首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent hydrogen exchange experiments on native cytochrome c implicate a sequential unfolding pathway in contrast to a simple two-state process. We have studied the heat-induced unfolding of this protein by using spectroscopic measurements to detect changes in conformation and proteolytic enzyme digestion to identify regions of the protein that are labile. Several spectroscopic profiles were monitored: CD at 222 nm, a measurement of secondary structure change in the protein, the absorbance at 280 nm, involving the local environment of Trp 59, and absorbance at 420 nm, the Soret band of the heme. The apparent Tm values for these probes differ, consistent with an unfolding pathway containing intermediates. The limited digestion by proteinase K is consistent with population of an intermediate state in unfolding. We find a single strong region of cleavage at low temperature with retention of structure in each fragment. Proteins 30:435–441, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
To understand general aspects of stability and folding of c-type cytochromes, we have studied the folding characteristics of cytochrome c553 from Desulfovibrio vulgaris (Hildenborough). This cytochrome is structurally similar but lacks sequence homology to other heme proteins; moreover, it has an abnormally low reduction potential. Unfolding of oxidized and reduced cytochrome c553 by guanidine hydrochloride (GuHCl) was monitored by circular dichroism (CD) and Soret absorption; the same unfolding curves were obtained with both methods supporting that cytochrome c553 unfolds by an apparent two-state process. Reduced cytochrome c553 is 7(3) kJ/mol more stable than the oxidized form; accordingly, the reduction potential of unfolded cytochrome c553 is 100(20) mV more negative than that of the folded protein. In contrast to many other unfolded cytochrome c proteins, upon unfolding at pH 7.0 both oxidized and reduced heme in cytochrome c553 become high-spin. The lack of heme misligation in unfolded cytochrome c553 implies that its unfolded structure is less constrained than those of cytochromes c with low-spin, misligated hemes.  相似文献   

3.
The singular value decomposition (SVD) analysis was applied to a large set of far-ultraviolet circular dichroism (far-UV CD) spectra (100-400 spectra) of horse heart cytochrome c (cyt c). The spectra were collected at pH 1.7-5.0 in (NH4)2SO4, sorbitol and 2,2,2-trifluoroethanol (TFE) solutions. The present purpose is to develop a rigorous matrix method applied to far-UV CD spectra to resolve in details conformational properties of proteins in the non-native (or denatured) regions. The analysis established that three basis spectral components are contained in a data set of difference spectra (referred to the spectrum of the native state) used here. By a further matrix transformation, any observed spectrum could be decomposed into fractions of the native (N), the molten-globule (MG), the highly denatured (D), and the alcohol-induced helical (H) spectral forms. This method could determine fractional transition curves of each conformer as a function of solution conditions, which gave the results consistent with denaturation curves of cyt c monitored by other spectroscopic methods. The results in sorbitol solutions, for example, suggested that the preferential hydration effect of the co-solvent stabilizes the MG conformer of cyt c. This report has found that the systematic SVD analysis of the far-UV CD spectra is a powerful tool for the conformational analysis of the non-native species of a protein when it is suitably supplemented with other experimental methods.  相似文献   

4.
The 1:1 complex between horse heart cytochrome c and bovine cytochrome c oxidase, and between yeast cytochrome c and Paracoccus denitrificans cytochrome c oxidase have been studied by a combination of second derivative absorption, circular dichroism (CD), and resonance Raman spectroscopy. The second derivative absorption and CD spectra reveal changes in the electronic transitions of cytochrome a upon complex formation. These results could reflect changes in ground state heme structure or changes in the protein environment surrounding the chromophore that affect either the ground or excited electronic states. The resonance Raman spectrum, on the other hand, reflects the heme structure in the ground electronic state only and shows no significant difference between cytochrome a vibrations in the complex or free enzyme. The only major difference between the Raman spectra of the free enzyme and complex is a broadening of the cytochrome a3 formyl band of the complex that is relieved upon complex dissociation at high ionic strength. These data suggest that the differences observed in the second derivative and CD spectra are the result of changes in the protein environment around cytochrome a that affect the electronic excited state. By analogy to other protein-chromophore systems, we suggest that the energy of the Soret pi* state of cytochrome a may be affected by (1) changes in the local dielectric, possibly brought about by movement of a charged amino acid side chain in proximity to the heme group, or (2) pi-pi interactions between the heme and aromatic amino acid residues.  相似文献   

