首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Populations near their equilibrium are expected to show density-dependence through a negative feedback on at least one demographic parameter, e.g. survival and/or productivity. Nevertheless, it is not always clear which vital rate is affected the most, and even less whether this dependence holds in open populations in which immigration and emigration are also important. We assessed the relative importance of population density in the variation of local survival, recruitment, proportion of transients (emigrants) and productivity through the analysis of detailed life-histories of 4286  seabirds from a colony that reached an apparent demographic equilibrium after a period of exponential increase. We provide evidence that the role of population density and resource availability changes according to the demographic parameter considered. Estimates indicated that transients increased from 5% to 20% over the study period, suggesting an average turnover of about 1400 individuals per year. The parameters most influenced by population density alone were local survival and probability of transience. Recruitment was negatively associated with population density during the increasing phase but unexpected high values were also recorded at high population levels. These high values were explained by a combination of population size and food availability. Mean productivity varied with food availability, independently from population variations. The population density alone explained up to a third of the yearly variation of the vital rates considered, suggesting that open populations are equally influenced by stochastic and density-independent events (such as environmental perturbations) than by intrinsic (i.e. density-dependent) factors.  相似文献   

2.
1. Population extinction is a fundamental ecological process. Recent experimental work has begun to test the large body of theory that predicts how demographic, genetic and environmental factors influence extinction risk. We review empirical studies of extinction conducted under controlled laboratory conditions. Our synthesis highlights four findings. First, extinction theory largely considers individual, isolated populations. However, species interactions frequently altered or even reversed the influence of environmental factors on population extinction as compared to single-species conditions, highlighting the need to integrate community ecology into population theory. 2. While most single-species studies qualitatively agree with theoretical predictions, studies are needed that quantitatively compare observed and predicted extinction rates. A quantitative understanding of extinction processes is needed to further advance theory and to predict population extinction resulting from human activities. 3. Many stresses leading to population extinction can be assuaged by migration between subpopulations. However, too much migration increases synchrony between subpopulations and thus increases extinction risk. Research is needed to determine how to strike a balance that maximizes the benefit of migration. 4. Results from laboratory experiments often conflict with field studies. Understanding these inconsistencies is crucial for extending extinction theory to natural populations.  相似文献   

3.
Disjunct populations of the perennial herbGypsophila fastigiata L. (Caryophyllaceae) on the Baltic island of Öland were monitored during a thirteen-year study. The main objectives were to analyze the dynamic features ofG. fastigiata within and among sub-populations in shorter and longer time perspectives, and to relate this to habitat characteristics and patterns in local weather variation. The total number of individuals decreased and the proportion of reproductive individuals increased throughout the study period. Recruitment and mortality on a fine spatial scale (0.25 m2) were negatively correlated to species richness and vegetation cover. Rapid changes in population sizes were observed during and after summers with low precipitation. The highest mortality rates were found in pre-reproductive stages whereas relatively many of the adult plants survived the droughts. The long-term trend of population decline inG. fastigiata could be a result of changes in vegetation structure due to changing grazing regimes. It might also be an effect of more frequent dry summers during the second half of the observation period or of an interaction between weather and changes in management. Another interpretation is that dynamic processes are taking place on a geographic scale not covered in the present study.  相似文献   

4.
Although the causes of population extinction are well understood, the speed at which populations decline to extinction is not. A testable, counter-intuitive prediction of stochastic population theory is that, on average, for any interior interval of the domain of biologically attainable population sizes, the expected duration of increase equals the expected duration of decline. Here we report the first empirical tests of this hypothesis. Using data from two experiments in which replicate populations of Daphnia magna were observed to go extinct under different experimental conditions, we failed to reject the null hypothesis of no difference between the growth and decline phases in populations under constant conditions and conditions with modest environmental variability, but find strong evidence to reject equal first passage time in highly variable environments. These results confirm the prediction of equal passage times entailed by diffusion models of population dynamics, supporting continued application in both population theory and conservation decision making under the restricted conditions where the approximation can be expected to hold.  相似文献   

