首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
The effect of insulin on protein biosynthesis was examined in differentiated 3T3-L1 and 3T3-F442A adipocytes. Insulin altered the relative rate of synthesis of specific proteins independent of its ability to hasten conversion of the fibroblast (preadipocyte) phenotype to the adipocyte phenotype. Although more than one pattern of response to insulin was observed, we focused on the induction of a Mr 33,000 protein which was identified as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Exposure of 3T3 adipocytes to insulin throughout differentiation specifically increased GAPDH activity and protein content by 2- to 3-fold as compared to 3T3 adipocytes differentiated in the absence of insulin. These changes in enzyme activity and content could be accounted for by a 4-fold increase in the relative rate of synthesis of GAPDH and a 9-fold increase in hybridizable mRNA levels. Within 2 h of insulin addition to 3T3 adipocytes differentiated in the absence of hormone, hybridizable GAPDH mRNA levels increased 3-fold, and within 24 h GAPDH mRNA levels increased 8-fold, and [35S] methionine incorporation into GAPDH protein increased 5-fold. The increase in GAPDH mRNA and GAPDH biosynthesis could be demonstrated using physiologic concentrations of insulin (0.24 nM), indicating that these effects are mediated through a specific interaction with the insulin receptor. These studies demonstrate that insulin, as the sole hormonal perturbant, can increase the synthesis of certain 3T3 adipocyte proteins by altering the cellular content of a specific mRNA.  相似文献   

5.
6.
7.
In this study, we tested the hypothesis that hexose transport regulation may involve proteins with relatively rapid turnover rates. 3T3-L1 adipocytes, which exhibit 10-fold increases in hexose transport rates within 30 min of the addition of 100 nM insulin, were utilized. Exposure of these cells to 300 microM anisomycin or 500 microM cycloheximide caused a maximal, 7-fold increase in 2-deoxyglucose transport rate after 4-8 h. The effects due to either insulin (0.5 h) or anisomycin (5 h) on the kinetics of zero-trans 3-O-methyl[14C]glucose transport were similar, resulting in 2.5-3-fold increases in apparent Vmax values (control Vmax = 1.6 +/- 0.3 x 10(-7) mmol/s/10(6) cells) coupled with approximately 2-fold decreases in apparent Km values (control Km = 23 +/- 3.3 mM). Insulin elicited the expected increases in plasma membrane levels of HepG2/erythrocyte (GLUT1) and muscle/adipocyte (GLUT4) transporters (1.6- and 2.8-fold, respectively) as determined by protein immunoblotting. In contrast, neither total cellular contents nor plasma membrane levels of these two transporter isoforms were increased when 3T3-L1 adipocytes were treated with either anisomycin or cycloheximide. 3-[125I]Iodo-4-azidophenethylamido-7-O-succinyldeacetylforskoli n labeling of glucose transporters in plasma membrane fractions of similarly treated cells was also unaffected by these agents. Thus, a striking discrepancy was observed between the marked increase in cellular hexose transport rates due to these protein synthesis inhibitors and the unaltered amounts of glucose transporter proteins in the plasma membrane fraction. These data indicate that short-term protein synthesis inhibition in 3T3-L1 adipocytes leads to large increases in the intrinsic catalytic activity of one or both of the GLUT1 and GLUT4 transporter isoforms.  相似文献   

