首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The optimum composition of several serum-free media has been established for a long-term cultivation of hybridomas, lymphoid and erythroleukemic cells. The medium DME/F12 appeared to be the medium of choice. It is necessary to supplement the basic medium with lipid and iron transport proteins (bovine serum albumin, transferrin) and peptide hormone (insulin) for obtaining stable results. However, there are differences in successful growth of examined cell lines under serum-free conditions: some of them acquire saturation density comparable with that of the control medium (hybridomas derived from myeloma Sp2/0-Ag14, cell lines K-562, Raji) but other lines do not (hybridoma derived from myeloma NS0/1, cell lines Namalwa, RPMI 1788, Molt-4). Thus, these serum-free media are not universal, therefore each new hybridoma and cell line should be tested to determine the suitability for them of some proposed media. The high effectiveness of cultivation under serum-free conditions can be presumably achieved by optimization of both qualitative and quantitative composition of the serum replacement and of the basic medium.  相似文献   

2.
Growth of cells in a new defined protein-free medium   总被引:1,自引:0,他引:1  
The development of a new stable synthetic serum replacement (SSR) is described, which allows the cultivation of mammalian cells in a defined, protein-free medium containing only dialyzable components. With a low concentration of insulin (RPMI-SR2 medium), growth rates of the transformed cell lines L929, HELA S3, and the hybridoma 1E6 were comparable to growth rates obtained with a serum-containing medium. The same medium also supported long-term cultivation of non-dividing mouse macrophages. The main principle of SSR is a metal ion buffer containing a balanced mixture of iron and trace metals. Stability against precipitation of important metals is achieved by the combined use of EDTA and citric acid as chelating agents. Efficient iron supply is mediated through the inclusion of the compound Aurintricarboxylic acid as a synthetic replacement for transferrin. SSR also contains a growth-promoting surfactant, Pluronic F68. Thus SSR provides a general foundation for growth and differentiation normally provided by serum.Limitations of other serum-free medium designs are discussed here: 1) the inability of transferrin to chelate all metals in the medium; and 2) the use of inorganic iron salts or iron citrate as an iron supplement leads to rapid precipitation of iron hydroxide in the medium. Both these problems are solved in the design of SSR.  相似文献   

3.
4.
Chinese Hamster Ovary (CHO) cells are widely used for the large scale production of recombinant biopharmaceuticals. Growth of the CHO-K1 cell line has been demonstrated in serum-free medium containing insulin, transferrin and selenium. In an attempt to get autocrine growth in protein-free medium, DNA coding for insulin and transferrin production was transfected into CHO-K1 cells. Transferrin was expressed well, with clones secreting approximately 1000 ng/106 cells/24h. Insulin was poorly expressed, with rates peaking at 5 ng/106 cells/24h. Characterisation of the secreted insulin indicated that the CHO cells were incompletely processing the insulin molecule. Site-directed mutagenesis was used to introduce a furin (prohormone converting enzyme) recognition sequence into the insulin molecule, allowing the production of active insulin. However, the levels were still too low to support autocrine growth. Further investigations revealed insulin degrading activity (presumably due to the presence of insulin degrading enzymes) in the cytoplasm of CHO cells. To overcome these problems insulin-like growth factor I (instead of insulin) was transfected into the cells. IGF-1 was completely processed and expressed at rates greater than 500 ng/106cells/24h. In this paper we report autonomous growth of the transfected CHO-K1 cell line expressing transferrin and IGF-1 in protein-free medium without the addition of exogenous growth factors. Growth rates and final cell densities of these cells were identical to that of the parent cell line CHO-K1 growing in insulin, transferrin, and selenium supplemented serum-free media.  相似文献   

