首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Two bacteriocinogenic strains of Pediococcus parvulus and one bacteriocinogenic Enterococcus mundtii strain were evaluated for their potential to control the growth of Listeria monocytogenes on refrigerated, modified atmosphere (MA) stored mungbean sprouts. These three strains, which were isolated from minimally-processed vegetables, were shown to grow in culture broth at 4, 8, 15 and 30 degrees C. However, only Ent. mundtii was capable of bacteriocin production at 4-8 degrees C. Examination of the growth of these strains on agar under 1.5% O2 in combination with 0, 5, 20 or 50% CO2 revealed significantly higher maximum specific growth rates for Ent. mundtii than for Pediococcus parvulus at CO2 concentrations below 20%, which are relevant for MA-storage of vegetables. Enterococcus mundtii was subsequently evaluated for its ability to control the growth of L. monocytogenes on vegetable agar and fresh mungbean sprouts under 1.5% O2/20% CO2/78.5% N2 at 8 degrees C. The growth of L. monocytogenes was inhibited by bacteriocinogenic Ent. mundtii on sterile vegetable-medium but not on fresh produce. However, mundticin, the bacteriocin produced by Ent. mundtii, was found to have potential as a biopreservative agent for MA-stored mungbean sprouts when used in a washing step or a coating procedure.  相似文献   

2.
The effects of various gaseous environments and temperatures on development of Penicillium martensii NRRL 3612 and production of penicillic acid (PA) were determined. Accumulation of PA in mold-inoculated corn was measured following incubation under air; 20% CO(2), 20% O(2), 60% N(2); 40% CO(2), 20% O(2), 40% N(2); and 60% CO(2), 20% O(2), 20% N(2). Although reduced temperature initially inhibited PA production, at the end of the trial the largest quantity of PA (120 mug/g of corn) was found in air-incubated corn at the lowest test temperature (5 C). Atmospheres enriched with 60% CO(2) reduced PA accumulation below a detectable level at 5 and 10 C after a 4-week incubation period. Spore germination tests were carried out in a liquid growth medium incubated for 16 hr under several test conditions. Germ tube outgrowth at 30 C ranged from 36% in air to 2% in 60% CO(2), whereas no germination was observed in CO(2)-enriched gases at 10 C. When spore respiration rates were measured in air and O(2) in a liquid growth medium, complete removal of CO(2) from the reaction atmosphere did not reduce O(2) uptake.  相似文献   

3.
Six plant essential oils alone as repellent and fumigant, and in combination with the controlled atmosphere against Liposcelis bostrychophila Badonnel were assessed in the laboratory. These essential oils were extracted from the leaves of six source plants: Citrus tangerina Tanaka, Citrus aurantium L., Citrus bergamia Risso et Poiteau, Pinus sylvestris L., Cupressus funebris End]., and Eucalyptus citriodora Hook. The repellency test indicated that L. bostrychophila adults were repelled by filter paper strips treated with six essential oils. Of these essential oils, the C. funebris oil was most effective followed by that of F. sylvestris, C. tangerina, C. bergamia, and E. citriodora. The average repellency of the C. aurantium oil against L. bostrychophila adults was significantly lower than other five test oils by day 14. These essential oils had a high level of toxicity in the fumigation assay against L. bostrychophila adults at both 10 and 20 ppm. When combined with two controlled atmosphere treatments (12% CO2 + 9% O2, and 10% CO2 + 5% O2, balanced N2), the toxicity of plant oils was enhanced significantly.  相似文献   

