首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-resolution crystallographic analysis of a complex of the serine-carboxyl proteinase sedolisin with pseudo-iodotyrostatin revealed two molecules of this inhibitor bound in the active site of the enzyme, marking subsites from S3 to S3('). The mode of binding represents two products of the proteolytic reaction. Substrate specificity of sedolisin was investigated using peptide libraries and a new peptide substrate for sedolisin, MCA-Lys-Pro-Pro-Leu-Glu#Tyr-Arg-Leu-Gly-Lys(DNP)-Gly, was synthesized based on the results of the enzymatic and crystallographic studies and was shown to be efficiently cleaved by the enzyme. The kinetic parameters for the substrate, measured by the increase in fluorescence upon relief of quenching, were: k(cat)=73+/-5 s(-1), K(m)=0.12+/-0.011 microM, and k(cat)/K(m)=608+/-85 s(-1)microM(-1).  相似文献   

2.
Histamine dehydrogenase (NSHADH) can be isolated from cultures of Nocardioides simplex grown with histamine as the sole nitrogen source. A previous report suggested that NSHADH might contain the quinone cofactor tryptophan tryptophyl quinone (TTQ). Here, the hdh gene encoding NSHADH is cloned from the genomic DNA of N. simplex, and the isolated enzyme is subjected to a full spectroscopic characterization. Protein sequence alignment shows NSHADH to be related to trimethylamine dehydrogenase (TMADH: EC 1.5.99.7), where the latter contains a bacterial ferredoxin-type [4Fe-4S] cluster and 6-S-cysteinyl FMN cofactor. NSHADH has no sequence similarity to any TTQ containing amine dehydrogenases. NSHADH contains 3.6+/-0.3 mol Fe and 3.7+/-0.2 mol acid labile S per subunit. A comparison of the UV/vis spectra of NSHADH and TMADH shows significant similarity. The EPR spectrum of histamine reduced NSHADH also supports the presence of the flavin and [4Fe-4S] cofactors. Importantly, we show that NSHADH has a narrow substrate specificity, oxidizing only histamine (K(m)=31+/-11 microM, k(cat)/K(m)=2.1 (+/-0.4)x10(5)M(-1)s(-1)), agmatine (K(m)=37+/-6 microM, k(cat)/K(m)=6.0 (+/-0.6)x10(4)M(-1)s(-1)), and putrescine (K(m)=1280+/-240 microM, k(cat)/K(m)=1500+/-200 M(-1)s(-1)). A kinetic characterization of the oxidative deamination of histamine by NSHADH is presented that includes the pH dependence of k(cat)/K(m) (histamine) and the measurement of a substrate deuterium isotope effect, (D)(k(cat)/K(m) (histamine))=7.0+/-1.8 at pH 8.5. k(cat) is also pH dependent and has a reduced substrate deuterium isotope of (D)(k(cat))=1.3+/-0.2.  相似文献   