5.
The effect of polyvinyl formal (PVF) culture surface on the growth of 10 mammalian continuous cell lines, including Swiss 3T6, NCTC clone 929 L, BHK-21 clone 13, CHO-K1, PK 15, A 431, HeLa, MDCK, LLC-MK2 and Vero in protein-free 1:1 mixture of Dulbecco's modified Eagle's medium and Ham's F12 supplemented with trace elements and L-ascorbic acid 2-phosphate, was investigated. Most of the cell lines showed only some initial proliferation on PVF similar to the polystyrene (PS) surface of commercially available culture flasks. In contrast, proliferation of monkey kidney cell line Vero was by far greater on PVF than on PS or poly-D-lysine treated culture surface. In addition, Vero cells on PVF could be subcultured in the protein-free medium without any significant decrease of growth rate in successive passages. These results showed that PVF provides a culture surface which selectively promotes continuous growth of Vero cells in protein-free, chemically defined medium.  相似文献   

6.
Complementary DNA encoding a facilitative glucose transporter was isolated from a human hepatoma cell line (HepG2) cDNA library and subcloned into a metal-inducible mammalian expression vector, pLEN (California Biotechnology) containing human metallothionein gene II promoter sequences. Chinese hamster ovary (CHO) cells transfected with this transporter expression vector, pLENGT, exhibited a 2-17-fold increase in immunoreactive HepG2-type glucose transporter protein, as measured by protein immunoblotting with antipeptide antibodies directed against the HepG2-type glucose transporter C-terminal domain. Expression of the human glucose transporter was verified by protein immunoblotting with a mouse polyclonal antiserum that recognizes the human but not the rodent HepG2-type transporter. 2-Deoxy-D-glucose uptake was increased 2-7-fold in transfected cell lines. Polyclonal antisera directed against purified red blood cell glucose transporter were raised in several rabbits. Antiserum from one rabbit, delta, was found to bind to the surface of intact red cells but not to inside-out red cell ghosts. Using this delta-antiserum in intact cell-binding assays, 1.6-9-fold increases in cell surface expression of the human glucose transporter were measured in CHO-K1 cell lines transfected with the transporter expression vector. Measurements of total cellular glucose transporter immunoreactive protein using anti-HepG2 transporter C-terminal peptide serum, cell surface glucose transporter protein using delta-antiserum and 2-deoxyglucose uptake revealed proportional relationships among these parameters in transfected cell lines expressing different levels of transporter protein. Insulin increased 2-deoxyglucose uptake 40% in control CHO-K1 cells and in CHO-K1 cells expressing modest levels of the human glucose transporter protein. However, stimulation of sugar-uptake by insulin was only 10% in cells overexpressing human glucose transporter protein 9-fold, and no effect of insulin on sugar uptake was detected in several cell lines expressing very high levels (12-17-fold over controls) of human HepG2 glucose transporter protein. No insulin stimulation of anti-cell surface glucose transporter antibody binding was detected in any control or transfected CHO-K1 cell lines. These data indicate that a glucose transporter protein that is insensitive to insulin in HepG2 cells is regulated by insulin when expressed at low but not at high levels in insulin-response CHO-K1 cells. Additionally, the results suggest that insulin does not increase 2-deoxyglucose uptake by increasing the number of cell surface HepG2-type glucose transporters in CHO-K1 fibroblasts.  相似文献   