4.
Studies of the growth-modifying actions for Escherichia coli, Saccharomyces cerevisiae, and Tetrahymena thermophila of helium, nitrogen, argon, krypton, xenon, and nitrous oxide led to the conclusion that there are two definable classes of gases. Class 1 gases, including He, N(2), and Ar, are not growth inhibitors; in fact, they can reverse the growth inhibitory action of hydrostatic pressures. Class 2 gases, including Kr, Xe, and N(2)O, are potent growth inhibitors at low pressures. For example, at 24 degrees C, 50% growth-inhibitory pressures of N(2)O were found to be ca. 1.7 MPa for E. coli, 1.0 MPa for S. cerevisiae, and 0.5 MPa for T. thermophila. Class 1 gases could act as potentiators for growth inhibition by N(2)O, O(2), Kr, or Xe. Hydrostatic pressure alone is known to reverse N(2)O inhibition of growth, but we found that it did not greatly alter oxygen toxicity. Therefore, potentiation by class 1 gases appeared to be a gas effect rather than a pressure effect. The temperature profile for growth inhibition of S. cerevisiae by N(2)O revealed an optimal temperature for cell resistance of ca. 24 degrees C, with lower resistance at higher and lower temperatures. Overall, it appeared that microbial growth modification by hyperbaric gases could not be related to their narcotic actions but reflected definably different physiological actions.  相似文献   

5.
The steady-state sensitivity of resistance pneumotachographs is proportional to viscosity. Dynamic characteristics of pneumotachographs, pressure transducers, and mass spectrometers are also viscosity dependent. We derive linear equations to approximate the viscosities of O2, N2, CO2, H2O, He, N2O, and Ar for temperatures between 20 and 40 degrees C by using published viscosity data and a nonlinear extrapolation equation. We verify the accuracy of the extrapolation equation by comparison with published data. Our linear equations for pure gas viscosities yield standard errors less than 0.35 microP. We also compare a nonlinear equation for calculating the viscosities of mixtures of gases with published measured viscosities of dry air, humid air, and He-O2 and N2-CO2 mixtures. The maximum difference between published and calculated values is 1.3% for 10% CO2 in N2. All other differences are less than 0.38%. For saturated humid air at 35 degrees C, a linear concentration-weighted combination of viscosities differs from our nonlinear equation by 4.9, 2.1, and 1.7% at barometric pressures of 32, 83, and 100 kPa, respectively. By use of our method, the viscosity of normal respiratory gases can be calculated to within 1% of measured values.  相似文献   

6.
The effect of atmospheric composition and storage temperature on growth and survival of uninjured and sublethally heat-injured Escherichia coli O157:H7, inoculated onto brain heart infusion agar containing 0.3% beef extract (BEM), was determined. BEM plates were packaged in barrier bags in air, 100% CO2, 100% N2, 20% CO2: 80% N2, and vacuum and were stored at 4, 10, and 37 degrees C for up to 20 days. Package atmosphere and inoculum status (i.e., uninjured or heat-injured) influenced (P < 0.01) growth and survival of E. coli O157:H7 stored at all test temperatures. Growth of heat-injured E. coli O157:H7 was slower (P < 0.01) than uninjured E. coli O157:H7 stored at 37 degrees C. At 37 degrees C, uninjured E. coli O157:H7 reached stationary phase growth earlier than heat-injured populations. Uninjured E. coli O157:H7 grew during 10 days of storage at 10 degrees C, while heat-injured populations declined during 20 days of storage at 10 degrees C. Uninjured E. coli O157:H7 stored at 10 degrees C reached stationary phase growth within approximately 10 days in all packaging atmospheres except CO2. Populations of uninjured and heat-injured E. coli O157:H7 declined throughout storage for 20 days at 4 degrees C. Survival of uninjured populations stored at 4 degrees C, as well as heat-injured populations stored at 4 and 10 degrees C, was enhanced in CO2 atmosphere. Survival of heat-injured E. coli O157:H7 at 4 and 10 degrees C was not different (P > 0.05). Uninjured and heat-injured E. coli O157:H7 are able to survive at low temperatures in the modified atmospheres used in this study.  相似文献   