5.
Microcalorimetry has been used to measure the stabilities of mutational variants of yeast iso-1 cytochrome c in which F82 and L85 have been replaced by other hydrophobic amino acids. Specifically, F82 has been replaced by Y and L85 by A. The double mutant F82Y,L85A iso-1 has also been studied, and the mutational perturbations are compared to those for the two single mutants, F82Y iso-1 and L85A iso-1. Results are interpreted in terms of known crystallographic structures. The data show that (1) the destabilization of the mutant proteins is similar in magnitude to that which is theoretically predicted by the more obvious mutation-induced structural effects; (2) the free energy of destabilization of the double mutant, F82Y,L85A iso-1, is less than the sum of those of the two single mutants, almost certainly because, in the double mutant, the -OH group of Y82 is able to protrude into the cavity formed by the L85A substitution. The more favorable structural accommodation of the new -OH group in the double mutant leads to additional stability through (1) further decreases in the volumes of internal cavities and (2) formation of an extra protein-protein hydrogen bond.  相似文献   

6.
N52I iso-2 cytochrome c is a variant of yeast iso-2 cytochrome c in which asparagine substitutes for isoleucine 52 in an alpha helical segment composed of residues 49-56. The N52I substitution results in a significant increase in both stability and cooperativity of equilibrium unfolding, and acts as a "global suppressor" of destabilizing mutations. The equilibrium m-value for denaturant-induced unfolding of N52I iso-2 increases by 30%, a surprisingly large amount for a single residue substitution. The folding/unfolding kinetics for N52I iso-2 have been measured by stopped-flow mixing and by manual mixing, and are compared to the kinetics of folding/unfolding of wild-type protein, iso-2 cytochrome c. The results show that the observable folding rate and the guanidine hydrochloride dependence of the folding rate are the same for iso-2 and N52I iso-2, despite the greater thermodynamic stability of N52I iso-2. Thus, there is no linear free-energy relationship between mutation-induced changes in stability and observable refolding rates. However, for N52I iso-2 the unfolding rate is slower and the guanidine hydrochloride dependence of the unfolding rate is smaller than for iso-2. The differences in the denaturant dependence of the unfolding rates suggest that the N52I substitution decreases the change in the solvent accessible hydrophobic surface between the native state and the transition state. Two aspects of the results are inconsistent with a two-state folding/unfolding mechanism and imply the presence of folding intermediates: (1) observable refolding rate constants calculated from the two-state mechanism by combining equilibrium data and unfolding rate measurements deviate from the observed refolding rate constants; (2) kinetically unresolved signal changes ("burst phase") are observed for both N52I iso-2 and iso-2 refolding. The "burst phase" amplitude is larger for N52I iso-2 than for iso-2, suggesting that the intermediates formed during the "burst phase" are stabilized by the N52I substitution.  相似文献   

7.
Avidin is a tetramer of 16-kDa subunits that have a high affinity for biotin. Proteolysis of native apoavidin by proteinase K results in a limited attack at the loop between beta-strands 3 and 4, involving amino acids 38-43. Specifically, sites of proteolysis are at Thr 40-Ser 41 and Asn 42-Glu 43. The limited proteolysis results in an avidin product that remains otherwise intact and which has enhanced binding for 4'-hydroxyazobenzene-2-benzoic acid (HABA), a chromogenic reporter that can occupy the biotin-binding site. Saturation of the biotin-binding site with the natural ligand protects avidin from proteolysis, but saturation with HABA enhances the rate of proteolysis of the same site. Analysis of the three-dimensional structures of apoavidin and holoavidin reveals that the 3-4 loop is accessible to solvent and scores highly in an algorithm developed to identify sites of proteolytic attack. The structure of holoavidin is almost identical to the apoprotein. In particular, the 3-4 loop has the same structure in the apo and holo forms, yet there are marked differences in proteolytic susceptibility of this region. Evidence suggests that the 3-4 loop is rather mobile and flexible in the apoprotein, and that it becomes constrained upon ligand binding. In one crystal structure of the apoprotein, this loop appears constrained by contacts with symmetry-related molecules. Structural analyses suggest that the "lid" to the biotin-binding site, formed by the 3-4 loop, is displaced and made more accessible by HABA binding, thereby enhancing its proteolytic susceptibility.  相似文献   

