that up-regulates the octadecanoid pathway and the synthesis of jasmonates to effect strong systemic signaling of defense genes. This report provides the first demonstration of the involvement of two plant peptides derived from two unrelated genes in regulating long distance wound signaling in plants. The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors () is Clarence A. Ryan.  相似文献   

8.
A new metabolite profiling approach combined with an ultrarapid sample preparation procedure was used to study the temporal and spatial dynamics of the wound-induced accumulation of jasmonic acid (JA) and its oxygenated derivatives in Arabidopsis thaliana. In addition to well known jasmonates, including hydroxyjasmonates (HOJAs), jasmonoyl-isoleucine (JA-Ile), and its 12-hydroxy derivative (12-HOJA-Ile), a new wound-induced dicarboxyjasmonate, 12-carboxyjasmonoyl-l-isoleucine (12-HOOCJA-Ile) was discovered. HOJAs and 12-HOOCJA-Ile were enriched in the midveins of wounded leaves, strongly differentiating them from the other jasmonate metabolites studied. The polarity of these oxylipins at physiological pH correlated with their appearance in midveins. When the time points of accumulation of different jasmonates were determined, JA levels were found to increase within 2-5 min of wounding. Remarkably, these changes occurred throughout the plant and were not restricted to wounded leaves. The speed of the stimulus leading to JA accumulation in leaves distal to a wound is at least 3 cm/min. The data give new insights into the spatial and temporal accumulation of jasmonates and have implications in the understanding of long-distance wound signaling in plants.  相似文献   

9.
Expression of the tomato gene encoding 13-lipoxygenase,TomloxD, is stimulated by wounding, pathogen infection, jasmonate, and systemin, but its role during growth and development of tomato (Lycopersicon Spp.) remains unclear. To assess the physiological role of TomloxD, we produced transgenic tomato plants with greatly increased TomloxD content using sense constructs under the control of the CaMV 35S promoter. Overexpression of TomloxD in transgenic tomatoes led to a marked increase in the levels of lipoxygenase activity and content of endogenous jasmonic acid (JA), which suggested that TomloxD can use α-linolenic acid as a substrate to produce (13S)-hydroperoxyoctadecatrienoic acid (13-HPOT); the 13-HPOT produced appears to be metabolized further to synthesize JA. Real-time RT-PCR revealed that the expression levels of defense genes LeHSP90, LePR1, LePR6 and LeZAT in the transformants were higher than those in non-transformed plants. Assay for resistance to pathogenic fungus and high temperature stresses suggested that transgenic plants harboring TomloxD were more tolerant to Cladosporium fulvum and high temperature stress than non-transformed tomato plants. The data presented here indicate clearly that TomloxD is involved in endogenous JA synthesis and tolerance to biotic and abiotic stress. The tomloxD gene has potential applications in engineering cropping plants that are resistant to biotic and/or abiotic stress factors.  相似文献   

10.
Exogenous treatment with jasmonates (JA) has been shown to reduce the levels of polyamines in many plants. But the role of endogenous JA on polyamine biosynthesis or other cellular metabolites has thus far remained uninvestigated. We developed transgenic tomato (Solanum lycopersicum L.) having severely reduced methyl JA levels by silencing a fruit ripening-associated lipoxygenase (LOX), SlLoxB, using a truncated LOX gene under the control of the constitutive CaMV35S promoter. The LOX suppressed and MeJA-deficient fruits had lowered polyamine levels. Thus, these transgenic fruits were used as a plant model to evaluate the effects of reduced endogenous MeJA on cellular metabolites in ripening tomato fruits using NMR spectroscopy. During on-shelf ripening, transgenic fruits were significantly reduced in the content of 19 out of 30 metabolites examined, including Ile, Val, Ala, Thr, Asn Tyr, Glu, Gln, His, Phe, Trp, GABA, citrate, succinate, myo-inositol, unidentified compound B, nucleic acid compound Nucl1, choline, and trigonelline as compared to the wild-type azygous counterparts. A significant increase in β-glucose levels in transgenic fruits was observed at the pink stage. The transgenic fruits were equivalent to the wild type in lycopene level and chlorophyll degradation rates. Taken together, these results show that intracellular MeJA significantly regulates overall primary metabolism, especially aminome (amino acids and polyamines) of ripening fruits.  相似文献   