3.
Catalytic reaction pathway for the mitogen-activated protein kinase ERK2   总被引:2,自引:0,他引:2  
Prowse CN  Hagopian JC  Cobb MH  Ahn NG  Lew J 《Biochemistry》2000,39(20):6258-6266
The structural, functional, and regulatory properties of the mitogen-activated protein kinases (MAP kinases) have long attracted considerable attention owing to the critical role that these enzymes play in signal transduction. While several MAP kinase X-ray crystal structures currently exist, there is by comparison little mechanistic information available to correlate the structural data with the known biochemical properties of these molecules. We have employed steady-state kinetic and solvent viscosometric techniques to characterize the catalytic reaction pathway of the MAP kinase ERK2 with respect to the phosphorylation of a protein substrate, myelin basic protein (MBP), and a synthetic peptide substrate, ERKtide. A minor viscosity effect on k(cat) with respect to the phosphorylation of MBP was observed (k(cat) = 10 +/- 2 s(-1), k(cat)(eta) = 0.18 +/- 0.05), indicating that substrate processing occurs via slow phosphoryl group transfer (12 +/- 4 s(-1)) followed by the faster release of products (56 +/- 4 s(-1)). At an MBP concentration extrapolated to infinity, no significant viscosity effect on k(cat)/K(m(ATP)) was observed (k(cat)/K(m(ATP)) = 0.2 +/- 0.1 microM(-1) s(-1), k(cat)/K(m(ATP))(eta) = -0.08 +/- 0.04), consistent with rapid-equilibrium binding of the nucleotide. In contrast, at saturating ATP, a full viscosity effect on k(cat)/K(m) for MBP was apparent (k(cat)/K(m(MBP)) = 2.4 +/- 1 microM(-1) s(-1), k(cat)/K(m(MBP))(eta) = 1.0 +/- 0.1), while no viscosity effect was observed on k(cat)/K(m) for the phosphorylation of ERKtide (k(cat)/K(m(ERKtide)) = (4 +/- 2) x 10(-3) microM(-1) s(-1), k(cat)/K(m(ERKtide))(eta) = -0.02 +/- 0.02). This is consistent with the diffusion-limited binding of MBP, in contrast to the rapid-equilibrium binding of ERKtide, to form the ternary Michaelis complex. Calculated values for binding constants show that the estimated value for K(d(MBP)) (/= 1.5 mM). The dramatically higher catalytic efficiency of MBP in comparison to that of ERKtide ( approximately 600-fold difference) is largely attributable to the slow dissociation rate of MBP (/=56 s(-1)), from the ERK2 active site.  相似文献   

4.
Internally quenched fluorescent peptides derived from neurotensin (pELYENKPRRPYIL) sequence were synthesized and assayed as substrates for neurolysin (EC 3.4.24.16), thimet oligopeptidase (EC 3.4.24.15 or TOP), and neprilysin (EC 3.4.24.11 or NEP). Abz-LYENKPRRPYILQ-EDDnp (where EDDnp is N-(2,4-dinitrophenyl)ethylenediamine and Abz is ortho-aminobenzoic acid) was derived from neurotensin by the introduction of Q-EDDnp at the C-terminal end of peptide and by the substitution of the pyroglutamic (pE) residue at N-terminus for Abz and a series of shorter peptides was obtained by deletion of amino acids residues from C-terminal, N-terminal, or both sides. Neurolysin and TOP hydrolyzed the substrates at P--Y or Y--I or R--R bonds depending on the sequence and size of the peptides, while NEP cleaved P-Y or Y-I bonds according to its S'(1) specificity. One of these substrates, Abz-NKPRRPQ-EDDnp was a specific and sensitive substrate for neurolysin (k(cat) = 7.0 s(-1), K(m) = 1.19 microM and k(cat)/K(m) = 5882 mM(-1). s(-1)), while it was completely resistant to NEP and poorly hydrolyzed by TOP and also by prolyl oligopeptidase (EC 3.4.21.26). Neurolysin concentrations as low as 1 pM were detected using this substrate under our conditions and its analogue Abz-NKPRAPQ-EDDnp was hydrolyzed by neurolysin with k(cat) = 14.03 s(-1), K(m) = 0.82 microM, and k(cat)/K(m) = 17,110 mM(-1). s(-1), being the best substrate so far described for this peptidase.  相似文献   