7.
Microcarriers provide large adhesion area allowing high cell densities in bioreactor systems. This study focused on the investigation of cell adhesion and cell growth characteristics of both anchorage-dependent CHO-K1 and anchorage-independent Ag8 myeloma cell lines cultivated on four different microcarriers (Biosilon®, Microhex®, Cytodex 3®, Cytoline 2®) by considering the cell kinetics and physiological data. Experiments were performed in both static and agitated cell culture systems by using 24-well tissue culture plates and then 50-ml spinner flasks. In agitated cultures, the highest specific growth rates (0.026 h for CHO-K1 and 0.061 h for Ag8 cell line) were obtained with Cytodex 3® and Cytoline 2® microcarriers for CHO-K1 and Ag8 cell line, respectively. Metabolic characteristics showed some variation among the cultures with the four microcarriers. The most significant being the higher production of lactate with microcarriers with CHO-K1 cells relative to the Ag8 cells. SEM analyses revealed the differences in the morphology of the cells along with microcarriers. On Cytodex 3® and Cytoline 2®, CHO-K1 cells attached to the substratum through long, slender filopodia, whereas the cells showed a flat morphology by covering the substratum on the Biosilon® and Microhex®. Ag8 cells maintained their spherical shapes throughout the culture for all types of microcarriers. In an attempt to scale-up, productions were carried out in 50-ml spinner flasks. Cytodex 3® (for CHO-K1 cells) and Cytoline 2® (for Ag8 cells) were evaluated. The results demonstrate that high yield of biomass could be achieved through the immobilization of the cells in each culture system. And cell cultures on microcarriers, especially on Cytodex 3® and Cytoline 2®, represented a good potential as microcarriers for larger scale cultures of CHO-K1 and Ag8, respectively. Moreover, owing to the fact that the cell lines and culture media are specific, outcomes will be applicable for other clones derived from the same host cell lines.  相似文献   

8.
Many hybridoma and recombinant myeloma cell lines have been successfully adapted to growth in protein-free media. Compared with serum-supplemented media, use of protein-free media promotes superior cell growth and protein expression and facilitates downstream purification of the expressed product. Owing to its sterol auxotrophy, the NS0 myeloma is normally grown in either a serum-supplemented medium or a serum-free medium supplemented with an animal-derived lipoprotein. CD Hybridoma Medium (a protein-free, chemically defined formulation) grows many cell lines that do not exhibit lipid dependence, but this medium does not support growth of NS0 cells without further lipid supplementation. We tested several commercially available lipid supplements in CD Hybridoma Medium, including bovine EX-CYTE VLE. None of the tested supplements supported long-term growth of NS0 cells in CD Hybridoma Medium. Sustained long-term growth of NS0 cells was achieved in CD Hybridoma Medium supplemented with various animal- or plant-derived lipids complexed with cyclodextrin. NS0 cells adapted to CD Hybridoma Medium supplemented with cyclodextrin-lipid complex reached peak cell densities that were more than double those observed in serum-supplemented medium and were cultured for more than 15 passages. These cultures were also successfully cryopreserved and recovered in this defined medium. Through the use of cyclodextrin-based additives to CD Hybridoma Medium, it is possible to solubilize significant quantities of sterols and other lipids and to maintain a protein-free, chemically defined cultivation environment for NS0 cells. The culture system can be kept entirely free of animal-derived components if the supplement is made with plant-derived or synthetic lipids.  相似文献   

9.
NVP-BEZ235 is a new inhibitor of phosphoinositol-3-kinase (PI3 kinase) and mammalian target of rapamycin (mTOR) whose efficacy in advanced solid tumours is currently being evaluated in a phase I/II clinical trial. Here we show that NVP-BEZ235 inhibits growth in common myeloma cell lines as well as primary myeloma cells at nanomolar concentrations in a time and dose dependent fashion. Further experiments revealed induction of apoptosis in three of four cell lines. Inhibition of cell growth was mainly due to inhibition of myeloma cell proliferation, as shown by the BrdU assay. Cell cycle analysis revealed induction of cell cycle arrest in the G1 phase, which was due to downregulation of cyclin D1, pRb and cdc25a. NVP-BEZ235 inhibited phosphorylation of protein kinase B (Akt), P70S6k and 4E-BP-1. Furthermore we show that the stimulatory effect of CD40-ligand (CD40L), insulin-like growth factor 1 (IGF-1), interleukin-6 (IL-6) and conditioned medium of HS-5 stromal cells on myeloma cell growth is completely abrogated by NVP-BEZ235. In addition, synergism studies revealed synergistic and additive activity of NVP-BEZ235 together with melphalan, doxorubicin and bortezomib. Taken together, inhibition of PI3 kinase/mTOR by NVP-BEZ235 is highly effective and NVP-BEZ235 represents a potential new candidate for targeted therapy in multiple myeloma.  相似文献   

