首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the effects of 5-bromodeoxyuridine (BrdUrd) at two genetic loci in diploid human lymphoblast cells. In thymidine kinase heterozygotes (tk +/-), a 2-h dose of BrdUrd induced a transient, non-heritable resistance to the thymidine analogue, trifluorothymidine (F3TdR). We have called this phenomenon pseudomutation and have shown that affected cells acquire the ability to survive in the presence of F3TdR and then, after degradation of F3TdR in the medium, return to an apparently normal wild-type state. Our data suggest that BrdUrd incorporation into DNA as a thymidine analogue is responsible for the effect, which we interpret as a temporary loss of thymidine kinase activity. This effect is not seen in tk +/+ homozygotes. In contrast, at the hypoxanthine-guanine phosphoribosyl transferase locus in tk +/- heterozygotes, BrdUrd did not induce a permanent, heritable resistance to 6-thioguanine (gene locus mutation). We detected such mutations only in the tk +/+ homozygote and only at external BrdUrd concentrations considerably higher than those which saturate the uptake of BrdUrd into DNA as a thymidine analogue. We postulate that the reduced TK enzyme levels (30%) in the heterozygote prevent the build-up of a sufficiently high intracellular BrdUrd triphosphate pool to promote the misincorporations as deoxycytidine triphosphate which may be responsible for gene locus mutation.  相似文献   

2.
5-Azacytidine (5-AzaC) induced mutation in the TK+/− human lymphoblastoid line, TK6, at both the thymidine kinase (tk) locus as measured by resistance to trifluorothymidine (F3TdR), and the hypoxanthine-guanine phosphoribosyltransferase (hgprt) locus, as measured by resistance to 6-thioguanine (6TG). F3TdRR and 6TGR mutant fractions induced by 5-AzaC were observed after a normal phenotypic expression time and remained stable. Interestingly, 5-AzaC was 5–10 times more mutagenic at the tk locus than the hgprt locus. However, F3TdRR colonies from 5-AzaC-treated cultures behaved like TK-deficient mutants induced by other chemical mutagens.

The TK or HGPRT phenotype had no effect on the toxicity of 5-AzaC, thus eliminating differential toxicity as a potential cause for the observed higher mutability at the tk locus. 5-AzaC did not induce F3TdRR cells in the parental TK+/+ lymphoblastoid line, indicating that 5-AzaC-induced F3TdRR variants were not due to a dominant alteration in gene expression. 5-AzaC did not induce chromosomal aberrations in TK6 cells, eliminating clastogenic events as a potential cause for the higher mutability at the tk locus.

5-AzaC was also found to be mutagenic in a forward mutation assay to 8-azaguanine resistance in Salmonella typhimurium.  相似文献   


3.
A study was made of the effect of an DNA methylation inhibitor 5-azacytidine (azaC) on the frequency of reversion to a thymidine kinase-positive (TK+) phenotype in 5-bromodeoxy-uridine (BrdU)-resistant subclones obtained from clones of Chinese hamster cells transformed by thymidine kinase gene (tk-gene) of Herpes simplex virus type 1 (HSV1). It is shown that in 8 of 15 BrdU-resistant subclones azaC increases 2-1000-fold the frequency of reversion to TK+ phenotype. Variations in the inducibility of reversions to TK+ phenotype indicate that the DNA methylation associated with TK- phenotype affects but differently tk gene of HSV1. Cultivation of TK+ cells of transformant clones in the presence of azaC may lead to stabilization (or decrease in the rate of the loss) of TK+ phenotype, or may not influence the stability of transformant phenotype. The reaction of TK+ cells of transformant clones depends both on genetically determined rate of the loss of TK+ phenotype, and on the structure of transforming DNA introduced to cells. A conclusion is drawn that the TK- phenotype of transformant clone cells arises due to processes which are not associated with methylation of tk gene of HSV1 in spite of the fact that such a methylation may later stabilize significantly the TK- phenotype.  相似文献   