8.
The release of holocytochrome c (cyt c) from mitochondria into the cytosol is reportedly a landmark of the execution phase of apoptosis. As shown here, the P-glycoprotein- (P-gp) expressing K562/ADR cell line (but not the parental K562 cell line) exhibits both cytosolic and mitochondrial cyt c in the absence of any signs of apoptosis. K562/ADR cells were found to be relatively resistant to a variety of different inducers of apoptosis, and blocking the P-gp did not reverse this resistance. The release of cyt c in non-apoptotic K562/ADR cells was not accompanied by that of any other mitochondrial apoptogenic protein, such as AIF or Smac/DIABLO, and was inhibited by Bcl-2 over expression. In addition, using a cell-free system, we show that mitochondria isolated from K562/ADR cells spontaneously released cyt c. These data suggest that cyt c release may be compatible with the preservation of mitochondrial integrity and function, as well as cell proliferation.  相似文献   

9.
Ferricytochrome c can be converted to the partially folded A-state at pH 2.2 in the presence of 1.5 M NaCl. The structure of the A-state has been studied in comparison with the native and unfolded states, using resonance Raman spectroscopy with visible and ultraviolet excitation wavelengths. Spectra obtained with 200 nm excitation show a decrease in amide II intensity consistent with loss of structure for the 50s and 70s helices. The 230-nm spectra contain information on vibrational modes of the single Trp 59 side chain and the four tyrosine side chains (Tyr 48, 67, 74, and 97). The Trp 59 modes indicate that the side chain remains in a hydrophobic environment but loses its tertiary hydrogen bond and is rotationally disordered. The tyrosine modes Y8b and Y9a show disruption of tertiary hydrogen bonding for the Tyr 48, 67, and 74 side chains. The high-wavenumber region of the 406.7-nm resonance Raman spectrum reveals a mixed spin heme iron atom, which arises from axial coordination to His 18 and a water molecule. The low-frequency spectral region reports on heme distortions and indicates a reduced degree of interaction between the heme and the polypeptide chain. A structural model for the A-state is proposed in which a folded protein subdomain, consisting of the heme and the N-terminal, C-terminal, and 60s helices, is stabilized through nonbonding interactions between helices and with the heme.  相似文献   

10.
Native iso-2 cytochrome c contains two residues (His 18, Met 80) coordinated to the covalently attached heme. On unfolding of iso-2, the His 18 ligand remains coordinated to the heme iron, whereas Met 80 is displaced by a non-native heme ligand, His 33 or His 39. To test whether non-native His-heme ligation slows folding, we have constructed a double mutant protein in which the non-native ligands are replaced by asparagine and lysine, respectively (H33N,H39K iso-2). The double mutant protein, which cannot form non-native histidine-heme coordinate bonds, folds significantly faster than normal iso-2 cytochrome c: gamma = 14-26 ms for H33N,H39K iso-2 versus gamma = 200-1,100 ms for iso-2. These results with iso-2 cytochrome c strongly support the hypothesis that non-native His-heme ligation results in a kinetic barrier to fast folding of cytochrome c. Assuming that the maximum rate of a conformational search is about 10(11) s-1, the results imply that the direct folding pathway of iso-2 involves passage through on the order of 10(9) or fewer partially folded conformers.  相似文献   

11.
Cytochrome cH is the electron donor to the oxidase in methylotrophic bacteria. Its amino acid sequence suggests that it is a typical Class 1 cytochrome c, but some features of the sequence indicated that its structure might be of special interest. The structure of oxidized cytochrome cH has been solved to 2.0 A resolution by X-ray diffraction. It has the classical tertiary structure of the Class 1 cytochromes c but bears a closer gross resemblance to mitochondrial cytochrome c than to the bacterial cytochrome c2. The left-hand side of the haem cleft is unique; in particular, it is highly hydrophobic, the usual water is absent, and the "conserved" Tyr67 is replaced by tryptophan. A number of features of the structure demonstrate that the usual hydrogen bonding network involving water in the haem channel is not essential and that other mechanisms may exist for modulation of redox potentials in this cytochrome.  相似文献   