7.
利用微藻固定烟道气中CO2的实验研究   总被引:13,自引:0,他引:13  
为获得能适合于烟道气条件下生长的微藻 ,找到一种高效的温室气体固定的方法 ,利用配置烟道气 (CO2 和O2 的浓度分别为 15 %和 2 %)驯化稻田微藻混合试样 ,分离出对高浓度CO2 条件有很强适应力的微藻ZY 1,并研究了在不同培养条件下微藻ZY 1的生长情况 .微藻ZY 1在CO2 浓度从 10 %~ 15 %的范围内有较高生长力 ,在CO2 浓度为 10 %时 ,生长最好 .微藻ZY 1对温度、气体流速、pH值等物理条件也有很宽的适应范围 ,在温度为 2 5~ 30 .C、流速为 0 2 5~ 0 75L·min-1、pH4~ 6范围内 ,生长基本稳定 .在培养条件为 10 %CO2 、2 5 .C、pH5 0时 ,微藻ZY 1的生长率最高 ,CO2 的固定率平均值为 0 397%.可以认为 ,利用该藻固定烟道气温室气体具有一定的可行性 .  相似文献   

8.
The effects of elevated venous PCO2 and denervation of the cardiac ventricles on ventilation were studied in 20 anesthetized open-chest unidirectionally ventilated White Leghorn cockerels. Venous PCO2 was increased by insufflating the gut with high CO2 while recording changes in the amplitude of the sternal movements. Arterial blood gases were held constant by unidirectionally ventilating the lungs with gas flows approximately five times the animal's resting minute volume. Insufflating the gut with 90% N2-10% O2 did not change the level of ventilation, whereas with 90% CO2-10% O2 the amplitude of sternal movement increased 500% above that with no gut gas flow. Exchange of N2 for the CO2 was followed by a rapid reduction of ventilatory movements to control levels. Arterial blood gases remained constant during gut gas insufflation, whereas mixed venous PCO2 increased and mixed venous pH decreased when high CO2 was given to the gut. Cutting the middle cardiac nerves, which primarily innervate the ventricles of the heart, reduced the ventilatory response to CO2 gut insufflation by 67%. Sympathetic denervation of the thoracic viscera did not change the responses. It appears that, in the chicken, increasing the mixed venous PCO2 while holding the arterial blood gases constant alters ventilation by an afferent system located in the venous circulation or in the right ventricle which is sensitive to changes in PCO2.  相似文献   

9.
不同耕作措施的温室气体排放日变化及最佳观测时间   总被引:10,自引:0,他引:10  
在连续6 a耕作模式的基础上,利用静态箱-气相色谱法对常规耕作与免耕条件下小麦生育后期麦田CO2、CH4、N2O通量日变化进行了连续48 h观测,并确定1 d中最佳的观测时间。结果表明,常规耕作与免耕条件下小麦生育后期麦田CO2、CH4、N2O通量具有显著的日变化特征,常规耕作处理和免耕处理土壤表现为CH4的吸收汇、CO2、N2O的排放源。CH4日均吸收通量:常规耕作无秸秆还田处理(AC)>常规耕作秸秆还田处理(PC)>免耕(PZ);CO2日均排放通量:常规耕作秸秆还田处理(PC)>常规耕作无秸秆还田处理(AC)>免耕(PZ);N2O日均排放通量:常规耕作秸秆还田处理(PC)>常规耕作无秸秆还田处理(AC)>免耕(PZ)。相关性分析表明,常规耕作及免耕条件下CO2、CH4、N2O通量日变化与地表温度和5 cm地温呈极显著(P<0.01)或显著(P<0.05)的正相关关系,温度是决定温室气体日变化的主要决定因素。通过矫正系数和回归分析表明,在小麦生育后期(4—6月),CO2的最佳观测时间段在8:00—10:00,CH4为8:00—10:00,N2O为8:00—12:00。  相似文献   

