首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Roles of molecular chaperones in cytoplasmic protein folding   总被引:19,自引:0,他引:19  
Newly synthesized polypeptide chains must fold and assemble into unique three-dimensional structures in order to become functionally active. In many cases productive folding depends on assistance from molecular chaperones, which act in preventing off-pathway reactions during folding that lead to aggregation. The inherent tendency of incompletely folded polypeptide chains to aggregate is thought to be strongly enhanced$L in vivo *I$Lby the high macromolecular concentration of the cellular solution, resulting in crowding effects, and by the close proximity of nascent polypeptide chains during synthesis on polyribosomes. The major classes of chaperones acting in cytoplasmic protein folding are the Hsp70s and the chaperonins. Hsp70 chaperones shield the hydrophobic regions of nascent and incompletely folded chains, whereas the chaperonins provide a sequestered environment in which folding can proceed unimpaired by intermolecular interactions between non-native polypeptides. These two principles of chaperone action can function in a coordinated manner to ensure the efficient folding of a subset of cytoplasmic proteins.  相似文献   

2.
Influence of molecular and chemical chaperones on protein folding   总被引:5,自引:2,他引:5       下载免费PDF全文
Protein folding inside the cell involves the Participation of accessory components known as molecular chaperones. In addition to their active participation in the folding process, molecular chaperones serve as a type of ‘quality control system’, recognizing, retaining and targeting misfolded proteins for their eventual degradation. It is now known that a number of human diseases arise as a consequence of specific point mutations or deletions within genes encoding essential proteins. In many cases these mutations/deletions are not so sever as to totally destroy the biological activity of the particular gene product. Rather, the mutations often result in only subtle folding abnormalities which lead to the newly synthesized protein being retained at the endoplasmic reticulum by the actions of the cellylar quality control system. In this short review article we discuss our recent studies showing that the protein folding defect associated with the most common mutation in patients with cystic fibriosis can be overcome by a novel strategy. As shown in the paper by Brown et al in this issue (Brown et al 1996), a number of different low molecular weight compounds, all known to stabilize proteins in their native conformation, are effective in rescuing the processing defect of the mutant cystic fibrosis transmembrane conductance regulator protein. We then discuss how these same compounds, which we now call chemical chaperones, also may prove to be effective in correcting a number of other protein folding abnormalities which constitute the underlying basis of a large number of different human diseases.  相似文献   

3.
4.
A novel method for the refinement of misfolded protein structures is proposed in which the properties of the solvent environment are oscillated in order to mimic some aspects of the role of molecular chaperones play in protein folding in vivo. Specifically, the hydrophobicity of the solvent is cycled by repetitively altering the partial charges on solvent molecules (water) during a molecular dynamics simulation. During periods when the hydrophobicity of the solvent is increased, intramolecular hydrogen bonding and secondary structure formation are promoted. During periods of increased solvent polarity, poorly packed regions of secondary structures are destabilized, promoting structural rearrangement. By cycling between these two extremes, the aim is to minimize the formation of long-lived intermediates. The approach has been applied to the refinement of structural models of three proteins generated by using the ROSETTA procedure for ab initio structure prediction. A significant improvement in the deviation of the model structures from the corresponding experimental structures was observed. Although preliminary, the results indicate computationally mimicking some functions of molecular chaperones in molecular dynamics simulations can promote the correct formation of secondary structure and thus be of general use in protein folding simulations and in the refinement of structural models of small- to medium-size proteins.  相似文献   

5.
Demchenko AP 《Biofizika》2000,45(3):414-420
Protein folding in a living cell occurs with the participation of specialized proteins, molecular shaperons. The functional role and molecular mechanism of action of shaperons are discussed. It is shown that shaperons can be considered as proteins that, upon interaction with the folding peptide chain, transform the spontaneous folding to a process controlled and regulated by cellular factors. Models describing these controlled phenomena are discussed.  相似文献   