10.
The intracellular concentrations of polyphosphoinositides and inositol phosphates were determined, and their role in growth factor-initiated cell division was investigated in a Chinese hamster ovary cell inositol auxotroph (CHO-K1-Ins). Metabolic labeling experiments during inositol starvation of CHO-K1-Ins cells showed that 1) the lipid-linked inositol component was maintained at the expense of the soluble inositol pool, 2) the decreasing cellular content of phosphatidylinositol was replaced by phosphatidylglycerol, and 3) the concentrations of inositol polyphosphates and polyphosphoinositides were conserved at the expense of inositol and phosphatidylinositol. These data show that homeostatic mechanisms exist for the maintenance of the polyphosphoinositide and inositol phosphate pools at the expense of inositol and phosphatidylinositol. The addition of alpha-thrombin to growth-arrested (serum-starved) CHO-K1-Ins cells stimulated the incorporation of [3H]thymidine into DNA to the same extent as that observed following serum readdition. gamma-Thrombin was also an effective mitogen, but active site-inhibited alpha-thrombin was not. Both alpha- and gamma-thrombin, but not catalytic site-inhibited alpha-thrombin, initiated phosphatidylinositol turnover in vivo and increased phosphatidylinositol 4,5-bisphosphate phospholipase C activity in vitro. Serum and insulin were potent CHO-K1-Ins cell mitogens, but neither triggered phosphatidylinositol turnover in vivo nor activated phospholipase C in vitro. The activation of phospholipase C plays a determinant role in thrombin-initiated cell cycle progression in Chinese hamster ovary cells, although other growth factor-signaling pathways exist that are independent of polyphosphoinositide catabolism.  相似文献   

11.
In mammalian cell cultures, ammonia that is released into the medium as a result of glutamine metabolism and lactate that is excreted due to incomplete glucose oxidation are both known to essentially inhibit the growth of cells. For some cell lines, for example, hybridoma cells, excreted ammonia also has an effect on product formation. Although glutamine has been generally considered as the major energy source for mammalian cells, it was recently found that various adherent cell lines (MDCK, CHO-K1, and BHK21) can grow as well in glutamine-free medium, provided glutamine is substituted with pyruvate. In such a medium the level of both ammonia and lactate released was significantly reduced. In this study, metabolic flux analysis (MFA) was applied to Madin Darby Canine Kidney (MDCK) cells cultivated in glutamine-containing and glutamine-free medium. The results of the MFA allowed further investigation of the influence of glutamine substitution with pyruvate on the metabolism of MDCK cells during different growth stages of adherent cells, e.g., early exponential and late contact-inhibited phase. Pyruvate seemed to directly enter the TCA cycle, whereas most of the glucose consumed was excreted as lactate. Although the exact mechanisms are not clear so far, this resulted in a reduction of the glucose uptake necessary for cellular metabolism in glutamine-free medium. Furthermore, consumption of ATP by futile cycles seemed to be significantly reduced when substituting glutamine with pyruvate. These findings imply that glutamine-free medium favors a more efficient use of nutrients by cells. However, a number of metabolic fluxes were similar in the two cultivations considered, e.g., most of the amino acid uptake and degradation rates or fluxes through the branch of the TCA cycle converting alpha-ketoglutarate to malate, which is responsible for the mitochondrial ATP synthesis. Besides, the specific rate of cell growth was approximately the same in both cultivations. Thus, the switch from glutamine-containing to glutamine-free medium with pyruvate provided a series of benefits without dramatic changes of cellular metabolism.  相似文献   