4.
An Escherichia coli uracil-DNA glycosylase-defective mutant (ung-1 thyA) was more resistant than its wild-type counterpart (ung+ thyA) to the killing effect of UV light when cultured in medium containing 5-bromouracil or 5-bromo-2'-deoxyuridine (BrdUrd). The phenotype of resistance to BrdUrd photosensitization and the uracil-DNA glycosylase deficiency appeared to be 100% cotransduced by P1 phage. During growth with BrdUrd, both strains exhibited similar growth rates and 5-bromouracil incorporation into DNA. The resistant phenotype of the ung-1 mutant was observed primarily during the stationary phase. In cells carrying 5-bromouracil-substituted DNA, mutations causing resistance to rifampin and valine were induced by UV irradiation at a higher frequency in the wild type than in the ung-1 mutant. This Ung-dependent UV mutagenesis required UmuC function. These results suggest that the action of the uracil-DNA glycosylase on UV-irradiated 5-bromouracil-substituted DNA produces lethal and mutagenic lesions. The BrdUrd photosensitization-resistant phenotype allowed us to develop a new, efficient method for enriching and screening ung mutants.  相似文献   

5.
Two protocols have been developed, both of which utilize the thymidine analog 5-bromodeoxyuridine (BrdUrd) to induce mutations in mammalian cells in culture (E. R. Kaufman and R. L. Davidson, Proc. Natl. Acad. Sci. USA 75:4982-4986, 1978; E. R. Kaufman, Mol. Cell. Biol. 4:2449-2454, 1984). The first protocol, termed incorporational (INC) mutagenesis, utilizes high concentrations of BrdUrd in the culture medium to generate a high intracellular ratio of BrdUTP/dCTP. The second protocol, termed replicational (REP) mutagenesis, entails the incorporation of BrdUrd into DNA under nonmutagenic conditions, the removal of all BrdUrd from the culture medium, and the subsequent replication of the bromouracil-containing DNA in the presence of high intracellular levels of dTTP and dGTP. Genetic studies using reversion analysis at the hypoxanthine-guanine phosphoribosyltransferase locus were used to determine whether the mechanisms of these two BrdUrd mutagenesis protocols had enough specificity to be distinguishable by their ability to revert various mutants. The results of these studies indicated that (i) mutants induced by INC mutagenesis were induced to revert only by REP mutagenesis and not by INC mutagenesis, (ii) mutants induced by REP mutagenesis were more efficiently reverted by INC mutagenesis than by REP mutagenesis, and (iii) both spontaneous mutants and mutants induced by the chemical mutagen ethyl methanesulfonate showed a high degree of specificity when tested for reversion by the BrdUrd mutagenesis protocols.  相似文献   

6.
A V79 Chinese hamster fibroblast cell line selected for resistance to the toxic effects of 5-fluorouracil (Kaufman, 1984b) was found to be cross-resistant to the toxic effects of the thymidine analog 5-bromodeoxyuridine (BrdUrd). When tested for sensitivity to BrdUrd mutagenesis, the fluorouracil-resistant cells were found to be resistant to mutagenesis induced by high concentrations of BrdUrd in the medium (INC mutagenesis) but not to mutagenesis induced by the replication of DNA containing 5-bromouracil (REP mutagenesis). Analyses of deoxyribonucleoside triphosphate pools indicated that high endogenous dCTP levels in the mutant prevented the high BrdUTP/dCTP ratio associated with INC mutagenesis. However, the mutant phenotype had no effect on the nucleotide pool imbalance associated with REP mutagenesis. This mutant provides further genetic evidence for the existence of two independent mechanisms for BrdUrd mutagenesis in mammalian cells.  相似文献   