12.
The biogenesis of c-type cytochromes (Cytc) is a process that in Gram-negative bacteria demands the coordinated action of different periplasmic proteins (CcmA-I), whose specific roles are still being investigated. Activities of Ccm proteins span from the chaperoning of heme b in the periplasm to the specific reduction of oxidized apocytochrome (apoCyt) cysteine residues and to chaperoning and recognition of the unfolded apoCyt before covalent attachment of the heme to the cysteine thiols can occur. We present here the functional characterization of the periplasmic domain of CcmI from the pathogen Pseudomonas aeruginosa (Pa-CcmI*). Pa-CcmI* is composed of a TPR domain and a peculiar C-terminal domain. Pa-CcmI* fulfills both the ability to recognize and bind to P. aeruginosa apo-cytochrome c551 (Pa-apoCyt) and a chaperoning activity towards unfolded proteins, as it prevents citrate synthase aggregation in a concentration-dependent manner. Equilibrium and kinetic experiments with Pa-CcmI*, or its isolated domains, with peptides mimicking portions of Pa-apoCyt sequence allow us to quantify the molecular details of the interaction between Pa-apoCyt and Pa-CcmI*. Binding experiments show that the interaction occurs at the level of the TPR domain and that the recognition is mediated mainly by the C-terminal sequence of Pa-apoCyt. The affinity of Pa-CcmI* to full-length Pa-apoCyt or to its C-terminal sequence is in the range expected for a component of a multi-protein complex, whose task is to receive the apoCyt and to deliver it to other components of the apoCyt:heme b ligation protein machinery.  相似文献   

13.
Derivatives of yeast iso-1 cytochrome c, chemically modified at Cys-102 (Cys-102 acetamide-derivatized monomer, Cys-102 thionitrobenzoate-derivatized monomer, Cys-102 S-methylated monomer, and the disulfide dimer), exhibit different spectral and physicochemical properties relative to the native, unmodified protein, depending on the nature of the modifying group. The results of proton NMR studies on the Cys-102 acetamidederivatized monomer of iso-1 ferricytochrome c indicate that the conformational characteristics of the heme environment in this protein derivative are intermediate between those of the unmodified monomer and disulfide dimer forms of the protein. Measurements of the pKa of the alkaline transitions of the five forms of iso-1 ferricytochrome c provided values of 8.89, 8.82, 8.67, 8.47, and 8.50 for the unmodified monomer, S-methylated monomer, acetamide-derivatized monomer, thionitrobenzoate-derivatized monomer, and disulfide dimer, respectively. The results of proton NMR studies of the reduced form of these proteins suggest that the heme environments of the unmodified monomer and disulfide dimer derivatives of iso-1 ferrocytochrome c are similar and indicate that treatment of the thionitrobenzoate-derivatized and disulfide dimer forms of the protein with sodium dithionite results in cleavage of the disulfide bonds at position 102. Circular dichroism studies reveal that only the disulfide dimer form of iso-1 ferricytochrome c exhibits a Soret CD spectrum which differs from the native, unmodified monomer in that the intensity of the negative band at approximately 420 nm is diminished in the spectrum of the dimer relative to the spectrum of the monomer. Soret CD spectra of the ascorbate-reduced form of all protein derivatives are similar. The process of autoreduction of yeast iso-1 ferricytochrome c is shown to occur in the absence of a free sulfhydryl group at position 102 and is exacerbated under moderately high pH conditions. These results are suggestive of the presence of a redox-active amino acid, perhaps a tyrosine, in yeast iso-1 cytochrome c.  相似文献   

14.
P1 type nuclease, which hydrolyzes RNA and heat-denatured DNA completely into 5’-mononucleotides and also shows 3’-nucleotidase activity, was widely distributed among various species belonging to the genus Penicillium such as P. expansum, P. notatum, P. steckii and P. meleagrinum. P1 type nucleases isolated from these strains were produced in a form of complex with malonogalactan when molds were grown on wheat bran. These enzymes showed similar characters in heat-stability (stable at 60°C), temperature optimum (60 to 70°C for RNA and heat denatured DNA, and 70°C for 3’-AMP) and sensitivity to EDTA. The enzymes from P. steckii and P. expansum were immunologically co-related to nuclease P1.