10.
Hu  S.  van Bruggen  A.H.C.  Wakeman  R.J.  Grünwald  N.J. 《Plant and Soil》1997,195(1):43-52
Experiments were designed to examine effects of the soil microbial community, C and N availability on in vitro growth of Pythium ultimum and its infection of cotton seedlings by manipulating the stage of cellulose decomposition, size and activity of microbial populations, and N availability. In comparison to the untreated control (CONT), cellulose addition alone (CELL) reduced soil nitrate by 35–80 fold, but had no significant effect on soil ammonium. Soil microbial biomass C (SMBC) increased over 2 fold in 14 days following cellulose addition, but significantly decreased in the following 10 days due to N limitation. Addition of both cellulose and N (NCELL) resulted in sustained SMBC for 24 days and significantly reduced in vitro P. ultimum growth and disease incidence. In vitro growth of P. ultimum and disease severity were consistently reduced in the order: CONT > CELL > NCELL. In vitro growth of P. ultimum was lower in soils previously incubated for 24 days than in those incubated for 14 days, and was most closely correlated to cumulative soil CO2 evolution (CO2T). Correlations between P. ultimum growth rates and NO3-N or total available N were substantial (p < 0.05), but much less significant than those between the growth rates and SMBC, microbial activity measured as CO2 evolution rates or CO2T (p<0.0001). Addition of available N (NH4NO3) and C (glucose) just before the assays did not increase the in vitro growth of P. ultimum or disease severity on cotton seedlings, suggesting that time-dependent microbial processes or microbial metabolites significantly contributed to suppression of P. ultimum growth.  相似文献   

11.
Production and consumption processes in soils contribute to the global cycles of many trace gases (CH4, CO, OCS, H2, N2O, and NO) that are relevant for atmospheric chemistry and climate. Soil microbial processes contribute substantially to the budgets of atmospheric trace gases. The flux of trace gases between soil and atmosphere is usually the result of simultaneously operating production and consumption processes in soil: The relevant processes are not yet proven with absolute certainty, but the following are likely for trace gas consumption: H2 oxidation by abiontic soil enzymes; CO cooxidation by the ammonium monooxygenase of nitrifying bacteria; CH4 oxidation by unknown methanotrophic bacteria that utilize CH4 for growth; OCS hydrolysis by bacteria containing carbonic anhydrase; N2O reduction to N2 by denitrifying bacteria; NO consumption by either reduction to N2O in denitrifiers or oxidation to nitrate in heterotrophic bacteria. Wetland soils, in contrast to upland soils are generally anoxic and thus support the production of trace gases (H2, CO, CH4, N2O, and NO) by anaerobic bacteria such as fermenters, methanogens, acetogens, sulfate reducers, and denitrifiers. Methane is the dominant gaseous product of anaerobic degradation of organic matter and is released into the atmosphere, whereas the other trace gases are only intermediates, which are mostly cycled within the anoxic habitat. A significant percentage of the produced methane is oxidized by methanotrophic bacteria at anoxic-oxic interfaces such as the soil surface and the root surface of aquatic plants that serve as conduits for O2 transport into and CH4 transport out of the wetland soils. The dominant production processes in upland soils are different from those in wetland soils and include H2 production by biological N2 fixation, CO production by chemical decomposition of soil organic matter, and NO and N2O production by nitrification and denitrification. The processes responsible for CH4 production in upland soils are completely unclear, as are the OCS production processes in general. A problem for future research is the attribution of trace gas metabolic processes not only to functional groups of microorganisms but also to particular taxa. Thus, it is completely unclear how important microbial diversity is for the control of trace gas flux at the ecosystem level. However, different microbial communities may be part of the reason for differences in trace gas metabolism, e.g., effects of nitrogen fertilizers on CH4 uptake by soil; decrease of CH4 production with decreasing temperature; or different rates and modes of NO and N2O production in different soils and under different conditions.  相似文献   