6.
Molecular chaperones and protein folding in plants   总被引:28,自引:0,他引:28  
Protein folding in vivo is mediated by an array of proteins that act either as foldases or molecular chaperones. Foldases include protein disulfide isomerase and peptidyl prolyl isomerase, which catalyze the rearrangement of disulfide bonds or isomerization of peptide bonds around Pro residues, respectively. Molecular chaperones are a diverse group of proteins, but they share the property that they bind substrate proteins that are in unstable, non-native structural states. The best understood chaperone systems are HSP70/DnaK and HSP60/GroE, but considerable data support a chaperone role for other proteins, including HSP100, HSP90, small HSPs and calnexin. Recent research indicates that many, if not all, cellular proteins interact with chaperones and/or foldases during their lifetime in the cell. Different chaperone and foldase systems are required for synthesis, targeting, maturation and degradation of proteins in all cellular compartments. Thus, these diverse proteins affect an exceptionally broad array of cellular processes required for both normal cell function and survival of stress conditions. This review summarizes our current understanding of how these proteins function in plants, with a major focus on those systems where the most detailed mechanistic data are available, or where features of the chaperone/foldase system or substrate proteins are unique to plants.  相似文献   

7.
8.
9.
Protein folding in vivo: the importance of molecular chaperones   总被引:13,自引:0,他引:13  
The contribution of the two major cytosolic chaperone systems, Hsp70 and the cylindrical chaperonins, to cellular protein folding has been clarified by a number of recent papers. These studies found that, in vivo, a significant fraction of newly synthesized polypeptides transit through these chaperone systems in both prokaryotic and eukaryotic cells. The identification and characterization of the cellular substrates of chaperones will be instrumental in understanding how proteins fold in vivo.  相似文献   

10.
Protein folding and binding in confined spaces and in crowded solutions   总被引:5,自引:0,他引:5  
Simple theoretical models are presented to illustrate the effects of spatial confinement and macromolecular crowding on the equilibria and rates of protein folding and binding. Confinement is expected to significantly stabilize the folded state, but for crowding only a marginal effect on protein stability is expected. In confinement the unfolded chain is restricted to a cage but in crowding the unfolded chain may explore different interstitial voids. Because confinement and crowding eliminate the more expanded conformations of the unfolded state, folding from the compact unfolded state is expected to speed up. Crowding will shift the binding equilibrium of proteins toward the bound state. The significant slowing down in protein diffusion by crowding, perhaps beneficial for chaperonin action, could result in a decrease in protein binding rates.  相似文献   

11.
In vitro, many unfolded polypeptides are able to fold to the native state spontaneously, indicating that the amino acid sequence of a protein contains all the information necessary to specify its three-dimensional conformation. It had been assumed that protein folding in vivo also generally occurs in a spontaneous process. This view has changed only recently due to the discovery of a number of proteins, now commonly called 'molecular chaperones', which are essential for cellular protein folding and occur ubiquitously in eubacteria, archaebacteria and in eukaryotic cells.  相似文献   

12.
While it is clear that many unfolded proteins can attain their native state spontaneously in vitro, the efficiency of such folding is usually limited to conditions far removed from those encountered within cells. Two properties of the cellular environment are expected to enhance strongly the propensity of incompletely folded polypeptides to misfold and aggregate: the crowding effect caused by the high concentration of macromolecules, and the close proximity of nascent polypeptide chains emerging from polyribosomes. However, in the living cell, non-productive protein folding is in many, if not most, cases prevented by the action of a highly conserved set of proteins termed molecular chaperones. In the cytoplasm, the Hsp70 (heat-shock protein of 70 kDa) and chaperonin families of molecular chaperones appear to be the major contributors to efficient protein folding during both normal conditions and adverse conditions such as heat stress. Hsp70 chaperones recognize and shield short, hydrophobic peptide segments in the context of non-native polypeptides and probably promote folding by decreasing the concentration of aggregation-prone intermediates. In contrast, the chaperonins interact with and globally enclose collapsed folding intermediates in a central cavity where efficient folding can proceed in a protected environment. For a number of proteins, folding requires the co-ordinated action of both of these molecular chaperones.  相似文献   

