首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucose 6-phosphate dehydrogenase (G6PD) activity was measured in individual preimplantation rabbit and mouse embryos. Substrate turnover by the enzyme is at least 30 times greater than glucose oxidation by the pentose shunt in the early rabbit embryo. There was no evidence during the preimplantation period of the embryos in either species of a bimodal distribution of G6PD activities among the embryos. Since cytological studies have not shown that inactivation of the X chromosome occurs during the early cleavage period and G6PD activity is sex-linked and gene-dose dependent in most higher animals, the evidence from the enzyme studies suggests that there is little or no synthesis of G6PD during the early preimplantation period. It is suggested that the enzyme is synthesized during oocyte development and the high levels of the enzyme found during the preimplantation period reflect the requirement of an earlier stage in oocyte development rather than the requirements of cleavage.Financial support for this work was obtained from National Institutes of Health Grants HD 03071 and HD 02315.  相似文献   

2.
By combining 20 X chromosomes with five autosomal backgrounds, the relative importance of these factors with respect to the activity variations of G6PD and 6PGD in Drosophila melanogaster were investigated. Analysis of variance revealed that there exist significant X chromosome, autosomal background and genetic interaction effects. The effect of the X chromosome was due mainly to the two allozymic forms of each enzyme, but some within-allozyme effects were also detected. From the estimated variance components, it was concluded that the variation attributed to the autosomal background is much larger than the variation attributed to the X chromosome, even when the effect of the allozymes is included. The segregation of the allozymes seems to account for about 10% of the total activity variation of each enzyme. The variation due to the interaction between the X chromosome and the autosomal background is much smaller than variations attributed either to the X chromosome or to the autosomal background. The interaction effect is indicated by the change of the ranking of the X chromosomes for different autosomal backgrounds. Highly significant and positive correlation between G6PD and 6PGD activities was detected. Again, the contribution of the autosomal background to the correlation was much larger than that attributed to the X chromosome.  相似文献   

3.
Hybridization of DNA samples prepared from flow-sorted human chromosomes with a cDNA probe for the X-linked glucose-6-phosphate dehydrogenase (G6PD) suggested the existence of the G6PD-like locus on chromosome 17. Southern hybridization analysis of endonuclease-digested DNA samples from the human-mouse hybrid cell line with human chromosome 17, and from control human and mouse cells, proved that not only X chromosomes, but also chromosome 17, contain DNA sequences that are hybridizable with the G6PD cDNA probe. The G6PD-like locus on chromosome 17 could be a putative pseudogene or a functional gene for the fetal brain-specific G6PD isozyme or other protein.  相似文献   

4.
We examined the activity of X-linked glucose-6-phosphate dehydrogenase (G6PD) in concepti of the enzyme-deficient mutant and wild-type C3H mice. By using different crosses between the G6PD-deficient homozygous, heterozygous, or wild-type females and hemizygous or wild-type males, we confirmed the inactivation of one of the two X chromosomes in female concepti by a histochemical method. With this technique, a dual (G6PD + or -) cell population could be observed in the tissue sections. We demonstrate that the paternal X chromosome is inactivated in the endoderm of parietal and visceral yolk sac and in the trophoblast, whereas in the embryo and in the yolk sac mesoderm this inactivation is random. Our results confirm biochemical observations showing that only the maternal X chromosome is expressed in all derivatives of trophectoderm and primitive endoderm, whereas derivatives of the primitive ectoderm show random X chromosome expression.  相似文献   

5.
The activities of glucose-6-phosphate dehydrogenase (G6PD) and lactate dehydrogenase (LDH) have been assayed in mouse oocytes at several stages of follicle development isolated from XX and XO female mice. Throughout the entire growth period the activity of G6PD was proportional to the number of X chromosomes present in the oocyte, whereas no difference in LDH activity was detected between XX and XO oocytes. It is concluded, therefore, that both X chromosomes are functional throughout oogenesis.  相似文献   

6.
Evidence is presented for the uptake of the human X chromosome by human-Chinese hamster cell hybrids which lack H P R T activity, following incubation with isolated human HeLa S3 chromosomes. Sixteen independent clonal cell lines were isolated in H A T medium, all of which contained a human X chromosome as determined by trypsin-Giemsa staining. The frequency of H A T-resistant clones was 32 x 10(-6) when 10(7) cells were incubated with 10(8) HeLa chromosomes. Potential reversion of the hybrid cells in H A T medium was less than 5 x 10(-7). The 16 isolated cell lines all contained activity of the human X-linked marker enzymes H P R T, P G K,alpha-Gal A, and G6PD, as determined by electrophoresis. The phenotype of G6PD was G6PD A, corresponding to G6PD A in HeLa cells. The human parental cells used in the fusion to form the hybrids had the G6PD B phenotype. The recipient cells gave no evidence of containing human X chromosomes. These results indicate that incorporation and expression of HeLa X chromosomes is accomplished in human-Chinese hamster hybrids which lack a human X chromosome.  相似文献   