5.
Angiotensin-converting enzyme 2 (ACE2 or ACEH) is a novel angiotensin-converting enzyme-related carboxypeptidase that cleaves a single amino acid from angiotensin I, des-Arg bradykinin, and many other bioactive peptides. Using des-Arg bradykinin as a template, we designed a series of intramolecularly quenched fluorogenic peptide substrates for ACE2. The general structure of the substrates was F-X-Q, in which F was the fluorescent group, Abz, Q was the quenching group (either Phe(NO(2)) or Tyr(NO(2))), and X was the intervening peptide. These substrates were selectively cleaved by recombinant human ACE2, as shown by MS and HPLC. Quenching efficiency increased as the peptide sequence was shortened from 8 to 3 aa, and also when Tyr(NO(2)) was used as a quenching group instead of Phe(NO(2)). Two of the optimized substrates, TBC5180 and TBC5182, produced a signal:noise ratio of better than 20 when hydrolyzed by ACE2. Kinetic measurements with ACE2 were as follows: TBC5180, K(m)=58 microM and k(cat)/K(m)=1.3x10(5)M(-1)s(-1); TBC5182, K(m)=23 microM and k(cat)/K(m)=3.5 x 10(4)M(-1)s(-1). Thus, based on hydrolysis rate, TBC5180 was a better substrate than TBC5182. However, TBC5180 was also hydrolyzed by ACE, whereas TBC5182 was not cleaved, suggesting that TBC5182 was a selective for ACE2. We conclude that these two peptides can be used as fluorescent substrates for high-throughput screening for selective inhibitors of ACE2 enzyme.  相似文献   

6.
Pregnancy-associated plasma protein-A (PAPP-A) is a metalloprotease that cleaves insulin-like growth factor-binding proteins (IGFBPs) to release bioactive levels of free insulin-like growth factor. Specific and potent inhibitors of PAPP-A may further elucidate the biological functions of this protease and could prove to be of therapeutic value. Phage display was used to discover fully human antibody inhibitors of PAPP-A activity towards IGFBP4 cleavage. Estimates of the inhibition constants for these antibodies were subsequently determined using a novel continuous assay of PAPP-A protease activity that uses an internally quenched synthetic peptide substrate (DX-1655). DX-1655 was hydrolyzed by PAPP-A with a K(m) of 33 muM and a k(cat) of 0.3 s(-1) (k(cat)/K(m)=9.1x10(3) M(-1) s(-1)). PAPP-A activity towards DX-1655 displays a bell-shaped pH profile, with pK(a) values of 8.2 and 10.8 and a maximum rate at approximately pH 9.5. Using this continuous assay, we measured apparent K(i) values of 1.7+/-0.2 and 7.4+/-1.5 nM for the F2 and D9 antibodies, respectively.  相似文献   

7.
There are several known routes for the metabolic detoxication of alpha,beta-unsaturated aldehydes and ketones, including conjugation to glutathione and reduction and oxidation of the aldehyde to an alcohol and a carboxylic acid, respectively. In this study, we describe a fourth class of detoxication that involves the reduction of the alpha,beta-carbon=carbon double bond to a single bond. This reaction is catalyzed by NAD(P)H-dependent alkenal/one oxidoreductase (AO), an enzyme heretofore known as leukotriene B4 12-hydroxydehydrogenase, 15-oxoprostaglandin 13-reductase, and dithiolethione-inducible gene-1. AO is shown to effectively reduce cytotoxic lipid peroxidation products such as 4-hydroxy-2-nonenal (HNE) (k(cat) = 4.0 x 10(3) min(-1); k(cat)/K(m) = 3.3 x 10(7) min(-1) M(-1)) and acrolein (k(cat) = 2.2 x 10(2) min(-1); k(cat)/K(m) = 1.5 x 10(6) min(-1) M(-1)) and common industrial compounds such as ethyl vinyl ketone (k(cat) = 9.6 x 10(3) min(-1); k(cat)/K(m) = 8.8 x 10(7) min(-1) M(-1)) and 15-oxoprostaglandin E1 (k(cat) = 2.4 x 10(3) min(-1); k(cat)/K(m) = 2.4 x 10(9) min(-1) M(-1)). Furthermore, transfection of human embryonic kidney cells with a rat liver AO expression vector protected these cells from challenge with HNE. The concentration of HNE at which 50% of the cells were killed after 24 h increased from approximately 15 microM in control cells to approximately 70 microM in AO-transfected cells. Overexpression of AO also completely abolished protein alkylation by HNE at all concentrations tested (up to 30 microM). Thus, we describe a novel antioxidative activity of a previously characterized bioactive lipid-metabolizing enzyme that could prove to be therapeutically or prophylactically useful due to its high catalytic rate and inducibility.  相似文献   