13.
In order to understand the interaction between naratriptan and a fully hydrated bilayer of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidyl-choline (POPC), we carried out molecular dynamics simulations. The simulations were performed considering neutral and protonated ionization states, starting from different initial conditions. At physiological pH, the protonated state of naratriptan is predominant. It is expected that neutral compounds could have larger membrane partition than charged compounds. However, for the specific case of triptans, it is difficult to study neutral species in membranes experimentally, making computer simulations an interesting tool. When the naratriptan molecules were originally placed in water, they partitioned between the bilayer/water interface and water phase, as has been described for similar compounds. From this condition, the drugs displayed low access to the hydrophobic environment, with no significant effects on bilayer organization. The molecules anchored in the interface, due mainly to the barrier function of the polar and oriented lipid heads. On the other hand, when placed inside the bilayer, both neutral and protonated naratriptan showed self-aggregation in the lipid tail environment. In particular, the protonated species exhibited a pore-like structure, dragging water through this environment.
Graphical Abstract Different behaviour of Naratriptan and Sumatriptan, when the drugs were originally placed in the lipid core
  相似文献   

14.
Molecular chaperones are known to facilitate cellular protein folding. They bind non-native proteins and orchestrate the folding process in conjunction with regulatory cofactors that modulate the affinity of the chaperone for its substrate. However, not every attempt to fold a protein is successful and chaperones can direct misfolded proteins to the cellular degradation machinery for destruction. Protein quality control thus appears to involve close cooperation between molecular chaperones and energy-dependent proteases. Molecular mechanisms underlying this interplay have been largely enigmatic so far. Here we present a novel concept for the regulation of the eukaryotic Hsp70 and Hsp90 chaperone systems during protein folding and protein degradation.  相似文献   

15.
Protein aggregation has been associated with a number of human diseases, and is a serious problem in the manufacture of recombinant proteins. Of particular interest to the biotechnology industry is deleterious aggregation that occurs during the refolding of proteins from inclusion bodies. As a complement to experimental efforts, computer simulations of multi-chain systems have emerged as a powerful tool to investigate the competition between folding and aggregation. Here we report results from Langevin dynamics simulations of minimalist model proteins. Order parameters are developed to follow both folding and aggregation. By mapping natural units to real units, the simulations are shown to be carried out under experimentally relevant conditions. Data pertaining to the contacts formed during the association process show that multiple mechanisms for aggregation exist, but certain pathways are statistically preferred. Kinetic data show that there are multiple time scales for aggregation, although most association events take place at times much shorter than those required for folding. Last, we discuss results presented here as a basis for future work aimed at rational design of mutations to reduce aggregation propensity, as well as for development of small-molecular weight refolding enhancers.  相似文献   

16.
We studied the role of mitochondrial cyclophilin 20 (CyP20), a peptidyl-prolyl cis-trans isomerase, in preprotein translocation across the mitochondrial membranes and protein folding inside the organelle. The inhibitory drug cyclosporin A did not impair membrane translocation of preproteins, but it delayed the folding of an imported protein in wild-type mitochondria. Similarly, Neurospora crassa mitochondria lacking CyP20 efficiently imported preproteins into the matrix, but folding of an imported protein was significantly delayed, indicating that CyP20 is involved in protein folding in the matrix. The slow folding in the mutant mitochondria was not inhibited by cyclosporin A. Folding intermediates of precursor molecules reversibly accumulated at the molecular chaperones Hsp70 and Hsp60 in the matrix. We conclude that CyP20 is a component of the mitochondrial protein folding machinery and that it cooperates with Hsp70 and Hsp60. It is speculated that peptidyl-prolyl cis-trans isomerases in other cellular compartments may similarly promote protein folding in cooperation with chaperone proteins.  相似文献   