7.
Stability of the "two active X" phenotype in triploid somatic cells.   总被引:7,自引:0,他引:7  
B R Migeon  J A Sprenkle  T T Do 《Cell》1979,18(3):637-641
We examined triploid cells of XXY karyotype heterozygous for glucose 6 phosphate dehydrogenase (G6PD) electrophoretic variants with regard to the stability of their X chromosome phenotype. Clonal populations of cells derived from these human fibroblasts maintained a precise 1:2:1 ratio of A:heteropolymer:B isozymes throughout their life span, indicating stability of the two active X chromosomes in these cells. To determine the influence of the autosomal complement on X chromosome expression, we attempted to perturb the relationship. Fusion of these triploid cells with human diploid fibroblasts carrying a novel G6PD variant (B') resulted in heterokaryons exprssing a novel heteropolymer, presumably indicating that all three parental X chromosomes were active. However, no derepression of the inactive X chromosome was observed. Analysis of interspecific hybrids derived from triploid cells and mouse fibroblasts confirmed that activity of parental X chromosomes is maintained. Some human mouse hybrid clones, however, expressed only a single human G6PD isozyme, probably attributable to segregation of the pertinent X chromosome, but elimination of a relevant autosome cannot be excluded. The triploid cells transformed by SV40 showed alterations in LDH pattern and an approximately 10-20% decrease in chromosome number, but maintained the precise G6PD phenotype of the untransformed cell. These studies provide evidence for the stability of the X chromosome phenotype in triploid cells.  相似文献   

8.
Glucose-6-phosphate dehydrogenase (G6PD) phenotype studies were done on a black family with X-linked heredofamilial bilateral microphthalmia (HBM). Three crossovers and three non-crossovers were detected in three informative matings of four generations yielding a recombination value of 0.5. These findings do not provide evidence for linkage between the G6PD and HBM loci, suggesting either that the G6PD and HBM loci are far apart on the X chromosome or that HBM in this family is inherited as an autosomal dominant male sex-limited trait.  相似文献   

9.
D J Driscoll  B R Migeon 《Genomics》1988,3(4):308-314
We have mapped HPRT and G6PD loci on the X chromosome in the American opossum, Didelphis virginiana, by in situ hybridization to cells derived from two females by using genomic opossum DNA as probes. The localizations (G6PD to Xp13 and HPRT to Xq21), indicating that the two genes are separated by the centromere, were confirmed by results of hybridization to X chromosomes with deletions that include the HPRT locus and opossum-mouse cell hybrids containing the relevant fragment of the opossum X chromosome.  相似文献   

10.
11.
A mouse-human cell hybrid clone retaining an inactive human X chromosome was treated with 5-azacytidine. Following treatment, expression of the X-linked enzyme markers, hypoxanthine-guanine phosphoribosyltransferase (HPRT), glucose-6-phosphate dehydrogenase (G6PD), phosphoglycerate kinase (PGK), and alpha-galactosidase A (GLA) was examined. Results presented here show that 45 of the 62 clones positive for human HPRT expressed human GLA, while only four of 68 clones negative for human HPRT expressed human GLA. These results strongly suggest that there is coordinate reactivation of GLA and HPRT. Reactivated expression of G6PD was studied in detail. The studies show that 5-azacytidine can induce heritable changes in the inactive human X chromosome resulting in the expression of G6PD activity at a level lower than that from an active human X chromosome.  相似文献   

12.
CpG islands of the X chromosome are gene associated.   总被引:6,自引:0,他引:6       下载免费PDF全文
Unmethylated CpG rich islands are a feature of vertebrate DNA: they are associated with housekeeping and many tissue specific genes. CpG islands on the active X chromosome of mammals are also unmethylated. However, islands on the inactive X chromosome are heavily methylated. We have identified a CpG island in the 5' region of the G6PD gene, and two islands forty Kb 3' from the G6PD gene, on the human X chromosome. Expression of the G6PD gene is associated with concordant demethylation of all three CpG islands. We have shown that one of the two islands is in the promoter region of a housekeeping gene, GdX. In this paper we show that the second CpG island is also associated with a gene, P3. The P3 gene has no homology to previously described genes. It is a single copy, 4 kb gene, conserved in evolution, and it has the features of a housekeeping two genes is within the CpG island and that sequences in the islands have promoter function.  相似文献   

13.
The relationships between gene dosage, enzyme activities and CRM levels have been determined for G6PD and 6PGD. Enzyme activities and CRM levels were directly proportional and increased in genotypes carrying duplications of the respective structural genes. When a duplication consisting of the distal 45% of the X chromosome was used to duplicate Pgd+, 6PGD activity and CRM increased and G6PD activity decreased. When the proximal 55% of the X chromosome was duplicated, G6PD activity and CRM increased whereas 6PGD activity and CRM levels decreased. These observations support the model of dosage compensation of X-linked genes that invokes an autosomal activator in limited concentrations for which X-linked loci compete. The distal 45% of the X chromosome, when duplicated, caused a significant increase in NADP-malic enzyme activity and CRM levels, as if a structural gene for NADP-ME is sex-linked.  相似文献   