12.
The feed and feces of a continuously fed sheep were analyzed for carbon, hydrogen, and nitrogen, with oxygen as the remainder. The daily feed-feces weight difference was used as the reactant in an equation representing the rumen fermentation. The measured products were the daily production of volatile fatty acids (VFA), CH(4), CO(2), and ammonia. The carbon unaccounted for was assumed to be in the microbial cell material produced in the rumen and absorbed before reaching the feces. The ratio of C to H, O, and N in bacteria was used to represent the elemental composition of the microbes formed in the rumen fermentation, completing the following equation:C(20.03)H(36.99)O(17.406)N(1.345) + 5.65 H(2)O --> C(12)H(24)O(10.1) + 0.83 CH(4) VFA + 2.76 CO(2) + 0.50 NH(3) + C(4.44)H(8.88)O(2.35)N(0.785) microbial cells absorbed With C arbitrarily balanced and O balanced by appropriate addition of water, any error is reflected in the H. The H recovery was 98.5%. The turnover rate constant for rumen liquid equilibrating with polyethylene glycol (PEG) was 2.27 per day. Direct counts and volume measurements of the individual types of bacteria and protozoa in the rumen were used to calculate the total microbial cell volume in the rumen, not equilibrating with it. The dry matter in the rumen (582 g) and the nitrogen content (12.05) of the microbes in the rumen were estimated, the latter constituting 85% of the measured N in the rumen. Calculations for rumen dry matter and nitrogen turning over at the PEG rate introduce big discrepancies with other parameters; a rumination pool must be postulated. Its size and composition are estimated. Arguments are presented to support the view that dry matter and some of the microbes, chiefly the protozoa, do not leave the rumen at the PEG rate. One experiment with the same sheep fed twice daily showed significantly less production of microbial cells than did the continuous (each 2 hr) feeding. Analysis of the microbial cell yield suggests that, on the basis of 11 mg of cells per adenosine triphosphate molecule, a maximum of six adenosine triphosphate molecules could have been formed from each molecule of hexose fermented.  相似文献   

13.
Baker's yeast suspensions were incubated at different pressures (from 1 bar to 6 bar) and different gases [air, O(2) and a mixture of 8% (v/v) CO(2), 21% O(2) and N(2)]. Raising the air pressure from 1 bar to 6 bar stimulated cell growth but had no effect on leavening ability or viability of the cells. A 50% reduction of the CO(2) produced in dough occurred with 6 bar O(2) which also stopped growth. The fermentative capacity of the cells was stimulated by the cells exposure to increased CO(2) partial pressure up to 0.48 bar.  相似文献   

14.
The gaseous environment surrounding parenchyma in woody tissue is low in O2 and high in CO2, but it is not known to what extent this affects respiration or might play a role in cell death during heartwood formation. Sapwood respiration was measured in two conifers and three angiosperms following equilibration to levels of O2 and CO2 common within stems, using both inner and outer sapwood to test for an effect of age. Across all species and tissue ages, lowering the O2 level from 10% to 5% (v/v) resulted in about a 25% decrease in respiration in the absence of CO2, but a non-significant decrease at 10% CO2. The inhibitory effect of 10% CO2 was smaller and only significant at 10% O2, where it reduced respiration by about 14%. Equilibration to a wider range of gas combinations in Pinus strobus L. showed the same effect: 10% CO2 inhibited respiration by about 15% at both 20% and 10% O2, but had no net effect at 5% O2. In an extreme treatment, 1% O2+20% CO2 increased respiration by over 30% relative to 1% O2 alone, suggesting a shift in metabolic response to high CO2 as O2 decreases. Although an increase in respiration would be detrimental under limiting O2, this extreme gas combination is unlikely to exist within most stems. Instead, moderate reductions in respiration under realistic O2 and CO2 levels suggest that within-stem gas composition does not severely limit respiration and is unlikely to cause the death of xylem parenchyma during heartwood formation.  相似文献   