8.
Human angiotensin-converting enzyme-related carboxypeptidase (ACE2) is a zinc metalloprotease whose closest homolog is angiotensin I-converting enzyme. To begin to elucidate the physiological role of ACE2, ACE2 was purified, and its catalytic activity was characterized. ACE2 proteolytic activity has a pH optimum of 6.5 and is enhanced by monovalent anions, which is consistent with the activity of ACE. ACE2 activity is increased approximately 10-fold by Cl(-) and F(-) but is unaffected by Br(-). ACE2 was screened for hydrolytic activity against a panel of 126 biological peptides, using liquid chromatography-mass spectrometry detection. Eleven of the peptides were hydrolyzed by ACE2, and in each case, the proteolytic activity resulted in removal of the C-terminal residue only. ACE2 hydrolyzes three of the peptides with high catalytic efficiency: angiotensin II () (k(cat)/K(m) = 1.9 x 10(6) m(-1) s(-1)), apelin-13 (k(cat)/K(m) = 2.1 x 10(6) m(-1) s(-1)), and dynorphin A 1-13 (k(cat)/K(m) = 3.1 x 10(6) m(-1) s(-1)). The ACE2 catalytic efficiency is 400-fold higher with angiotensin II () as a substrate than with angiotensin I (). ACE2 also efficiently hydrolyzes des-Arg(9)-bradykinin (k(cat)/K(m) = 1.3 x 10(5) m(-1) s(-1)), but it does not hydrolyze bradykinin. An alignment of the ACE2 peptide substrates reveals a consensus sequence of: Pro-X((1-3 residues))-Pro-Hydrophobic, where hydrolysis occurs between proline and the hydrophobic amino acid.  相似文献   

9.
The intracellular functions of diadenosine polyphosphates are still poorly defined. To understand these better, we have expressed and characterized a heat stable, 16.6kDa Nudix hydrolase (Apf) that specifically metabolizes these nucleotides from a Drosophila melanogaster cDNA. Apf always produces an NTP product, with substrate preference depending on pH and divalent ion (Zn(2+) or Mg(2+)). For example, diadenosine tetraphosphate is hydrolysed to ATP and AMP with K(m), k(cat) and k(cat)/K(m) values 9microM, 43s(-1) and 4.8microM(-1)s(-1) (pH 6.5, 0.1mMZn(2+)) and 12microM, 13s(-1) and 1.1microM(-1)s(-1) (pH 7.5, 20mMMg(2+)), respectively. However, diadenosine hexaphosphate is efficiently hydrolysed to ATP only at pH 7.5 with 20mMMg(2+) (K(m), k(cat) and k(cat)/K(m) values of 15microM 4.0s(-1), and 0.27microM(-1)s(-1)). Fluoride potently inhibits diadenosine tetraphosphate hydrolysis in the presence of Mg(2+) (IC(50)=20microM), whereas it is ineffective in the presence of Zn(2+), supporting the view that inhibition involves a specific, MgF(3)(-)-containing transition state analogue complex. Patterns of Apf expression in Drosophila tissues show Apf mRNA levels to be highest in embryos and adult females. Subcellular localization with Apf-EGFP fusion constructs reveals Apf to be predominantly nuclear, having an apparent preferential association with euchromatin and facultative heterochromatin. This supports a nuclear function for diadenosine tetraphosphate. Our results show Apf to be a fairly typical member of the bis (5'-nucleosyl)-tetraphosphatase subfamily of Nudix hydrolases with features that distinguish it from a previously reported bis (5'-nucleosyl)-tetraphosphatase hydrolase activity from Drosophila embryos.  相似文献   