8.
Murine 3T3-L1 preadipocytes proliferate normally in medium containing fetal calf serum depleted of insulin, growth hormone, and insulin-like growth factor-I (IGF-I). However, the cells do not differentiate into adipocytes in the presence of the hormone-depleted serum. Supplementation of the growth medium with 10-20 nM IGF-I or 2 microM insulin restores the ability of 3T3-L1 cells to develop into adipocytes. The cells acquire an adipocyte morphology, accumulate triglycerides, and express a 450-fold increase in the activity of the lipogenic enzyme glycerol-3-phosphate dehydrogenase. The increase in glycerol-3-phosphate dehydrogenase activity is paralleled by the accumulation of glycerol-3-phosphate dehydrogenase mRNA and mRNA for the myelin P2-like protein aP2, another marker for fat cell development. IGF-I or insulin-stimulated adipogenesis in 3T3-L1 cells is not dependent on growth hormone. Occupancy of preadipocyte IGF-I receptors by IGF-I (or insulin) is implicated as a central step in the differentiation process. The IGF-I receptor binds insulin with a 70-fold lower affinity than IGF-I, and 30-70-fold higher levels of insulin are required to duplicate the effects of an optimal amount of IGF-I. The effects of 10-20 nM IGF-I are likely to be mediated by high affinity (KD = 5 nM) IGF-I receptors that are expressed at a density of 13,000 sites/preadipocyte. In undifferentiated cells the IGF-I receptor concentration is twice that of the insulin receptor. After adipocyte differentiation is triggered, the number and affinity of IGF-I receptors remain constant while insulin receptor number increases approximately 25-fold as developing adipocytes become responsive to insulin at the level of metabolic regulation. Thus, preadipocytes have the potential for a maximal response to IGF-I, whereas the accumulation of more than 95% of adipocyte insulin receptors and the appearance of responsiveness to insulin are consequences of differentiation. IGF-I or insulin is essential for the induction of a variety of abundant and nonabundant mRNAs characteristic of 3T3-L1 adipocytes.  相似文献   

9.
Previous studies suggest that regulation of hexose uptake in Chinese hamster ovary fibroblasts can occur by alterations in glucose transporter intrinsic activity without changes in cell surface transporter number (Harrison, S. A., Buxton, J. M., Helgerson, A. L., MacDonald, R. G., Chlapowski, F. J., Carruthers, A., and Czech, M. P. (1990) J. Biol. Chem. 265, 5793-5801). We tested this hypothesis using 3T3-L1 fibroblasts and adipocytes which exhibit 5-6-fold increases in 2-deoxyglucose or 3-O-methylglucose uptake when exposed to low micromolar concentrations of cadmium for 18 h. Cadmium treatment decreased the apparent Km of 3T3-L1 fibroblasts for 3-O-methylglucose influx from approximately 28 to 9 mM and increased the apparent Vmax by 2-3-fold. These fibroblasts lack the skeletal muscle/adipocyte-type (GLUT4) transporter and showed only a small increase in total cellular immunoreactive HepG2 type (GLUT1) transporter in response to cadmium. Furthermore, cell surface GLUT1 levels did not change in 3T3-L1 fibroblasts exposed to cadmium, as assessed by the binding to intact cells of an antibody which recognizes an extracellular GLUT1 epitope. Insulin enhanced 2-deoxyglucose uptake 2-fold in 3T3-L1 fibroblasts, but did not further stimulate cadmium-activated transport rates. In contrast, insulin stimulated hexose transport 15-fold in 3T3-L1 adipocytes, which express both GLUT1 and GLUT4 proteins, and this effect was fully additive with the 5-fold effect of cadmium. Cadmium had little or no effect on immunoreactive GLUT1 or GLUT4 in isolated 3T3-L1 adipocyte plasma membranes. In contrast, insulin action led to marked recruitment (3-fold) of GLUT4 to the plasma membrane fraction in adipocytes treated with or without cadmium. Taken together, these data are consistent with the hypothesis that cadmium-activated sugar uptake is catalyzed by GLUT1, whereas insulin-stimulated sugar uptake is catalyzed predominantly by GLUT4 in 3T3-L1 adipocytes. Furthermore, the data suggest that the GLUT1 transporter can undergo significant increases in intrinsic catalytic activity in response to cadmium treatment of 3T3-L1 fibroblasts and adipocytes.  相似文献   