12.
Most bio-industrial mammalian cells are cultured in serum-free media to achieve advantages, such as batch consistency, suspended growth, and simplified purification. The successful development of a serum-free medium could contribute to a reduction in the experimental variation, enhance cell productivity, and facilitate biopharmaceuticals production using the cell culture process. Commercial serum-free media are also becoming more and more popular. However, the cell line secrets its own recombinant product and has special nutritional requirements. How can the composition of the proprietary medium be adjusted to support the specific cell’s metabolism and recombinant protein? This article uses statistical strategies to modify the commercial medium. A design of experiments is adopted to optimize the medium composition for the hybridoma cell in a serum-free condition. The supplements of peptone, ferric citrate, and trace elements were chosen to study their impact on hybridoma growth and antibody production using the response surface methodology. The stimulatory effect of the developed formulation on hybridoma growth was confirmed by the steepest ascent path. The optimal medium stimulated the hybridoma growth and antibody production in three diverse systems: a static plate, an agitated spinner flask, and a hollow fiber reactor. The cells in the developed serum-free medium had a better antibody production as compared to that in the commercial medium in the hollow fiber reactor. Our results demonstrated that the facile optimization for medium and antibody production was successfully accomplished in the hybridoma cells.  相似文献   

13.
Abstract.  Objective : Serum is usually added to growth media when mammalian cells are cultured in vitro to supply the cells with growth factors, hormones, nutrients and trace elements. Defined proteins and metal ions, such as insulin, growth factors, transferrin and sodium selenite, are sometimes also included and can in some cases substitute serum components. How adaptation to serum free media influences cells has not been studied in detail. Materials and Methods : We have adapted the Burkitt's lymphoma line Ramos to a serum-free medium that supports long-term survival and studied gene expression changes that occurred during the adaptation process. Results and Conclusions : The adaptation process was characterized by initial cell population growth arrest, and after that extensive cell death, followed by proliferation and long-term survival of clonal cultures. Proliferation and cell cycle progression of the serum-free cultures closely mimicked that of serum-dependent cells. Affymetrix micro-array technology was used to identify gene expression alterations that had occurred during the adaptation. Most changes were subtle, but frequently the genes with altered expression were involved in basal cellular functions such as cell division, cell cycle regulation, apoptosis and cell signalling. Some alterations were restored when the cells were transferred back to serum-containing medium, indicating that expression of these genes was controlled by components in serum. Others were not, and may represent changes that were selected during the adaptation process. Among these were, for example, several genes within the Wnt signalling pathway.  相似文献   

14.
The production of hybridoma cell lines secreting antibody against foot-and-mouth disease virus (FMDV) was more difficult than the production of similar cell lines secreting antibody against vesicular stomatitis virus or measles virus. A rapid and efficient protocol for the selection and culturing of 'anti-FMDV' hybridoma cultures was therefore developed and is described. This required the determination of the optimal culture medium (commercially available), source of serum supplement, line of myeloma cells, type of culture and routine for the subculturing of the hybridoma cells. The protocol consisted of fusion between immune splenocytes and NS-1 mouse myeloma cells, seeding into the wells of 24-well (24W) plates, culturing in RMPI 1640 medium supplemented with either foetal or donor calf serum, and passaging through 24W plates, 6W plates and 100 ml flasks (20 ml medium), respectively. The time at which aminopterin was added to kill unfused myeloma cells was also critical, with the optimum time being 24 h after fusion. In contrast, the B lymphocyte growth stimulant (2-mercaptoethanol) had no beneficial effects on the growth of the hybridomas.  相似文献   

15.
Chinese hamster ovary (CHO) cells are the most commonly used host cell line for the production of recombinant biopharmaceuticals. These biopharmaceuticals are typically secreted from CHO cells and purified from harvested cell culture media. The purpose of this study was to investigate changes in the secreted proteome of CHO cells over the various stages of the growth cycle using Surface Enhanced Laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF MS). Conditioned media samples were collected each day over a 6 day growth period from CHO-K1 cells grown in low serum (0.5% FBS) conditions in monolayer culture. Samples were profiled on a number of ProteinChip arrays with different chromatographic surfaces. From this study, 24 proteins were found to be differentially regulated at different phases of the growth cycle in CHO-K1 cells, when profiled on two chromatographic surfaces, Q10 (anionic) and IMAC30 (metal affinity) ProteinChip arrays.  相似文献   