5.
Mast cell-deficient mice are a key for investigating the function of mast cells in health and disease. Allergic airway disease induced as a Th2-type immune response in mice is employed as a model to unravel the mechanisms underlying inception and progression of human allergic asthma. Previous work done in mast cell-deficient mouse strains that otherwise typically mount Th1-dominated immune responses revealed contradictory results as to whether mast cells contribute to the development of airway hyperresponsiveness and airway inflammation. However, a major contribution of mast cells was shown using adjuvant-free protocols to achieve sensitization. The identification of a traceable genetic polymorphism closely linked to the Kit(W-sh) allele allowed us to generate congenic mast cell-deficient mice on a Th2-prone BALB/c background, termed C.B6-Kit(W-sh). In accordance with the expectations, C.B6-Kit(W-sh) mice do not develop IgE- and mast cell-dependent passive cutaneous anaphylaxis. Yet, unexpectedly, C.B6-Kit(W-sh) mice develop full-blown airway inflammation, airway hyperresponsiveness, and mucus production despite the absence of mast cells. Thus, our findings demonstrate a major influence of genetic background on the contribution of mast cells in an important disease model and introduce a novel strain of mast cell-deficient mice.  相似文献   

6.
E. L. Astrachan 《Oecologia》1977,31(1):131-132
Summary A simple stochastic model of logistic population growth is considered. The criterion for eventual extinction is a function of population growth rate, not of carrying capacity.  相似文献   

7.
Stochastic population theory makes clear predictions about the effects of reproductive potential and carrying capacity on characteristic time-scales of extinction. At the same time, the effects of habitat size and quality on reproduction and regulation have been hotly debated. To trace the causal relationships among these factors, we looked at the effects of habitat size and quality on extinction time in experimental populations of Daphnia magna. Replicate model systems representative of a broad-spectrum consumer foraging on a continuously supplied resource were established under crossed treatments of habitat size (two levels) and habitat quality (three levels) and monitored until eventual extinction of all populations. Using statistically derived estimates of key parameters, we related experimental treatments to persistence time through their effect on carrying capacity and the population growth rate. We found that carrying capacity and the intrinsic rate of increase were each influenced similarly by habitat size and quality, and that carrying capacity and the intrinsic rate of increase were in turn both correlated with time to population extinction. We expected habitat quality to have a greater influence on extinction. However, owing to an unexpected effect of habitat size on reproductive potential, habitat size and quality were similarly important for population persistence. These results support the idea that improving the population growth rate or carrying capacity will reduce extinction risk and demonstrate that both are possible by improving habitat quality or increasing habitat size.  相似文献   

8.
Scarcity of long-term (over 30 years) data series represents a major challenge for an accurate estimation of the role of density-dependent processes in population regulation. We analyzed population densities of the wingless parthenogenic morphs of buckthorn aphid (BA), Aphis nasturtii Kaltenbach, potato aphid (PA), Macrosiphum euphorbiae (Thomas), and green peach aphid (GPA), Myzus persicae (Sulzer) from 1949 to 2003 for signs of density-dependent regulation. We found strong evidence of density-dependent regulation, with detection of density dependence being fairly consistent among the different statistical techniques. Direct density dependence was detected for the populations of all three species. There was also evidence of delayed density dependence for PA. The periodicity of population fluctuations for BA and GPA was 6.1 years and 3.9 years, respectively. The periodicity for PA was not explicit, being highly variable throughout the time series. Effects of density-independent weather factors were relatively minor compared to density-dependent regulation. The BA populations experienced a significant reduction in both density and annual oscillations starting in 1995, while GPA populations experienced a similar reduction in 1991. No such change was apparent for PA. The most likely explanation for the observed phenomenon is a change in the composition of the lady beetle community following the establishment of two alien coccinellid species, and/or changes in insecticide use by commercial growers in the area of the study.  相似文献   