10.
The t10c12 isomer of conjugated linoleic acid (CLA) reduces lipid accumulation in adipocytes in part by inhibiting heparin-releasable lipoprotein lipase (LPL) activity. We now show that inhibitors of lipoxygenase (LOX) activity (2-[12-hydroxydodeca-5,10-diynyl]-3,5,6-trimethyl-p-benzoquinone; 5,8,11,14-eicosatetraynoic acid; salicylhydroxamic acid; indomethacin; nordihydroguaiaretic acid (NDGA)) produce a similar inhibitory effect on LPL activity in cultured 3T3-L1 mouse adipocytes. Additionally the LOX inhibitors had no effect on, or inhibited, lipolysis in this cell system (measured as glycerol release). Growing mice fed diet containing 0.1% NDGA for 4 weeks displayed 21% reduction in body fat, which was similar to 23% reduction in body fat produced by feeding diet containing a suboptimal amount of CLA (0.1%) for 4 weeks. Feeding diet containing both 0.1% NDGA and 0.1% CLA resulted in 51% reduction in body fat which was accompanied by significant increases in whole body water and protein. Aspirin, an inhibitor of cyclooxygenase 1 and 2, had no effect on LPL activity in 3T3-L1 adipocytes, did not affect body composition when fed to growing mice, and failed to influence the effects of CLA on LPL activity in 3T3-L1 cells or body composition in mice. These findings appear to provide new perspectives and insights into the relationships between CLA, eicosanoids, the control of lipid accumulation in adipocytes, and effects of CLA on the immune system.  相似文献   

11.
The t10c12 isomer of conjugated linoleic acid (CLA) reduces lipid accumulation in adipocytes in part by inhibiting heparin-releasable lipoprotein lipase (LPL) activity. We now show that inhibitors of lipoxygenase (LOX) activity (2-[12-hydroxydodeca-5,10-diynyl]-3,5,6-trimethyl-p-benzoquinone; 5,8,11,14-eicosatetraynoic acid; salicylhydroxamic acid; indomethacin; nordihydroguaiaretic acid (NDGA)) produce a similar inhibitory effect on LPL activity in cultured 3T3-L1 mouse adipocytes. Additionally the LOX inhibitors had no effect on, or inhibited, lipolysis in this cell system (measured as glycerol release). Growing mice fed diet containing 0.1% NDGA for 4 weeks displayed 21% reduction in body fat, which was similar to 23% reduction in body fat produced by feeding diet containing a suboptimal amount of CLA (0.1%) for 4 weeks. Feeding diet containing both 0.1% NDGA and 0.1% CLA resulted in 51% reduction in body fat which was accompanied by significant increases in whole body water and protein. Aspirin, an inhibitor of cyclooxygenase 1 and 2, had no effect on LPL activity in 3T3-L1 adipocytes, did not affect body composition when fed to growing mice, and failed to influence the effects of CLA on LPL activity in 3T3-L1 cells or body composition in mice. These findings appear to provide new perspectives and insights into the relationships between CLA, eicosanoids, the control of lipid accumulation in adipocytes, and effects of CLA on the immune system.  相似文献   

12.
13.
14.
We earlier developed a novel method to detect translocation of the glucose transporter (GLUT) directly and simply using c-MYC epitope-tagged GLUT (GLUTMYC). To define the effect of platelet-derived growth factor (PDGF) on glucose transport in 3T3-L1 adipocytes, we investigated the PDGF- and insulin-induced glucose uptake, translocation of glucose transporters, and phosphatidylinositol (PI) 3-kinase activity in 3T3-L1, 3T3-L1GLUT4MYC, and 3T3-L1GLUT1MYC adipocytes. Insulin and PDGF stimulated glucose uptake by 9-10- and 5.5-6.5-fold, respectively, in both 3T3-L1 and 3T3-L1GLUT4MYC adipocytes. Exogenous GLUT4MYC expression led to enhanced PDGF-induced glucose transport. In 3T3-L1GLUT4MYC adipocytes, insulin and PDGF induced an 8- and 5-fold increase in GLUT4MYC translocation, respectively, determined in a cell-surface anti-c-MYC antibody binding assay. This PDGF-induced GLUT4MYC translocation was further demonstrated with fluorescent detection. In contrast, PDGF stimulated a 2-fold increase of GLUT1MYC translocation and 2.5-fold increase of glucose uptake in 3T3-L1GLUT1MYC adipocytes. The PDGF-induced GLUT4MYC translocation, glucose uptake, and PI 3-kinase activity were maximal (100%) at 5-10 min and thereafter rapidly declined to 40, 30, and 12%, respectively, within 60 min, a time when effects of insulin were maximal. Wortmannin (0.1 microM) abolished PDGF-induced GLUT4MYC translocation and glucose uptake in 3T3-L1GLUT4MYC adipocytes. These results suggest that PDGF can transiently trigger the translocation of GLUT4 and stimulate glucose uptake by translocation of both GLUT4 and GLUT1 in a PI 3-kinase-dependent signaling pathway in 3T3-L1 adipocytes.  相似文献   