10.
Human kallikrein hK3 (prostate-specific antigen) is a chymotrypsin-like serine protease which is widely used in the diagnosis of prostate cancer. Assays of the enzymatic activity of hK3 in extracellular fluids have been limited by a lack of sensitive synthetic substrates. This report describes the design of a series of internally quenched fluorescent peptides containing an amino acid sequence based on preferential hK3 cleavage sites in semenogelins. Those were identified by 2-D gel electrophoresis analysis and N-terminal sequencing of semenogelin fragments generated by ex vivo proteolysis in freshly ejaculated semen. These peptides were cleaved by hK3 at the C-terminal of certain tyrosyl or glutaminyl residues with k(cat)/K(m) values of 15000-60000 M(-1) s(-1). The substrate Abz-SSIYSQTEEQ-EDDnp was cleaved at the Tyr-Ser bond with a specificity constant k(cat)/K(m) of 60000 M(-1) s(-1), making it the best substrate for hK3 described to date.  相似文献   

11.
The filamentous fungus Penicillium funiculosum produces a mixture of modular and non-modular xylanases belonging to different glycoside hydrolase (GH) families. In the present study, we heterologously expressed the cDNA encoding GH11 xylanase B (XYNB) and studied the enzymatic properties of the recombinant enzyme. Expression in Escherichia coli led to the partial purification of a glutathione fusion protein from the soluble fraction whereas the recombinant protein produced in Pichia pastoris was successfully purified using a one-step chromatography. Despite O-glycosylation heterogeneity, the purified enzyme efficiently degraded low viscosity xylan [K(m)=40+/-3 g l(-1), V(max)=16.1+/-0.8 micromol xylose min(-1) and k(cat)=5405+/-150 s(-1) at pH 4.2 and 45 degrees C] and medium viscosity xylan [K(m)=34.5+/-3.2 g l(-1), V(max)=14.9+/-1.0 micromol xylose min(-1)k(cat)=4966+/-333 s(-1) at pH 4.2 and 45 degrees C]. XYNB was further tested for its ability to interact with wheat xylanase inhibitors. The xylanase activity of XYNB produced in P. pastoris was strongly inhibited by both XIP-I and TAXI-I in a competitive manner, with a K(i) of 89.7+/-8.5 and 2.9+/-0.3 nM, respectively, whereas no inhibition was detected with TAXI-II. Physical interaction of both TAXI-I and XIP-I with XYNB was observed using titration curves across a pH range 3-9.  相似文献   

12.
The kinetic properties of placental glucose-6-phosphate dehydrogenase were studied, since this enzyme is expected to be an important component of the placental protection system. In this capacity it is also very important for the health of the fetus. The placental enzyme obeyed "Rapid Equilibrium Ordered Bi Bi" sequential kinetics with K(m) values of 40+/-8 microM for glucose-6-phosphate and 20+/-10 microM for NADP. Glucose-6-phosphate, 2-deoxyglucose-6-phosphate and galactose-6-phosphate were used with catalytic efficiencies (k(cat)/K(m)) of 7.4 x 10(6), 4.89 x 10(4) and 1.57 x 10(4) M(-1).s(-1), respectively. The K(m)app values for galactose-6-phosphate and for 2-deoxyglucose-6-phosphate were 10+/-2 and 0.87+/-0.06 mM. With galactose-6-phosphate as substrate, the same K(m) value for NADP as glucose-6-phosphate was obtained and it was independent of galactose-6-phosphate concentration. On the other hand, when 2-deoxyglucose-6-phosphate used as substrate, the K(m) for NADP decreased from 30+/-6 to 10+/-2 microM as the substrate concentration was increased from 0.3 to 1.5 mM. Deamino-NADP, but not NAD, was a coenzyme for placental glucose-6-phosphate dehydrogenase. The catalytic efficiencies of NADP and deamino-NADP (glucose-6-phosphate as substrate) were 1.48 x 10(7) and 4.80 x 10(6) M(-1)s(-1), respectively. With both coenzymes, a hyperbolic saturation and an inhibition above 300 microM coenzyme concentration, was observed. Human placental glucose-6-phosphate dehydrogenase was inhibited competitively by 2,3-diphosphoglycerate (K(i)=15+/-3 mM) and NADPH (K(i)=17.1+/-3.2 microM). The small dissociation constant for the G6PD:NADPH complex pointed to tight enzyme:NADPH binding and the important role of NADPH in the regulation of the pentose phosphate pathway.  相似文献   