9.
We studied inter-annual, spatial and sexual variation in the body mass of bank volesMyodes glareolus Schreber, 1780 and grey-sided volesMyodes rufocanus Sundevall, 1846 using live trappings from two grids on the southand north-facing slopes of a mountain valley in Southern Norway. Variation in spring density of the four populations was consistent with cyclic dynamics (n=7,s-values >0.5). Individuals caught on the south-facing slope were larger than those caught on the north-facing slope. Reproductively mature bank vole males were smaller than females, whereas reproductively mature grey-sided vole males were larger than females. Body mass was related to density in both species. In bank voles, we found a direct positive density dependence caused by a higher rate of survival at higher densities resulting from individual allocation of resources from reproduction to survival and growth. In grey-sided voles, we found a negative delayed density dependence resulting from grazing on preferred plants that determined the resource available for individual vole growth the following year.  相似文献   

10.
The environment is rarely constant and organisms are exposed to temporal and spatial variations that impact their life histories and inter-species interactions. It is important to understand how such variations affect epidemiological dynamics in host-parasite systems. We explored effects of temporal variation in temperature on experimental microcosm populations of the ciliate Paramecium caudatum and its bacterial parasite Holospora undulata. Infected and uninfected populations of two P. caudatum genotypes were created and four constant temperature treatments (26°C, 28°C, 30°C and 32°C) compared with four variable treatments with the same mean temperatures. Variable temperature treatments were achieved by alternating populations between permissive (23°C) and restrictive (35°C) conditions daily over 30 days. Variable conditions and high temperatures caused greater declines in Paramecium populations, greater fluctuations in population size and higher incidence of extinction. The additional effect of parasite infection was additive and enhanced the negative effects of the variable environment and higher temperatures by up to 50 per cent. The variable environment and high temperatures also caused a decrease in parasite prevalence (up to 40%) and an increase in extinction (absence of detection) (up to 30%). The host genotypes responded similarly to the different environmental stresses and their effect on parasite traits were generally in the same direction. This work provides, to our knowledge, the first experimental demonstration that epidemiological dynamics are influenced by environmental variation. We also emphasize the need to consider environmental variance, as well as means, when trying to understand, or predict population dynamics or range.  相似文献   

11.
Density-dependent regulation of abundance is fundamentally important in the dynamics of most animal populations. Density effects, however, have rarely been quantified in natural populations, so population models typically have a large uncertainty in their predictions. We used models generated from time series analysis to explore the form and strength of density-dependence in several natural rotifer populations. Population growth rate (r) decreased linearly or non-linearly with increased population density, depending on the rotifer species. Density effects in natural populations reduced r to 0 at densities of 1–10 l–1 for 8 of the 9 rotifer species investigated. The sensitivities of these species to density effects appeared normally distributed, with a mean r=0 density of 2.3 l–1 and a standard deviation of 1.9. Brachionus rotundiformis was the outlier with 10–100× higher density tolerance. Density effects in laboratory rotifer populations reduced r to 0 at population densities of 10–100 ml–1, which is 104 higher than densities in natural populations. Density effects in laboratory populations are due to food limitation, autotoxicity or to their combined effects. Experiments with B. rotundiformis demonstrated the absence of autotoxicity at densities as high as 865 ml–1, a much higher density than observed in natural populations. It is, therefore, likely that food limitation rather than autotoxicity plays a major role in regulating natural rotifer populations.  相似文献   