7.
GH12C1, a clonal strain of rat pituitary tumor cells in culture (GH cells), does not produce detectable amounts of prolactin. 5-Bromodeoxyuridine (BrdUrd), the thymidine analogue, at sublethal concentrations (3-5 microgram/ml) induces prolactin synthesis in these cells. BrdUrd also induces prolactin synthesis in F1BGH12C1 cells, a BrdUrd resistant (BrdUrdr) substrain isolated from GH12C1 cells. The F1BGH12C1 strain is not drug dependent, but its resistance to BrdUrd is a stable phenotype. The significant features of the induction of prolactin synthesis in the BrdUrdr strain are the increased net synthesis of prolactin and the shortening of the lag period of prolactin induction. As BrdUrd concentration in the growth medium is increased, the rise in prolactin synthesis parallels the increased incorporation of BrdUrd into DNA. Prolactin synthesis is first detected when BrdUrd replaces 20-25% of the thymidine in DNA. BrdUrd can replace up to 75-80% of the thymidine within 2 d of treatment. Partial starvation of these cells under specified growth conditions does not affect the general growth pattern of the cells, general protein synthesis, and thymidine uptake, but does affect DNA synthesis. When cells are cultured under conditions in which DNA synthesis is preferentially inhibited, BrdUrd does not induce prolactin synthesis, suggestive of a DNA-mediated mechanism of action for the drug.  相似文献   

8.
Transfection experiments with HSV 1 in which one uses herpes simplex virus (HSV) thymidine kinase (TK) as a selectable prototrophic marker yield two classes of transformed cells: stable and unstable. In this report, we test the hypothesis that the stability phenotype can be explained by virus genome integration into a recipient cell chromosome. The method of analysis is by means of somatic cell genetics. We have isolated a series of microcell hybrids between a TK- Chinese hamster cell line and a transformed mouse cell line expressing the TK encoded by HSV 1. Several of the hybrid lines contain a single murine chromosome and express only the viral TK. Karyotypic analysis of these hybrids and of TK- derivatives generated by BrdUrd counterselection reveals that the TK+ phenotype is correlated with the presence of the terminal portion of the long arm of a specific murine chromosome. Results of extensive isozyme analyses of the hybrids and their TK- segregants fully corroborate the karyologic data. The results are consistent with the hypothesis that the viral tk gene is covalently integrated into this chromosomal region which itself does not appear to carry the endogenous murine tk locus. Other more complicated models are discussed. Our findings also show that somatic cell genetics can be used to localize viral integration sites in host chromosomes with high resolution.  相似文献   

9.
The cytosine analog 5-azacytidine (5-AzaC) is a demethylating agent that is also known to induce mutagenesis in mammalian cells. In this study, the mutagenic potential of this drug was tested in the G10 and G12 transgenic Chinese hamster cell lines, which have a single bacterial gpt gene integrated into the genome at different sites, with its expression driven by a simian virus 40 (SV40) promoter. We show that the mutation frequencies following a 48-h exposure to different concentrations of 5-AzaC were 10 to 20 times higher than those of any of the other numerous mutagens that have been tested in the G10-G12 system. Moreover, the mutation frequencies were much higher in the G10 cell line than in the G12 cells. Detailed molecular analysis of the 6-thioguanine (6-TG)-resistant variants demonstrated that transgene silencing by de novo DNA methylation and increased chromatin condensation in the SV40 promoter was the major factor responsible for this high level of 6-TG resistance. As would be expected, exposure to 5-AzaC lowered the overall genomic DNA methylation levels, but it unexpectedly caused hypermethylation and increased chromatin condensation of the transgene in both the G10 and G12 cell lines. These results provide the first evidence that 5-AzaC may also induce transgene-specific DNA methylation, a phenomenon that can further be used for the elucidation of the mechanism that controls silencing of foreign DNA.  相似文献   