11.
Determining the mobile signal used by plants to defend against biotic and abiotic stresses has proved elusive, but jasmonic acid (JA) and its derivatives appear to be involved. Using deuterium-labeled analogs, we investigated the distal transport of JA and jasmonoyl-isoleucine (JA-Ile) in response to leaf wounding in tobacco (Nicotiana tabacum) and tomato (Solanum lycopersicum) plants. We recovered [(2)H(2)-2]JA ([(2)H(2)]JA) and [(2)H(3)-12]JA-Ile ([(2)H(3)]JA-Ile) in distal leaves of N. tabacum and S. lycopersicum after treating wounded leaves with [(2)H(2)]JA or [(2)H(3)]JA-Ile. We found that JA-Ile had a greater mobility than JA, despite its lower polarity, and that application of exogenous JA-Ile to wounded leaves of N. tabacum led to a higher accumulation of JA and JA-Ile in distal leaves compared with wounded control plants. We also found that exudates from the stem of S. lycopersicum plants with damaged leaflets contained JA and JA-Ile at higher levels than in an undamaged plant, and a significant difference in the levels of JA-Ile was observed 30 min after wounding. Based on these results, it was found that JA-Ile is a transportable compound, which suggests that JA-Ile is a signaling cue involved in the resistance to biotic and abiotic stresses in plants.  相似文献   

12.
Gross N  Wasternack C  Köck M 《Phytochemistry》2004,65(10):1343-1350
Tomato RNaseLE is induced by phosphate deficiency and wounding and may play a role in macromolecular recycling as well as wound healing. Here, we analyzed the role of jasmonate and systemin in the wound-induced RNaseLE activation. The rapid expression of RNaseLE upon wounding of leaves leading to maximal RNase activity within 10 h, appeared only locally. Jasmonic acid (JA) or its molecular mimic ethyl indanoyl isoleucine conjugate did not induce RNaseLE expression. Correspondingly, RNaseLE was expressed upon wounding of 35S::allene oxide cyclase antisense plants known to be JA deficient. RNaseLE was not expressed upon systemin treatment, but was locally expressed in the spr1 mutant which is affected in systemin perception. In tomato plants carrying a PromLE::uidA construct, GUS activity could be detected upon wounding, but not following treatment with JA or systemin. The data indicate a locally acting wound-inducible systemin- and JA-independent signaling pathway for RNaseLE expression.  相似文献   

13.
Sui N  Li M  Zhao SJ  Li F  Liang H  Meng QW 《Planta》2007,226(5):1097-1108
A tomato (Lycopersicon esculentum Mill.) glycerol-3-phosphate acyltransferase gene (LeGPAT) was isolated. The deduced amino acid sequence revealed that LeGPAT contained four acyltransferase domains, showing high identities with GPAT in other plant species. A GFP fusion protein of LeGPAT was targeted to chloroplast in cowpea mesophyll protoplast. RNA gel blot showed that the mRNA accumulation of LeGPAT in the wild type (WT) was induced by chilling temperature. Higher expression levels were observed when tomato leaves were exposed to 4 degrees C for 4 h. RNA gel and western blot analysis confirmed that the sense gene LeGPAT was transferred into the tomato genome and overexpressed under the control of 35S-CaMV. Although tomato is classified as a chilling-sensitive plant, LeGPAT exhibited selectivity to 18:1 over 16:0. Overexpression of LeGPAT increased total activity of LeGPAT and cis-unsaturated fatty acids in PG in thylakoid membrane. Chilling treatment induced less ion leakage from the transgenic plants than from the WT. The photosynthetic rate and the maximal photochemical efficiency of PS II (Fv/Fm) in transgenic plants decreased more slowly during chilling stress and recovered faster than in WT under optimal conditions. The oxidizable P700 in both WT and transgenic plants decreased obviously at chilling temperature under low irradiance, but the oxidizable P700 recovered faster in transgenic plants than in the WT. These results indicate that overexpression of LeGPAT increased the levels of PG cis-unsaturated fatty acids in thylakoid membrane, which was beneficial for the recovery of chilling-induced PS I photoinhibition in tomato.  相似文献   