13.
The pikromycin biosynthetic gene cluster contains the pikAV gene encoding a type II thioesterase (TEII). TEII is not responsible for polyketide termination and cyclization, and its biosynthetic role has been unclear. During polyketide biosynthesis, extender units such as methylmalonyl acyl carrier protein (ACP) may prematurely decarboxylate to generate the corresponding acyl-ACP, which cannot be used as a substrate in the condensing reaction by the corresponding ketosynthase domain, rendering the polyketide synthase module inactive. It has been proposed that TEII may serve as an "editing" enzyme and reactivate these modules by removing acyl moieties attached to ACP domains. Using a purified recombinant TEII we have tested this hypothesis by using in vitro enzyme assays and a range of acyl-ACP, malonyl-ACP, and methylmalonyl-ACP substrates derived from either PikAIII or the loading didomain of DEBS1 (6-deoxyerythronolide B synthase; AT(L)-ACP(L)). The pikromycin TEII exhibited high K(m) values (>100 microm) with all substrates and no apparent ACP specificity, catalyzing cleavage of methylmalonyl-ACP from both AT(L)-ACP(L) (k(cat)/K(m) 3.3 +/- 1.1 m(-1) s(-1)) and PikAIII (k(cat)/K(m) 2.9 +/- 0.9 m(-1) s(-1)). The TEII exhibited some acyl-group specificity, catalyzing hydrolysis of propionyl (k(cat)/K(m) 15.8 +/- 1.8 m(-1) s(-1)) and butyryl (k(cat)/K(m) 17.5 +/- 2.1 m(-1) s(-1)) derivatives of AT(L)-ACP(L) faster than acetyl (k(cat)/K(m) 4.9 +/- 0.7 m(-1) s(-1)), malonyl (k(cat)/K(m) 3.9 +/- 0.5 m(-1) s(-1)), or methylmalonyl derivatives. PikAIV containing a TEI domain catalyzed cleavage of propionyl derivative of AT(L)-ACP(L) at a dramatically lower rate than TEII. These results provide the first unequivocal in vitro evidence that TEII can hydrolyze acyl-ACP thioesters and a model for the action of TEII in which the enzyme remains primarily dissociated from the polyketide synthase, preferentially removing aberrant acyl-ACP species with long half-lives. The lack of rigorous substrate specificity for TEII may explain the surprising observation that high level expression of the protein in Streptomyces venezuelae leads to significant (>50%) titer decreases.  相似文献   

14.
The PepQ prolidase from Escherichia coli catalyzes the hydrolysis of dipeptide substrates with a proline residue at the C-terminus. The pepQ gene has been cloned, overexpressed, and the enzyme purified to homogeneity. The k(cat) and k(cat)/K(m) values for the hydrolysis of Met-Pro are 109 s(-1) and 8.4 x 10(5)M(-1)s(-1), respectively. The enzyme also catalyzes the stereoselective hydrolysis of organophosphate triesters and organophosphonate diesters. A series of 16 organophosphate triesters with a p-nitrophenyl leaving group were assessed as substrates for PepQ. The S(P)-enantiomer of methyl phenyl p-nitrophenyl phosphate was hydrolyzed with a k(cat) of 36 min(-1) and a k(cat)/K(m) of 710 M(-1)s(-1). The corresponding R(P)-enantiomer was hydrolyzed more slowly with a k(cat) of 0.4 min(-1) and a k(cat)/K(m) of 11 M(-1)s(-1). The PepQ prolidase can be utilized for the kinetic resolution of racemic phosphate esters. The PepQ prolidase was shown to hydrolyze the p-nitrophenyl analogs of the nerve agents GB (sarin), GD (soman), GF, and VX.  相似文献   