10.
The de novo methylation activity is essential for embryonic development as well as embryonic stem (ES) cell differentiation, where the intensive and extensive DNA methylation was detected. In this study, we investigated the effects of a demethylating agent, 5-azacytidine (5-AzaC), on differentiated ES cells in order to study the possibility of reversing the differentiation process. We first induced differentiation of ES cells by forming embryoid bodies, and then the cells were treated with 5-AzaC. The cells showed some undifferentiated features such as stem cell-like morphology with unclear cell-to-cell boundary and proliferative responsiveness to LIF. Moreover, 5-AzaC increased the expressions of ES specific markers, SSEA-1, and alkaline phosphatase activity as well as ES specific genes, Oct4, Nanog, and Sox2. We also found that 5-AzaC demethylated the promoter region of H19 gene, a typical methylated gene during embryonic differentiation. These results indicate that 5-AzaC reverses differentiation state of ES cells through its DNA demethylating activity to differentiation related genes.  相似文献   

11.
DNA methylation and histone acetylation inhibitors are widely used to study the role of epigenetic marks in the regulation of gene expression. In addition, several of these molecules are being tested in clinical trials or already in use in the clinic. Antimetabolites, such as the DNA-hypomethylating agent 5-azacytidine (5-AzaC), have been shown to lower malignant progression to acute myeloid leukemia and to prolong survival in patients with myelodysplastic syndromes. Here we examined the effects of DNA methylation inhibitors on the expression of lipid biosynthetic and uptake genes. Our data demonstrate that, independently of DNA methylation, 5-AzaC selectively and very potently reduces expression of key genes involved in cholesterol and lipid metabolism (e.g. PCSK9, HMGCR, and FASN) in all tested cell lines and in vivo in mouse liver. Treatment with 5-AzaC disturbed subcellular cholesterol homeostasis, thereby impeding activation of sterol regulatory element-binding proteins (key regulators of lipid metabolism). Through inhibition of UMP synthase, 5-AzaC also strongly induced expression of 1-acylglycerol-3-phosphate O-acyltransferase 9 (AGPAT9) and promoted triacylglycerol synthesis and cytosolic lipid droplet formation. Remarkably, complete reversal was obtained by the co-addition of either UMP or cytidine. Therefore, this study provides the first evidence that inhibition of the de novo pyrimidine synthesis by 5-AzaC disturbs cholesterol and lipid homeostasis, probably through the glycerolipid biosynthesis pathway, which may contribute mechanistically to its beneficial cytostatic properties.  相似文献   

12.
The incorporation of 5-bromodeoxyuridine (5-BrdUrd) into DNA of the area opaca vasculosa (AOV) of chick embryos during organ culture was measured. The AOV from blastoderms of the definitive primitive streak stage will not form red cells in the presence of BrdUrd while the AOV of 1–3 somite blastoderms is unaffected by the presence of 5-BrdUrd. About 90% of the original non-density labeled DNA can replicate in the presence of 5-BrdUrd if the tissues come from the younger sensitive embryos, but only 65% of the original DNA will replicate from tissues of older insensitive embryos. Tissues from embryos of both ages replace about 80% of the thymidine by BrdUrd in each newly synthesized strand of DNA; tissues from embryos of both ages will form DNA of hybrid density after one cell generation, and will also form double-heavy DNA after longer periods of culture in the presence of 5-BrdUrd. During recovery from 5-BrdUrd inhibition during a thymidine chase, the density-labeled DNA is replicated so that the new DNA of normal density is formed, but the original heavy 5-BrdUrd containing strands are conserved. It is suggested that inhibition of red cell formation by 5-BrdUrd may occur by incorporation of 5-BrdUrd into DNA of endoderm cells, rather than by acting only directly on red cell precursors.  相似文献   

13.
Heterogeneous nuclear RNA HnRNA) was isolated from untreated and 5-bromodeoxyuridine (BrdUrd) treated hepatoma tissue culture (HTC) cells. analysis of this RNA by either electrophoresis on polyacrylamide-agarose gels or centrifugation in sucrose gradients demonstrated that BrdUrd caused a shift in the labeled HnRNA population toward a smaller size distribution. This effect was produced by concentrations of BrdUrd which specifically lower the level of the differentiated enzyme tyrosine aminotransferase, but do not greatly affect cell growth. Differential binding to oligo(dT) cellulose was used to fractionate HnRNA further into classes containing poly(A) (alpha), oligo(A) (beta) or neither category of A-rich sequences (gamma). BrdUrd did not alter the relative rates of uridine incorporation into the three classes. The shift in the labeled HnRNA population due to BrdUrd was observed in all three subclasses of HnRNA.  相似文献   