16.
In mammalian cell culture technology glutamine is required for biomass synthesis and as a major energy source together with glucose. Different pathways for glutamine metabolism are possible, resulting in different energy output and ammonia release. The accumulation of ammonia in the medium can limit cell growth and product formation. Therefore, numerous ideas to reduce ammonia concentration in cultivation broths have been developed. Here we present new aspects on the energy metabolism of mammalian cells. The replacement of glutamine (2 mM) by pyruvate (10 mM) supported cell growth without adaptation for at least 19 passages without reduction in growth rate of different adherent commercial cell lines (MDCK, BHK21, CHO-K1) in serum-containing and serum-free media. The changes in metabolism of MDCK cells due to pyruvate uptake instead of glutamine were investigated in detail (on the amino acid level) for an influenza vaccine production process in large-scale microcarrier culture. In addition, metabolite profiles from variations of this new medium formulation (1-10 mM pyruvate) were compared for MDCK cell growth in roller bottles. Even at very low levels of pyruvate (1 mM) MDCK cells grew to confluency without glutamine and accumulation of ammonia. Also glucose uptake was reduced, which resulted in lower lactate production. However, pyruvate and glutamine were both metabolized when present together. Amino acid profiles from the cell growth phase for pyruvate medium showed a reduced uptake of serine, cysteine, and methionine, an increased uptake of leucine and isoleucine and a higher release of glycine compared to glutamine medium. After virus infection completely different profiles were found for essential and nonessential amino acids.  相似文献   

17.
Nitroarenes are ubiquitous environmental pollutants displaying potent genotoxicity in bacterial and mammalian cells. In this study, 2,4,7-trinitro-9-fluorenone (TNF) was more potent than 1-nitropyrene (1-NP) in eliciting genotoxic responses in 4 mammalian cell lines. All 4 cell types were capable of activating the nitroarenes, since no special incubation conditions were required. Inhibition of normal DNA synthesis and cytotoxicity were significantly increased with TNF in a dose range of 0.2-5 micrograms/ml for human teratocarcinoma (PA1) cells, mouse Sertoli (TM4) cells, rat hepatoma (RL12) cells, and human-Chinese hamster ovary (CHO-K1) cells. For 1-NP, a dose range of 10-20 micrograms/ml was required to achieve comparable results for the respective cell lines. Only the RL12 and CHO-K1 cells showed recovery of normal DNA synthesis when TNF or 1-NP was removed from the medium. The other cell types showed little or no recovery up to 42 h after removal of the nitroarene. In exclusively studying TNF, the induction of sister-chromatid exchanges (SCEs) and a delay in cell cycle as monitored by harlequin chromosomes, were observed at a concentration range of 0.003-0.2 microgram/ml in PA1, TM4, and RL12 cells. In CHO-K1 cells, TNF at 0.001-1 microgram/ml was clearly mutagenic at the hprt locus.  相似文献   

18.
抗重金属汞离子抗体的制备及鉴定   总被引:1,自引:0,他引:1  
汞、镉、铅等重金属引起的环境污染已在世界范围内造成危害。快速、廉价地监测生境中重金属是减小其对人类及动物危害的先决条件。传统检测方法无法满足高通量的现场检测,建立更快速、更经济的免疫分析法检测汞离子是生产及经济发展的需要。本研究中,报道了汞特异性单克隆抗体的制备与筛选方法和结果。因Hg2+太小以至于不能引起免疫反应,所以用螯合剂(二乙烯三胺五乙酸,DTPA)将金属离子与载体蛋白(匙孔血蓝蛋白,KLH)连接起来。成功合成、鉴定汞复合物抗原后,免疫BALB/c小鼠,通过细胞融合获得了稳定分泌抗体的杂交瘤细胞。用极限稀释法亚克隆,通过ELISA筛选,获得了2株稳定分泌抗汞离子抗体的细胞株(H2H5,H1H8)。小鼠腹腔注射1×107H2H5、H1H8细胞株制备腹水,腹水抗体效价都在1∶51200以上。经鉴定两株杂交瘤均为IgG1亚类,轻链为kappa型且分泌抗体稳定性较好。实验结果为汞离子残留免疫学检测方法的建立提供了技术基础,对提高风险评估工作的效率和质量,保障食品安全有重要现实意义。  相似文献   