12.
The genetic variation that underlies the glucosinolate phenotype of Arabidopsis lyrata ssp. petraea was investigated between and within populations. A candidate glucosinolate biosynthetic locus (MAM, containing methylthioalkylmalate synthase genes) was mapped in A. lyrata to a location on linkage group 6 corresponding to the homologous location for MAM in A. thaliana. In A. thaliana MAM is responsible for side chain elongation in aliphatic glucosinolates, and the MAM phenotype can be characterized by the ratios of long- to short-chain glucosinolates. A quantitative trait loci (QTL) analysis of glucosinolate ratios in an A. lyrata interpopulation cross found one QTL at MAM. Additional QTL were identified for total indolic glucosinolates and for the ratio of aliphatic to indolic glucosinolates. MAM was then used as the candidate gene for a within-population cosegregation analysis in a natural A. lyrata population from Germany. Extensive variation in microsatellite markers at MAM was found and this variation cosegregated with the same glucosinolate ratios as in the QTL study. The combined results indicate that both between- and within-population genetic variation in the MAM region determines phenotypic variation in glucosinolate side chains in A. lyrata.  相似文献   

13.
Sustained demographic studies are essential for early detection of species decline in time for effective management response. A paucity of such background data hindered the potential for successful conservation during the global amphibian decline and remains problematic today. The current study analysed 6 years of mark‐recapture data to determine the vital demographic rates in three habitat precincts of the threatened frog, Litoria aurea (Hylidae) and to understand the underlying causes of variability in population size. Variability in population size of L. aurea was similar to many pond‐breeding species; however this level of fluctuation is rare among threatened amphibians. Highly variable populations are at greater risk of local extinction and the low level of connectivity between L. aurea populations means they are at a greater risk of further decline due to stochastic extinction events and incapacity to recolonize distant habitat. We recommend that management of this species should encourage recolonization through creation of habitat corridors and reintroduction of L. aurea to areas where stochastic extinction events are suspected.  相似文献   

14.
Density-dependent and geographical variation in bird immune response   总被引:1,自引:0,他引:1  
Latitudinal gradients in parasitism are common, causing differences in the intensity of parasite-mediated natural selection. Such differences in selection pressures should affect optimal investment in anti-parasite defense, because defense levels should increase in response to increased intensity of parasite-induced selection. Likewise, latitudinal differences in population density may affect immune responses either by selecting for higher levels or defense, or by suppressing resources needed for mounting efficient immune responses. We tested these predictions in a study of T-cell mediated immune response in altricial bird species in subtropical Spain and temperate Denmark. There were highly consistent levels of T-cell mediated response between nestlings and adults in the two areas, with nestlings having stronger responses than adults. In addition, there were highly consistent levels of immune response in nestlings and adults between the two areas, with responses being consistently stronger in Denmark than in Spain, particularly in adults. Population density was much higher in Denmark than in Spain. We found evidence of density-dependent immune response in nestlings and adults, as shown by differences in T-cell response between study areas being positively related to differences in density. Given that the relationship between density and immune response was positive, we can reject the hypothesis that higher population densities suppressed immune response. Therefore, our results support the hypothesis that birds in areas with higher density allocate more resources to immune response, particularly in adults, suggesting that density-dependent effects of parasitism have selected for allocation strategies that minimize the risk of parasitism.  相似文献   

15.
16.
The development of methods providing reliable estimates of demographic parameters (e.g., survival rates, fecundity) for wild populations is essential to better understand the ecology and conservation requirements of individual species. A number of methods exist for estimating the demographics of stage-structured populations, but inherent mathematical complexity often limits their uptake by conservation practitioners. Estimating survival rates for pond-breeding amphibians is further complicated by their complex migratory and reproductive behaviours, often resulting in nonobservable states and successive cohorts of eggs and tadpoles. Here we used comprehensive data on 11 distinct breeding toad populations (Bufo calamita) to clarify and assess the suitability of a relatively simple method [the Kiritani–Nakasuji–Manly (KNM) method] to estimate the survival rates of stage-structured populations with overlapping life stages. The study shows that the KNM method is robust and provides realistic estimates of amphibian egg and larval survival rates for species in which breeding can occur as a single pulse or over a period of several weeks. The study also provides estimates of fecundity for seven distinct toad populations and indicates that it is essential to use reliable estimates of fecundity to limit the risk of under- or overestimating the survival rates when using the KNM method. Survival and fecundity rates for B. calamita populations were then used to define population matrices and make a limited exploration of their growth and viability. The findings of the study recently led to the implementation of practical conservation measures at the sites where populations were most vulnerable to extinction.  相似文献   