15.
Mn-peroxidase (MnP), a biotechnologically important enzyme was purified for the first time from a plant source Musa paradisiaca (banana) stem, which is an agro-waste easily available after harvest of banana fruits. MnP was earlier purified only from the fungal sources. The enzyme was purified from stem juice by ultrafiltration and anion-exchange column chromatography on diethylamino ethylcellulose with 8-fold purification and purification yield of 65%. The enzyme gave a single protein band in SDS-PAGE corresponding to molecular mass 43 kDa. The Native-PAGE of the enzyme also gave a single protein band, confirming the purity of the enzyme. The UV/VIS spectrum of the purified enzyme differed from the other heme peroxidases, as the Soret band was shifted towards lower wavelength and the enzyme had an intense absorption band around 250 nm. The K(m) values using MnSO4 and H2O2 as the substrates of the purified enzyme were 21.0 and 9.5 microM, respectively. The calculated k(cat) value of the purified enzyme using Mn(II) as the substrate in 50 mM lactate buffer (pH 4.5) at 25 degrees C was 6.7s(-1), giving a k(cat)/K(m) value of 0.32 microM(-1)s(-1). The k(cat) value for the MnP-catalyzed reaction was found to be dependent of the Mn(III) chelator molecules malonate, lactate and oxalate, indicating that the enzyme oxidized chelated Mn(II) to Mn(III). The pH and temperature optima of the enzyme were 4.5 and 25 degrees C, respectively. The enzyme in combination with H2O2 liberated bromine and iodine in presence of KBr and KI respectively. All these enzymatic characteristics were similar to those of fungal MnP. The enzyme has the potential as a green brominating and iodinating agent in combination with KBr/KI and H2O2.  相似文献   

16.
We report the expression, purification, and characterization of L-asparaginase (AnsA) from Rhizobium etli. The enzyme was purified to homogeneity in a single-step procedure involving affinity chromatography, and the kinetic parameters K(m), V(max), and k(cat) for L-asparagine were determined. The enzymatic activity in the presence of a number of substrates and metal ions was investigated. The molecular mass of the enzyme was 47 kDa by SDS-PAGE. The enzyme showed a maximal activity at 50 degrees C, but the optimal temperature of activity was 37 degrees C. It also showed maximal and optimal activities at pH 9.0. The values of K(m), V(max), k(cat), and k(cat)/K(m) were 8.9 +/- 0.967 × 10?3 M, 128 +/- 2.8 U/mg protein, 106 +/- 2 s?1, and 1.2 +/- 0.105 × 10? M?1s?1, respectively. The L-asparaginase activity was reduced in the presence of Mn2?, Zn2?, Ca2?, and Mg2? metal ions for about 52% to 31%. In addition, we found that NH??, L-Asp, D-Asn, and beta-aspartyl-hydroxamate in the reaction buffer reduced the activity of the enzyme, whereas L-Gln did not modify its enzymatic activity. This is the first report on the expression and characterization of the L-asparaginase (AnsA) from R. etli. Phylogenetic analysis of asparaginases reveals an increasing group of known sequences of the Rhizobialtype asparaginase II family.  相似文献   