19.
Glutamine is a major source of energy, carbon, and nitrogen for mammalian cells. The amount of glutamine present in commercial mammalian cell media is, however, not necessarily balanced with cell requirements. Therefore, the effects of glutamine limitation on the physiology of two mammalian cell lines were studied in steady-state chemostat cultures fed with IMDM medium with 5% serum. The cell lines used were MN12, a mouse-mouse hybridoma, and SP2/0-Ag14, a mouse myeloma often used in hybridoma fusions. Cultures, grown at a fixed dilution rate of 0.03 h(-1), were fed with media containing glutamine concentrations ranging from 0.5 to 4 mmol L(-1). Biomass dry weight and cell number were linearly proportional to the glutamine concentrations fed, between 0.5 and 2 mmol L(-1), and glutamine was completely consumed by both cell lines. From this it was concluded that glutamine was the growth-limiting substrate in this concentration range and that the standard formulation of IMDM medium contains a twofold excess of glutamine. In glutamine-limited cultures, the specific rates of ammonia and alanine production were low compared to glutamine-excess cultures containing 4 mmol L(-1) glutamine in the feed medium. The specific consumption rates of nearly all amino acids decreased with increasing glutamine feed, indicating that, in their metabolic function, they may partially be replaced by glutamine. Both cell lines reacted similarly to differences in glutamine feeding in all aspects investigated, except for glucose metabolism, In SP2/0-Ag14 glutamine feed concentrations did not affect the specific glucose consumption, whereas in MN12 this parameter increased with increasing amounts of glutamine fed. This systematic study using controlled culture conditions together with a detailed analysis of culture data shows that, although cells may react similarly in many aspects, cell-line-specific characteristics may be encountered even with respect to fundamental physiological responses like the interaction of the glutamine and glucose metabolism. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 272-286, 1997.  相似文献   

20.
杆状病毒对不同哺乳动物细胞基因转移及表达效率的研究   总被引:7,自引:1,他引:7  
研究已证实杆状病毒可进入某些哺乳动物细胞,这提示了可将重组杆状病毒作为一种对哺乳动物细胞的新型基因转移载体。利用已构建的重组杆状病毒BacV-CMV-EGFPA,以含病毒的Sf9细胞培养上清同时孵育多种哺乳动物细胞,利用流式细胞术检测报告基因在不同细胞株中的转移效率及表达效率。共使用了20种哺乳动物细胞株,其中有12种人类组织细胞,7种小鼠组织细胞,1种猴组织细胞。实验结果显示携带CMV启动子的重组杆状病毒可有效进入多数哺乳动物细胞,其中对人、猴来源细胞的基因转移效率显著高于对鼠源细胞,对贴壁细胞的基因转移效率显著高于对悬浮细胞。同时,通过脂质体LipofectAMINE将携带有CMV启动子和EGFP基因的哺乳动物细胞表达质粒pCDNA3-1-EGFP分别转染部分特别是被认为杆状病毒进入能力较低的细胞株,结果显示CMV启动子在这些细胞中均可有效引导EGFP基因的表达,因此认为携带了CMV启动子的重组杆状病毒对不同哺乳动物细胞基因转移效率能基本反映出杆状病毒对不同种哺乳动物细胞的进入能力。通过综合比较携带CMV启动子的杆状病毒对不同种属及组织来源细胞的基因转移及表达效率,可看出杆状病毒对灵长类动物贴壁细胞的基因转移及表达效果是较好的,而对小鼠来源的细胞及悬浮培养细胞却并不十分理想,这表明将重组杆状病毒作为一种对哺乳动物细胞的基因转移工具,仍有其局限性,不一定对所有的细胞都合适,在应用时应予以充分考虑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号