15.
This study was designed to investigate the individual and combined effects of mustard flour and acetic acid in the inactivation of food-borne pathogenic bacteria stored at 5 and 22 degrees C. Samples were prepared to achieve various concentrations by the addition of acetic acid (0, 0.5, or 1%) along with mustard flour (0, 10, or 20%) and 2% sodium chloride (fixed amount). Acid-adapted three-strain mixtures of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica serovar Typhimurium strains (10(6) to 10(7) CFU/ml) were inoculated separately into prepared mustard samples stored at 5 and 22 degrees C, and samples were assayed periodically. The order of bacterial resistance, assessed by the time required for the nominated populations to be reduced to undetectable levels against prepared mustards at 5 degrees C, was S. enterica serovar Typhimurium (1 day) < E. coli O157:H7 (3 days) < L. monocytogenes (9 days). The food-borne pathogens tested were reduced much more rapidly at 22 degrees C than at 5 degrees C. There was no synergistic effect with regard to the killing of the pathogens tested with the addition of 0.5% acetic acid to the mustard flour (10 or 20%). Mustard in combination with 0.5% acetic acid had less bactericidal activity against the pathogens tested than did mustard alone. The reduction of E. coli O157:H7 and L. monocytogenes among the combined treatments on the same storage day was generally differentiated as follows: control < mustard in combination with 0.5% acetic acid < mustard alone < mustard in combination with 1% acetic acid < acetic acid alone. Our study indicates that acidic products may limit microbial growth or survival and that the addition of small amounts of acetic acid (0.5%) to mustard can retard the reduction of E. coli O157:H7 and L. monocytogenes. These antagonistic effects may be changed if mustard is used alone or in combination with >1% acetic acid.  相似文献   

16.
17.
The effects that naturally occurring gases (oxygen, nitrogen, carbon monoxide) may cause in dormant giant foxtail (Setaria faberii) seed germination under favorable temperature and moisture conditions were investigated. The germination responses to gas mixtures supported the hypothesis that S. faberii germination behavior is regulated by the amount of oxygen taken into hydrated seed over time. Setaria faberii seed germination was markedly affected by O(2) concentration (in N(2)) above and below that of air (20% O(2)): the largest increase in germination (from 37 to 60%) occurred between 20-25% O(2); between 0-10% O(2), germination increased from 0-30%; and surprisingly germination at 10 and 20% O(2) was similar. These observations reveal an asymmetrical response to incremental changes in O(2) above and below that typically found in agricultural soils. Carbon monoxide had opposite effects on S. faberii germination in air depending on concentration, stimulation, and inhibition: germination increased from 37 to 56% with the addition of 1% CO, but decreased from 37 to 14% with 75% added CO. An explanation may be that there are two separate effects of CO, each occurring in different physiological systems of dormant seeds at the same time. At high concentrations (75%) in air CO inhibited seed germination, probably by inhibiting mitochondrial respiration. But low CO concentrations (0.1 or 1%) in air stimulated seed germination. It was not apparent which physiological system(s) CO and O(2) affected. It seems unlikely that CO-stimulated germination arises from effects on the respiratory apparatus, but may be a consequence of CO interactions with an as yet unknown physiological factor in the seed. We provide a model of Setaria spp. dormancy consistent with its seed morphology, the gas-germination data, and the hypothesized second physiological factor that may be involved in CO stimulated germination.  相似文献   

18.
Rubisco I's specificity, which today may be almost perfectly tuned to the task of cultivating the global garden, controlled the balance of carbon gases and O(2) in the Precambrian ocean and hence, by equilibration, in the air. Control of CO(2) and O(2) by rubisco I, coupled with CH(4) from methanogens, has for the past 2.9 Ga directed the global greenhouse warming, which maintains liquid oceans and sustains microbial ecology.Both rubisco compensation controls and the danger of greenhouse runaway (e.g. glaciation) put limits on biological productivity. Rubisco may sustain the air in either of two permissible stable states: either an anoxic system with greenhouse warming supported by both high methane mixing ratios as well as carbon dioxide, or an oxygen-rich system in which CO(2) largely fulfils the role of managing greenhouse gas, and in which methane is necessarily only a trace greenhouse gas, as is N(2)O. Transition from the anoxic to the oxic state risks glaciation. CO(2) build-up during a global snowball may be an essential precursor to a CO(2)-dominated greenhouse with high levels of atmospheric O(2). Photosynthetic and greenhouse-controlling competitions between marine algae, cyanobacteria, and terrestrial C3 and C4 plants may collectively set the CO(2) : O(2) ratio of the modern atmosphere (last few million years ago in a mainly glacial epoch), maximizing the productivity close to rubisco compensation and glacial limits.  相似文献   