17.
The determination of kinetic parameters of chitinases using natural substrates is difficult due to low K(m) values, which require the use of low substrate concentrations that are hard to measure. Using the natural substrate (GlcNAc)(4), we have developed an assay for the determination of k(cat) and K(m)values of chitinases. Product concentrations as low as 0.5 microM were detected using normal-phase high-performance liquid chromatography (HPLC) with an amide 80 column (0.20 x 25 cm) using spectrophotometric detection at 210 nm. By means of this assay, k(cat) and K(m)values for chitinases A (ChiA) and B (ChiB) of Serratia marcescens were found to be 33+/-1s(-1) and 9+/-1 microM and 28+/-2s(-1) and 4+/-2 microM, respectively. For ChiB, these values were compared to those found with commonly used substrates where the leaving group is a (nonnatural) chromophore, revealing considerable differences. For example, assays with 4-methylumbelliferyl-(GlcNAc)(2) yielded a k(cat) value of 18+/-2s(-1) and a K(m) value of 30+/-6 microM. For two ChiB mutants containing a Trp --> Ala mutation in the +1 or +2 subsites, the natural substrate and the 4-methylumbelliferyl-(GlcNAc)(2) assays yielded rather similar K(m) values (5-fold difference at most) but showed dramatic differences in k(cat) values (up to 90-fold). These results illustrate the risk of using artificial substrates for characterization of chitinases and, thus, show that the new HPLC-based assay is a valuable tool for future chitinase research.  相似文献   

18.
The effects of calcium ions on hydrolysis of low molecular weight substrates catalyzed by different forms of enteropeptidase were studied. A method for determining activity of truncated enteropeptidase preparations lacking a secondary trypsinogen binding site and displaying low activity towards trypsinogen was developed using N-alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester (Z-Lys-S-Bzl). The kinetic constants for hydrolysis of this substrate at pH 8.0 and 25 degrees C were determined for natural enteropeptidase (K(m) 59.6 microM, k(cat) 6660 min(-1), k(cat)/K(m) 111 microM(-1) x min(-1)), as well as for enteropeptidase preparation with deleted 118-783 fragment of the heavy chain (K(m) 176.9 microM, k(cat) 6694 min(-1), k(cat)/K(m) 37.84 microM(-1) x min(-1)) and trypsin (K(m) 56.0 microM, k(cat) 8280 min(-1), k(cat)/K(m) 147.86 microM(-1) x min(-1)). It was shown that the enzymes with trypsin-like primary active site display similar hydrolysis efficiency towards Z-Lys-S-Bzl. Calcium ions cause 3-fold activation of hydrolysis of the substrates of general type GD(4)K-X by the natural full-length enteropeptidase. In contrast, the hydrolysis of substrates with one or two Asp/Glu residues at P2-P3 positions is slightly inhibited by Ca2+. In the case of enteropeptidase light chain as well as the enzyme containing the truncated heavy chain (466-800 fragment), the activating effect of calcium ions was not detected for all the studied substrates. The results of hydrolysis experiments with synthetic enteropeptidase substrates GD(4)K-F(NO(2))G, G(5)DK-F(NO(2))G (where F(NO(2)) is p-nitrophenyl-L-phenylalanine residue), and GD(4)K-Nfa (where Nfa is beta-naphthylamide) demonstrate the possibility of regulation of undesired side hydrolysis using natural full-length enteropeptidase for processing chimeric proteins by means of calcium ions.  相似文献   

19.
A derivative of rhodamine 110 has been designed and assessed as a probe for cytochrome P450 activity. This probe is the first to utilize a 'trimethyl lock' that is triggered by cleavage of an ether bond. In vitro, fluorescence was manifested by the CYP1A1 isozyme with k(cat)/K(M)=8.8x10(3)M(-1)s(-1) and K(M)=0.09microM. In cellulo, the probe revealed the induction of cytochrome P450 activity by the carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin, and its repression by the chemoprotectant resveratrol.  相似文献   

20.
The 8-thioxocephalosporins are poor substrates for the B. cereus metallo beta-lactamase (k(cat)/K(m)=61.4M(-1) s(-1)) and act as weak competitive inhibitors (K(i) approximately 700 microM). The hydrolysis product of thioxocephalosporin, a thioacid, also inhibits the enzyme competitively with a K(i)=96 microM, whereas the cyclic thioxo-piperazinedione, formed by intramolecular aminolysis of thioxocephalexin has a K(i) of 29 microM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号