14.
We have mapped HPRT and G6PD loci on the X chromosome in the American opossum, Didelphis virginiana, by in situ hybridization to cells derived from two females by using genomic opossum DNA as probes. The localizations (G6PD to Xp13 and HPRT to Xq21), indicating that the two genes are separated by the centromere, were confirmed by results of hybridization to X chromosomes with deletions that include the HPRT locus and opossum-mouse cell hybrids containing the relevant fragment of the opossum X chromosome.  相似文献   

15.
We have previously reported that expression of the G6PD locus is correlated with the methylation status of two islands of CpG dinucleotides which are 3' to the locus and in the 5' region of two adjacent genes of unknown function, P3 and GdX. We have now examined the methylation of a third CpG island in the promoter region of the G6PD gene itself in DNA from males, females and reactivants that express G6PD on the inactive X chromosome. Our results show that expression of the G6PD gene is associated with concordant demethylation of all three CpG islands in this 100-kb region of DNA.  相似文献   

16.
Twenty independent man-mouse (Cl1D,LA/TK-, HPRT-) and man-hamster (CH,HPRT-) hybrids using female human cells with balanced reciprocal translocation XX,t(X;5)(q21;q11) were analyzed for human genes localized on chromosome 5 (HEXB), on chromosome X (PGK, GALA, HPRT, G6PD) and for the different chromosomes in relation with the balanced reciprocal translocation (chr.5, chr.5q-, chr.Xq+, chr.X). The different results obtained indicate that the genes for human markers HEXB, PGK are on Xq+, and that the genes for human markers GALA, G6PD are on 5q-. These data implicate finally the following localizations: HEXB on 5q11 leads to 5qter; PGK on Xq21 leads to Xpter; GALA, HPRT, G6PD on Xq21 leads to Xqter.  相似文献   

17.
Summary In placenta membranes of newborn girls carrying electrophoretically distinguishable G6PD alleles, the maternally derived isozyme is expressed preferentially. This phenomenon cannot be explained by allelic differences in enzyme activity or by somatic selection directed against cells with particular G6PD phenotypes. Instead, it may be that in this tissue X inactivation is nonrandom. Preferential expression of the maternal X chromosome, as has been shown in marsupials and in extraembryonic membranes of rodents and now in man, may reflect the state of activity of the X chromosomes in the early stages of female embryonic development.H.-H. R. is supported by the Deutsche Forschungsgemeinschaft  相似文献   

18.
用雌性畸胎瘤LT细胞(具有两个X染色体)为材料,在离体条件下诱导分化。通过对X连锁的HPRT和G6PD等酶的定量分析,并与Pcc3/A/1畸胎瘤细胞(XO型)对比。结果表明,HPRT与G6PD酶比活性在分化后的LT细胞中,以及在已分化的胚胎体重新种植并传代后的细胞中,均与Pcc3/A/1(XO型)细胞相似,比未分化的细胞降低了一半左右。这些结果可认为,在雌性畸胎瘤细胞离体分化过程中,发生了X染色体的生化分化。  相似文献   

19.
X chromosome dosage compensation in Marsupials is like that in eutherian mammals except that the paternal X chromosome is always inactive, and silence of this chromosome is not well maintained. We previously showed that the unstable inactivation of the paternal G6PD allele is associated with the lack of DNA methylation in the 5' CpG cluster. Even though this CpG island is unmethylated, the paternal allele (marked by an enzyme variant) is at least partially and often severely repressed in most tissues of the opossum, so that factors other than methylation must inactivate the locus. Here we report that when cell cultures are established from these tissues, the silent G6PD locus is depressed. Although often complete, the extent of derepression differs among tissues and within different cell types in the same tissue, and is not accompanied by obvious changes in the pattern of chromosome replication. Studies of the HPRT locus in these cells show that the paternal HPRT allele also derepresses in cultured cells. These observations suggest that without DNA methylation to maintain the silence of the locus, tissue or cell-specific factors act to repress the silent locus, but are unable to maintain inactivity through cell division, or are lost as cells proliferate in culture.  相似文献   

20.
Different homozygous lines of similar genotype with respect to G6pd and 6Pgd were shown to have different enzyme activities for G6PD and 6PGD. Crosses between high and low lines suggested that there were modifying genes present on the autosomes, while others were probably located on the X chromosome. Allelic variation within each electrophoretic class of G6pd and 6Pgd might, however, also have contributed to this variation. An experiment on adaptation to sodium octanoate demonstrated that in adapted flies selection for lower enzyme activity had occurred, which provided further evidence for the existence of genetic differences in activity. Furthermore, a strong positive correlation between the activities of G6PD and 6PGD was found for each genotype. Since no correlation was found between MDH and the two enzymes G6PD and 6PGD, it could be concluded that this correlation was probably rather specific for G6PD and 6PGD. Interaction between genotypes with respect to activity was also found. It was shown that the variation at 6Pgd influenced the activity of G6PD within a genotype. The data are discussed in relation to fitness differences presented in foregoing articles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号