14.
15.
3-Aminobenzamide and benzamide, two potent inhibitors of poly-(ADP-ribose)-polymerase increase the frequencies of SCEs in Chinese hamster ovary cells in a dose-dependent manner. SCEs were studied in cells in which the inhibitors were present either during the first cell cycle or the second cell cycle or both. Most of the induced SCEs were found to be formed during the second cell cycle in which BU-containing DNA was used as template for DNA synthesis. In cells which were pregrown for 4 cell cycles in the presence of BrdUrd, in order to obtain both sister chromatids bifiliarly substituted with BU in their DNA, it was found that the presence of inhibitor even in the first cell cycle increased the frequencies of SCEs. It is concluded that the incorporated BrdUrd plays an important role in the origin of spontaneous and induced SCEs. 3-Aminobenzamide alone or benzamide in the presence of BrdUrd during culture, did not increase the frequencies of mutations to HGPRT? in these cells.  相似文献   

16.
17.
Spontaneous inactivation of integrated thymidine kinase genes was studied in three human cell lines, one with multiple copies and two with a single copy of a transfected shuttle plasmid containing two selectable genes: the HSV tk gene and the Eco gpt gene. Selection for gpt expression prevented the isolation of TK- mutants which are the result of plasmid loss. Under these conditions TK- clones were isolated with a frequency of 5.10(-6) both with the cell line containing 5 or 6 copies of the tk gene and with one of the two cell lines containing one copy of this gene. This inactivity of the tk gene was associated with de novo methylation as the number of HAT-resistant (TK+) clones strongly increased after growth of the TK- derivatives in the presence of the demethylating agent, 5-azacytidine. Digestion with methylation-sensitive restriction enzymes revealed two different patterns of DNA methylation in the genomic DNA of TK- variants. In the TK- derivatives of the cell line containing multiple copies of the tk gene many HpaII restriction sites in the gene copies were insensitive to digestion. These HpaII sites were, however, not methylated in TK- variants of the cell line containing one copy of the plasmid, and methylated CpGs could be detected only with EcoRI which recognizes the cGAATTCg sequence in the tk promoter region. With the other of the two single-copy TK+ cell lines no TK- mutants were obtained, suggesting that the position of a gene in the genome is an important factor in determining the frequency and the extent of de novo methylation. Additionally, we observed that remethylation is an even more efficient process of gene inactivation as TK+ clones reactivated with 5-azacytidine can become TK- again at a 100-fold higher rate than the original TK+ cell line.  相似文献   

18.
The mutagenic potential of the cytidine analog, 5-azacytidine (Aza Cyd), was tested at the thymidine kinase (TK) gene locus of L5178Y mouse lymphoma cells. 3-h exposure to as little as 20 ng/ml Aza Cyd yielded a substantial increase in TK-deficient L5178Y cells as measured by drug-induced resistance to trifluorothymidine (TFTres) 48 h later. This mutagenic effect was diminished up to 75% when Aza Cyd was tested in the presence of either enzymatically active or heat-denatured 9000 X g supernatant prepared from rat liver homogenate. The mutagenicity of Aza Cyd was also decreased in the presence of 1-5 X 10(-3) M thymidine and eliminated in the presence of greater than 1 X 10(-5) M cytidine. Two L5178Y TK-deficient cell lines had no selective survival advantage compared to TK-competent L5178Y cell stock when plated in soft-agar medium that contained Aza Cyd. Four other specific inhibitors of scheduled DNA synthesis in mammalian cells, deoxyadenosine, aphidicolin, 1-beta-D-arabinofuranosylcytosine, and hydroxyurea were also L5178Y/TK mutagens. These data along with other published results suggest that chemicals known to disrupt nucleotide biosynthesis, alter deoxyribonucleotide pools, or directly inhibit DNA polymerase can cause stable, heritable increases in TFT resistance through mechanisms dependent upon altered replicative DNA synthesis, yet not necessarily dependent upon DNA incorporation or the binding of these mutagenic agents to nuclear DNA.  相似文献   