17.
All atom molecular dynamics simulations have become a standard method for mapping equilibrium protein dynamics and non-equilibrium events like folding and unfolding. Here, we present detailed methods for performing such simulations. Generic protocols for minimization, solvation, simulation, and analysis derived from previous studies are also presented. As a measure of validation, our water model is compared with experiment. An example of current applications of these methods, simulations of the ultrafast folding protein Engrailed Homeodomain are presented including the experimental evidence used to verify their results. Ultrafast folders are an invaluable tool for studying protein behavior as folding and unfolding events measured by experiment occur on timescales accessible with the high-resolution molecular dynamics methods we describe. Finally, to demonstrate the prospect of these methods for folding proteins, a temperature quench simulation of a thermal unfolding intermediate of the Engrailed Homeodomain is described.  相似文献   

18.
Fan H  Periole X  Mark AE 《Proteins》2012,80(7):1744-1754
The efficiency of using a variant of Hamiltonian replica‐exchange molecular dynamics (Chaperone H‐replica‐exchange molecular dynamics [CH‐REMD]) for the refinement of protein structural models generated de novo is investigated. In CH‐REMD, the interaction between the protein and its environment, specifically, the electrostatic interaction between the protein and the solvating water, is varied leading to cycles of partial unfolding and refolding mimicking some aspects of folding chaperones. In 10 of the 15 cases examined, the CH‐REMD approach sampled structures in which the root‐mean‐square deviation (RMSD) of secondary structure elements (SSE‐RMSD) with respect to the experimental structure was more than 1.0 Å lower than the initial de novo model. In 14 of the 15 cases, the improvement was more than 0.5 Å. The ability of three different statistical potentials to identify near‐native conformations was also examined. Little correlation between the SSE‐RMSD of the sampled structures with respect to the experimental structure and any of the scoring functions tested was found. The most effective scoring function tested was the DFIRE potential. Using the DFIRE potential, the SSE‐RMSD of the best scoring structures was on average 0.3 Å lower than the initial model. Overall the work demonstrates that targeted enhanced‐sampling techniques such as CH‐REMD can lead to the systematic refinement of protein structural models generated de novo but that improved potentials for the identification of near‐native structures are still needed. Proteins 2012; © 2012 Wiley Periodicals, Inc.  相似文献   

19.
We propose a method for extracting useful kinetic information from all-atom molecular dynamics simulations of protein folding. By calculating the time correlation functions between the evolution of different structural properties during the course of the simulation we can determine the endpoint of the reaction and the mechanism by which it occurs. As a test of our method we use thermal denaturation simulations on a 76 residue protein, ubiquitin. The method we present should be used in combination with current techniques for analyzing molecular dynamics trajectories.  相似文献   

20.
McCully ME  Beck DA  Daggett V 《Biochemistry》2008,47(27):7079-7089
The principle of microscopic reversibility states that at equilibrium the number of molecules entering a state by a given path must equal those exiting the state via the same path under identical conditions or, in structural terms, that the conformations along the two pathways are the same. There has been some indirect evidence indicating that protein folding is such a process, but there have been few conclusive findings. In this study, we performed molecular dynamics simulations of an ultrafast unfolding and folding protein at its melting temperature to observe, on an atom-by-atom basis, the pathways the protein followed as it unfolded and folded within a continuous trajectory. In a total of 0.67 micros of simulation in water, we found six transient denaturing events near the melting temperature (323 and 330 K) and an additional refolding event following a previously identified unfolding event at a high temperature (373 K). In each case, unfolding and refolding transition state ensembles were identified, and they agreed well with experiment on the basis of a comparison of S and Phi values. On the basis of several structural properties, these 13 transition state ensembles agreed very well with each other and with four previously identified transition states from high-temperature denaturing simulations. Thus, not only were the unfolding and refolding transition states part of the same ensemble, but in five of the seven cases, the pathway the protein took as it unfolded was nearly identical to the subsequent refolding pathway. These events provide compelling evidence that protein folding is a microscopically reversible process. In the other two cases, the folding and unfolding transition states were remarkably similar to each other but the paths deviated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号