19.
Carbon dioxide (CO(2)) is the most commonly used euthanasia agent for rodents despite potentially causing pain and distress. Nitrous oxide is used in man to speed induction of anaesthesia with volatile anaesthetics, via a mechanism referred to as the "second gas" effect. We therefore evaluated the addition of Nitrous Oxide (N(2)O) to a rising CO(2) concentration could be used as a welfare refinement of the euthanasia process in mice, by shortening the duration of conscious exposure to CO2. Firstly, to assess the effect of N(2)O on the induction of anaesthesia in mice, 12 female C57Bl/6 mice were anaesthetized in a crossover protocol with the following combinations: Isoflurane (5%)+O(2) (95%); Isoflurane (5%)+N(2)O (75%)+O(2) (25%) and N(2)O (75%)+O(2) (25%) with a total flow rate of 3 l/min (into a 7 l induction chamber). The addition of N(2)O to isoflurane reduced the time to loss of the righting reflex by 17.6%. Secondly, 18 C57Bl/6 and 18 CD1 mice were individually euthanized by gradually filling the induction chamber with either: CO(2) (20% of the chamber volume.min-1); CO(2)+N(2)O (20 and 60% of the chamber volume.min(-1) respectively); or CO(2)+Nitrogen (N(2)) (20 and 60% of the chamber volume.min-1). Arterial partial pressure (P(a)) of O(2) and CO(2) were measured as well as blood pH and lactate. When compared to the gradually rising CO(2) euthanasia, addition of a high concentration of N(2)O to CO(2) lowered the time to loss of righting reflex by 10.3% (P<0.001), lead to a lower P(a)O(2) (12.55 ± 3.67 mmHg, P<0.001), a higher lactataemia (4.64 ± 1.04 mmol.l(-1), P = 0.026), without any behaviour indicative of distress. Nitrous oxide reduces the time of conscious exposure to gradually rising CO(2) during euthanasia and hence may reduce the duration of any stress or distress to which mice are exposed during euthanasia.  相似文献   

20.
AIMS: This study aimed to determine the effect of packaging [air, modified atmosphere (MA)] on microbial growth, sensory and chemical parameters and also on shelf life of fresh pearl spot (Etroplus suratensis Bloch) and on the selection of microbial association. METHODS AND RESULTS: Fresh pearl spot (whole, gutted) were packaged under both 100% air and MAs (40%CO(2)/60% O(2), 50%CO(2)/50%O(2), 60% CO(2)/40%O(2), 70% CO(2)/30% O(2) and 40% CO(2)/30% O(2)/30% N(2)) and stored at 0 degrees C. Microbial growth (counts of total aerobic bacteria, H(2)S-producing bacteria, Lactic acid bacteria, Brochothrix thermosphacta, yeast and mould), chemical spoilage indicators (pH, total volatile basic nitrogen) and sensory characteristics were monitored. Microbial changes in Pearl spot packed under 100% air and 40% CO(2)/30%O(2)/30% N(2) were similar. The total volatile basic nitrogen values increased, but the values never exceeded the acceptability limit of 25 mg 100 g(-1). CONCLUSIONS: MA 60% CO(2) : 40%O(2) was found to be better with a shelf life of 21 days whereas air stored samples had a shelf-life of 12-14 days only. SIGNIFICANCE AND IMPACT OF THE STUDY: Storage of pearl spot under MAs 60% CO(2) : 40%O(2) is a promising method to extend shelf-life. Longer shelf life expands the market potential of pearl spot and reduces waste during distribution and retail display.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号