19.
So AY  Jung JW  Lee S  Kim HS  Kang KS 《PloS one》2011,6(5):e19503
Epigenetic regulation of gene expression is well known mechanism that regulates cellular senescence of cancer cells. Here we show that inhibition of DNA methyltransferases (DNMTs) with 5-azacytidine (5-AzaC) or with specific small interfering RNA (siRNA) against DNMT1 and 3b induced the cellular senescence of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs) and increased p16(INK4A) and p21(CIP1/WAF1) expression. DNMT inhibition changed histone marks into the active forms and decreased the methylation of CpG islands in the p16(INK4A) and p21(CIP1/WAF1) promoter regions. Enrichment of EZH2, the key factor that methylates histone H3 lysine 9 and 27 residues, was decreased on the p16(INK4A) and p21(CIP1/WAF1) promoter regions. We found that DNMT inhibition decreased expression levels of Polycomb-group (PcG) proteins and increased expression of microRNAs (miRNAs), which target PcG proteins. Decreased CpG island methylation and increased levels of active histone marks at genomic regions encoding miRNAs were observed after 5-AzaC treatment. Taken together, DNMTs have a critical role in regulating the cellular senescence of hUCB-MSCs through controlling not only the DNA methylation status but also active/inactive histone marks at genomic regions of PcG-targeting miRNAs and p16(INK4A) and p21(CIP1/WAF1) promoter regions.  相似文献   

20.
S A Schwartz 《Biochemistry》1976,15(14):3097-3105
Secondary cultures of normal rat embryo cells were synchronized by a double thymidine block and pulsed with 10(-7) M 5-[3H]bromodeoxyuridine (BrdUrd) OR 10(-7) M[3H]thymidine during an entire S phase (7.5 h). To examine the pattern of [3H]thymidine, DNA was immediately extracted and purified at the completion of the S phase, CsCl density gradient centrifugation revealed that substitution for thymine by bromouracil was less than 7%. Single-strand specific nucleases obtained from Aspergillus oryzae and Neurospora crassa were allowed to react with native and partially depurinated (24-29%) [3H]BrdUrd-labeled rat DNA samples, and the products were assayed by hydroxylapatite column chromatography. Approximately 4-6% of the native, nondepurinated rat DNA was hydrolyzed by both nucleases. However, 24-28% of the partially depurinated, [3H] thymidine-labeled rat DNA was hydrolyzed by both enzymes as determined by loss of mass as well as radioactivity. Whereas comparable levels of depurinated, [3H]BrdUrd-labeled DNA were physically hydrolyzed by both nucleases, nearly 65% of the radioactivity was not recovered. Native, as well as depurinated, enzyme-treated DNA samples were sequentially and preparatively reassociated into highly repetitive, middle repetitive, and nonrepetitive nucleotide sequence components. The absolute and relative specific activities of each subfraction of native [3H]thymidine-labeled DNA were comparable. [3H]BrdUrd was differentially concentrated in the middle repetitive sequences as compared to other reiteration frequency types. When depurinated, nuclease-treated DNA samples were similarly fractionated, [3H]thymine moieties were uniformly distributed thoughout all sequences. However, a differential loss of [3H]BrdUrd moieties was detected predominantly from the middle repetitive nucleotide fraction. Melting profiles of the renatured DNA samples were characteristic of each respective DNA subfraction regardless of isotopic precursor. These results suggest that [3H]BrdUrd may be differentially incorporated into A + T rich clusters of rat DNA, especially in the moderately repeated chromosomal elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号