15.
Lipoprotein lipase (LPL) is the enzyme responsible for hydrolysis of circulating triglyceride-rich lipoproteins and is important for storage of adipocyte lipid. To study the regulation of LPL synthetic rate in adipose tissue, primary cultures of isolated rat adipocytes were pulse-labeled with [35S]methionine, and LPL was immunoprecipitated with an LPL-specific antibody. A pulse-chase experiment identified the cellular and secreted forms of LPL as a 55-57-kDa protein. In the presence of heparin, there was a large increase in secretion of newly synthesized LPL from the cells, although heparin did not stimulate cellular LPL synthetic rate. When cells were exposed to insulin for 2 h, pulse-labeling revealed that insulin stimulated a maximal dose-related increase in LPL synthetic rate of 300% of control. This increase in LPL synthetic rate was observed after an exposure to insulin for as little as 60 min and was accompanied by only a 10-25% increase in total protein synthesis. In addition, insulin had no effect on the turnover of intracellular LPL. Using a cDNA probe for LPL, insulin induced a 2-fold increase in the LPL mRNA. Thus, insulin stimulated an increase in specific LPL mRNA in isolated rat adipocytes. This increase in LPL mRNA then leads to an increase in the synthetic rate of the LPL protein.  相似文献   

16.
Tumour necrosis factor (TNF) has previously been shown to decrease lipoprotein lipase (LPL) activity and mRNA levels in 3T3-L1 cells and in adipose tissue from rats and guinea pigs when injected in vivo, but not to alter LPL activity in human adipocytes incubated in vitro. The effect of recombinant human TNF on LPL activity and mRNA levels in rat epididymal adipose tissue incubated in vitro was examined. LPL activity and mRNA levels fell in adipose tissue taken from fed rats and incubated in Krebs-Henseleit bicarbonate medium with glucose. The addition of insulin and dexamethasone prevented these falls. TNF (400 ng/ml) produced a fall of approx. 50% in LPL activity after 2 h of incubation and of approx. 30% in LPL mRNA levels after 3 h. TNF did not decrease LPL activity in isolated adipocytes. These results demonstrate that rat adipose tissue incubated in vitro is responsive to TNF whereas isolated adipocytes are not.  相似文献   