17.
Molecular differences between HLA alleles vary up to 57 nucleotides within the peptide binding coding region of human Major Histocompatibility Complex (MHC) genes, but it is still unclear whether this variation results from a stochastic process or from selective constraints related to functional differences among HLA molecules. Although HLA alleles are generally treated as equidistant molecular units in population genetic studies, DNA sequence diversity among populations is also crucial to interpret the observed HLA polymorphism. In this study, we used a large dataset of 2,062 DNA sequences defined for the different HLA alleles to analyze nucleotide diversity of seven HLA genes in 23,500 individuals of about 200 populations spread worldwide. We first analyzed the HLA molecular structure and diversity of these populations in relation to geographic variation and we further investigated possible departures from selective neutrality through Tajima's tests and mismatch distributions. All results were compared to those obtained by classical approaches applied to HLA allele frequencies.Our study shows that the global patterns of HLA nucleotide diversity among populations are significantly correlated to geography, although in some specific cases the molecular information reveals unexpected genetic relationships. At all loci except HLA-DPB1, populations have accumulated a high proportion of very divergent alleles, suggesting an advantage of heterozygotes expressing molecularly distant HLA molecules (asymmetric overdominant selection model). However, both different intensities of selection and unequal levels of gene conversion may explain the heterogeneous mismatch distributions observed among the loci. Also, distinctive patterns of sequence divergence observed at the HLA-DPB1 locus suggest current neutrality but old selective pressures on this gene. We conclude that HLA DNA sequences advantageously complement HLA allele frequencies as a source of data used to explore the genetic history of human populations, and that their analysis allows a more thorough investigation of human MHC molecular evolution.  相似文献   

18.
19.
The demographic processes of growth, mortality, and the recruitment of young individuals, are the major organizing forces regulating communities in open systems. Here we present a size-structured (rather than age-structured) population model to examine the role of these different processes in space-limited open systems, taking coral reefs as an example. In this flux-diffusion model the growth rate of corals depends both on the available free-space (i.e. density-dependence) and on the particular size of the coral. In our analysis we progressively study several different forms of growth rate functions to disentangle the effects of free space and size-dependence on the model's stability. Unlike Roughgarden et al. [1985. Demographic theory for an open marine population space-limited recruitment. Ecology 66(1), 54-67], whose principal result is that the growth of settled organisms is destabilizing, we find that size-dependent growth rate often has the potential to endow stability. This is particularly true, if the growth rate is dependent on available free space (i.e. density dependent), but examples are given for growth rates that even lack this property. Further insights into reef system fragility are found through studying the sensitivity of the model steady state to changes in recruitment.  相似文献   

20.
The effect of adding density-dependent migration between nearest neighbour populations of a single discrete-generation species in a chain of habitat fragments is investigated. The larger the population on a particular habitat fragment, the greater the fraction of inhabitants who migrate before reproducing. It has previously been shown for similar models with density-independent migration that coupling populations in this way has no effect on the stability of these populations. Here, it is demonstrated that this effect is also generally true if migration is density-dependent. However, if the migration rate is large enough and has density dependence of the correct form, then the steady state (with all the populations remaining at the same constant value through time) can be destabilised. The conditions for this to occur are obtained analytically. When this “destabilisation” occurs, the system settles down to an alternative steady state where half of the populations take one constant value which is below that of an equivalent isolated system, and the other populations all share a population value which is greater than the steady state of the isolated populations. Once this configuration is reached, the population size on each patch remains constant over time. hence the change might more properly be described as a decrease in homogeneity rather than in stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号