14.
To test whether the response to electrical current and heat treatment is due to the same signaling pathway that mediates mechanical wounding, we analyzed the effect of electric-current application and localized burning on proteinase inhibitor II (Pin2) gene expression in both wild-type and abscisic acid (ABA)-deficient tomato (Lycopersicon esculentum Mill.) and potato (Solanum phureja) plants. Electric-current application and localized burning led to the accumulation of Pin2 mRNA in potato and tomato wild-type plants. Among the treatments tested, only localized burning of the leaves led to an accumulation of Pin2 mRNA in the ABA-deficient plants. Electric-current application, like mechanical injury, was able to initiate ABA and jasmonic acid (JA) accumulation in wild-type but not in ABA-deficient plants. In contrast, heat treatment led to an accumulation of JA in both wild-type and ABA-deficient plants. Inhibition of JA biosynthesis by aspirin blocked the heat-induced Pin2 gene expression in tomato wild-type leaves. These results suggest that electric current, similar to mechanical wounding, requires the presence of ABA to induce Pin2 gene expression. Conversely, burning of the leaves activates Pin2 gene expression by directly triggering the biosynthesis of JA by an alternative pathway that is independent of endogenous ABA levels.  相似文献   

15.
We examined performance of herbivores on plants lacking either jasmonate (JA, asLOX3) or ethylene (ET, mETR1) signaling or both (mETR1asLOX3). Plant defenses against Manduca sexta caterpillars were strongly impaired in JA-deficient asLOX3 plants; however, making asLOX3 plants ethylene insensitive did not further increase the performance of the larvae on a mETR1asLOX3 genetic cross. This result demonstrates the dominant role of JA over ET in the regulation of plant defenses against herbivores. However, ET-insensitivity combined with otherwise normal levels of JA in mETR1 plants promoted faster caterpillar growth, which correlated with reduced accumulation of the alkaloidal direct defense nicotine in mETR1 compared to WT plants. Our data points to an important accessory function of ET in the activation of JA-regulated plant defenses against herbivores at the level of alkaloid biosynthesis in the roots and/or accumulation in the leaves.Key words: herbivory, jasmonic acid and ethylene crosstalk, Nicotiana attenuata, nicotine, trypsin proteinase inhibitors (TPIs)  相似文献   

16.
Li C  Williams MM  Loh YT  Lee GI  Howe GA 《Plant physiology》2002,130(1):494-503
The octadecanoid signaling pathway has been shown to play an important role in plant defense against various chewing insects and some pathogenic fungi. Here, we examined the interaction of a cell-content feeding arachnid herbivore, the two-spotted spider mite (Tetranychus urticae Koch), with cultivated tomato (Lycopersicon esculentum) and an isogenic mutant line (defenseless-1 [def-1]) that is deficient in the biosynthesis of the octadecanoid pathway-derived signal, jasmonic acid (JA). Spider mite feeding and fecundity on def-1 plants was significantly greater than on wild-type plants. Decreased resistance of def-1 plants was correlated with reduced JA accumulation and expression of defensive proteinase inhibitor (PI) genes, which were induced in mite-damaged wild-type leaves. Treatment of def-1 plants with methyl-JA restored resistance to spider mite feeding and reduced the fecundity of female mites. Plants expressing a 35S::prosystemin transgene that constitutively activates the octadecanoid pathway in a Def-1-dependent manner were highly resistant to attack by spider mites and western flower thrips (Frankliniella occidentalis), another cell-content feeder of economic importance. These findings indicate that activation of the octadecanoid signaling pathway promotes resistance of tomato to a broad spectrum of herbivores. The techniques of amplified fragment length polymorphism (AFLP) and bulk segregant analysis were used to map the Def-1 gene to a region on the long arm of chromosome 3 that is genetically separable from the map position of known JA biosynthetic genes. Tight linkage of Def-1 to a T-DNA insertion harboring the maize (Zea mays) Dissociation transposable element suggests a strategy for directed transposon tagging of the gene.  相似文献   