17.
Several studies have demonstrated that the intrinsic catalytic activity of cell surface glucose transporters is highly regulated in 3T3-L1 adipocytes expressing GLUT1 (erythrocyte/brain) and GLUT4 (adipocyte/skeletal muscle) glucose transporter isoforms. For example, inhibition of protein synthesis in these cells by anisomycin or cycloheximide leads to marked increases in hexose transport without a change in the levels of cell surface glucose transporter proteins (Clancy, B. M., Harrison, S. A., Buxton, J. M., and Czech, M. P. (1991) J. Biol. Chem. 266, 10122-10130). In the present work the exofacial hexose binding sites on GLUT1 and GLUT4 in anisomycin-treated 3T3-L1 adipocytes were labeled with the cell-impermeant photoaffinity reagent [2-3H]2-N-[4-(1-azitrifluoroethyl)benzoyl]-1,3-bis- (D-mannos-4-yloxy)-2-propylamine [( 2-3H] ATB-BMPA) to determine which isoform is activated by protein synthetic blockade. As expected, a 15-fold increase in 2-deoxyglucose uptake in response to insulin was associated with 1.7- and 2.6-fold elevations in plasma membrane GLUT1 and GLUT4 protein levels, respectively. Anisomycin treatment of cultured adipocytes for 5 h produced an 8-fold stimulation of hexose transport but no increase in the content of glucose transporters in the plasma membrane fraction as measured by protein immunoblot analysis. Cell surface GLUT1 levels were also shown to be unaffected on 3T3-L1 adipocytes in response to anisomycin using an independent method, the binding of an antiexofacial GLUT1 antibody to intact cells. In contrast, anisomycin fully mimicked the action of insulin to stimulate (about 4-fold) the radiolabeling of GLUT1 transporters specifically immunoprecipitated from intact 3T3-L1 adipocytes irradiated after incubation with [2-3H] ATB-BMPA. Photolabeling of GLUT4 under these conditions was also significantly enhanced (1.8-fold) by anisomycin treatment, but this effect was only 15% of that caused by insulin. These results suggest that: 1) the photoaffinity reagent [2-3H]ATB-BMPA labels those cell surface glucose transporters present in a catalytically active state rather than total cell surface transporters as assumed previously and 2) inhibition of protein synthesis in 3T3-L1 adipocytes stimulates sugar transport primarily by enhancing the intrinsic catalytic activity of cell surface GLUT1, and to a lesser extent, GLUT4 proteins.  相似文献   

18.
19.
The role of increased glucose transport in the hormonal regulation of glycogen synthase by insulin was investigated in 3T3-L1 adipocytes. Insulin treatment stimulated glycogen synthase activity 4-5-fold in these cells. Cytosolic glycogen synthase levels decreased by 75% in response to insulin, whereas, conversely, the glycogenolytic agent isoproterenol increased cytosolic enzyme levels by 200%. Removal of extracellular glucose reduced glycogen synthase activation by 40% and completely blocked enzymatic translocation. Addition of 5 mM 2-deoxyglucose did not restore glycogen synthase translocation but did augment dephosphorylation of the protein by insulin. The translocation event could be reconstituted in vitro only by the addition of UDP-glucose to basal cell lysates. Amylase pretreatment of the extracts suppressed glycogen synthase translocation, indicating that the enzyme was binding to glycogen. Incubation of 3T3-L1 adipocytes with 10 mM glucosamine induced a state of insulin resistance, blocked the translocation of glycogen synthase, and inhibited insulin-stimulated glycogen synthesis by 50%. Surprisingly, glycogen synthase activation by insulin was enhanced 4-fold, in part due to allosteric activation by a glucosamine metabolite. In vitro, glucosamine 6-phosphate and glucose 6-phosphate stimulated glycogen synthase activity with similar concentration curves. These results indicate that glucose metabolites have an impact on the regulation of glycogen synthase activation and localization by insulin.  相似文献   

20.
Acylation-stimulating protein (ASP) increases triglyceride (TG) storage (fatty acid trapping) in adipose tissue and plays an important role in postprandial TG clearance. We examined the capacity of ASP and insulin to stimulate the activity of lipoprotein lipase (LPL) and the trapping of LPL-derived nonesterified fatty acid (NEFA) in 3T3-L1 adipocytes. Although insulin increased total LPL activity (secreted and cell-associated; P < 0.001) in 3T3-L1 adipocytes, ASP moderately stimulated secreted LPL activity (P = 0.04; 5% of total LPL activity). Neither hormone increased LPL translocation from adipocytes to endothelial cells in a coculture system. However, ASP and insulin increased the V(max) of in situ LPL activity ([(3)H]TG synthetic lipoprotein hydrolysis and [(3)H]NEFA incorporation into adipocytes) by 60% and 41%, respectively (P 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号