17.
18.
BAK1 is a co-receptor of brassinosteroid (BR) receptor BRI1, and plays a well-characterized role in BR signalling. BAK1 also physically interacts with the flagellin receptor FLS2 and regulates pathogen resistance. The role of BAK1 in mediating Nicotiana attenuata's resistance responses to its specialist herbivore, Manduca sexta, was examined here. A virus-induced gene-silencing system was used to generate empty vector (EV) and NaBAK1-silenced plants. The wounding- and herbivory-induced responses were examined on EV and NaBAK1-silenced plants by wounding plants or simulating herbivory by treating wounds with larval oral secretions (OS). After wounding or OS elicitation, NaBAK1-silenced plants showed attenuated jasmonic acid (JA) and JA-isoleucine bursts, phytohormone responses important in mediating plant defences against herbivores. However, these decreased JA and JA-Ile levels did not result from compromised MAPK activity or elevated SA levels. After simulated herbivory, NaBAK1-silenced plants had EV levels of defensive secondary metabolites, namely, trypsin proteinase inhibitors (TPIs), and similar levels of resistance to Manduca sexta larvae. Additional experiments demonstrated that decreased JA levels in NaBAK1-VIGS plants, rather than the enzymatic activity of JAR proteins or Ile levels, were responsible for the reduced JA-Ile levels observed in these plants. Methyl jasmonate application elicited higher levels of TPI activity in NaBAK1-silenced plants than in EV plants, suggesting that silencing NaBAK1 enhances the accumulation of TPIs induced by a given level of JA. Thus NaBAK1 is involved in modulating herbivory-induced JA accumulation and how JA levels are transduced into TPI levels in N. attenuata.  相似文献   

19.
20.
Oxylipins including jasmonates are signaling compounds in plant growth, development, and responses to biotic and abiotic stresses. In Arabidopsis (Arabidopsis thaliana) most mutants affected in jasmonic acid (JA) biosynthesis and signaling are male sterile, whereas the JA-insensitive tomato (Solanum lycopersicum) mutant jai1 is female sterile. The diminished seed formation in jai1 together with the ovule-specific accumulation of the JA biosynthesis enzyme allene oxide cyclase (AOC), which correlates with elevated levels of JAs, suggest a role of oxylipins in tomato flower/seed development. Here, we show that 35S::SlAOC-RNAi lines with strongly reduced AOC in ovules exhibited reduced seed set similarly to the jai1 plants. Investigation of embryo development of wild-type tomato plants showed preferential occurrence of AOC promoter activity and AOC protein accumulation in the developing seed coat and the embryo, whereas 12-oxo-phytodienoic acid (OPDA) was the dominant oxylipin occurring nearly exclusively in the seed coat tissues. The OPDA- and JA-deficient mutant spr2 was delayed in embryo development and showed an increased programmed cell death in the developing seed coat and endosperm. In contrast, the mutant acx1a, which accumulates preferentially OPDA and residual amount of JA, developed embryos similar to the wild type, suggesting a role of OPDA in embryo development. Activity of the residual amount of JA in the acx1a mutant is highly improbable since the known reproductive phenotype of the JA-insensitive mutant jai1 could be rescued by wound-induced formation of OPDA. These data suggest a role of OPDA or an OPDA-related compound for proper embryo development possibly by regulating carbohydrate supply and detoxification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号