In addition, many strains of Penicillium produced base-nonspecific RNases forming 3’-mononucleotides via 2’: 3 ’-cyclic nucleotides. These RNases showed similarity in heat-lability (completely inactivated at 60°C), temperature optimum (45 to 50°C), sensitivity to Zn2+ and Cu2+, and relative hydrolysis rate toward 2’: 3’-cyclic nucleotides (A?C>U?G).  相似文献   

15.
Reversible denaturation of Pseudomonas aeruginosa cytochrome c551 (PAc551) could be followed using five systematic urea derivatives that differ in the alkyl chain length, i.e. urea, N-methylurea (MU), N-ethylurea (EU), N-propylurea (PU), and N-butylurea (BU). The BU concentration was the lowest required for the PAc551 denaturation, those of PU, EU, MU, and urea being gradually higher. Furthermore, the accessible surface area difference upon PAc551 denaturation caused by BU was found to be the highest, those by PU, EU, MU, and urea being gradually lower. These findings indicate that urea derivatives with longer alkyl chains are stronger denaturants. In this study, as many as five systematic urea derivatives could be applied for the reversible denaturation of a single protein, PAc551, for the first time, and the effects of the alkyl chain length on protein denaturation were systematically verified by means of thermodynamic parameters.  相似文献   

16.
Flöck D  Helms V 《Proteins》2002,47(1):75-85
Electron transferring protein complexes form only transiently and the crystal structures of electron transfer protein--protein complexes involving cytochrome c could so far be determined only for the pairs of yeast cytochrome c peroxidase (CcP) with iso-1-cytochrome c (iso-1-cyt c) and with horse heart cytochrome c (cyt c). This article presents models from computational docking for complexes of cytochrome c oxidase (COX) from Paracoccus denitrificans with horse heart cytochrome c, and with its physiological counterpart cytochrome c552 (c552). Initial docking is performed with the FTDOCK program, which permits an exhaustive search of translational and rotational space. A filtering procedure is then applied to reduce the number of complexes to a manageable number. In a final step of structural and energetic refinement, the complexes are optimized by rigid-body energy minimization with the molecular mechanics package CHARMM. This methodology was first tested on the CcP:iso-1-cyt c complex, in which the complex with the lowest CHARMM energy has an RMSD from the crystal structure of only 1.8 A (C(alpha) carbon atoms). Notably, the crystal conformation has an even lower energy. The same procedure was then applied to COX:cyt c and COX:c552. The lowest-energy COX:cyt c complex is very similar to a docking model previously described for the complex of bovine cytochrome c oxidase with horse heart cytochrome c. For the COX:c552 complex, cytochrome c552 is found in two different orientations, depending on whether it is docked against COX from a two-subunit or from a four-subunit crystal structure, respectively. Both conformations are discussed critically in the light of the available experimental data.  相似文献   

17.
A combined force field of molecular mechanics and solvation free energy is tested by carrying out energy minimization and molecular dynamics on several conformations of the alanyl dipeptide. Our results are qualitatively consistent with previous experimental and computational studies, in that the addition of solvation energy stabilizes the C5 conformation of the alanyl dipeptide relative to the C7.  相似文献   

18.
The exchange of a large number of amide hydrogens in oxidized equine cytochrome c was measured by NMR and compared with structural parameters. Hydrogens known to exchange through local structural fluctuations and through larger unfolding reactions were separately considered. All hydrogens protected from exchange by factors greater than 10(3) are in defined H-bonds, and almost all H-bonded hydrogens including those at the protein surface were measured to exchange slowly. H-exchange rates do not correlate with H-bond strength (length) or crystallographic B factors. It appears that the transient structural fluctuation necessary to bring an exchangeable hydrogen into H-bonding contact with the H-exchange catalyst (OH(-)-ion) involves a fairly large separation of the H-bond donor and acceptor, several angstroms at least, and therefore depends on the relative resistance to distortion of immediately neighboring structure. Accordingly, H-exchange by way of local fluctuational pathways tends to be very slow for hydrogens that are neighbored by tightly anchored structure and for hydrogens that are well buried. The slowing of buried hydrogens may also reflect the need for additional motions that allow solvent access once the protecting H-bond is separated, although it is noteworthy that burial in a protein like cytochrome c does not exceed 4 angstroms. When local fluctuational pathways are very slow, exchange can become dominated by a different category of larger, cooperative, segmental unfolding reactions reaching up to global unfolding.  相似文献   

19.
20.
We studied the effect of reducing the levels of the mitochondrial electron carrier cytochrome c (CYTc) in Arabidopsis thaliana. Plants with CYTc deficiency have delayed growth and development, and reach flowering several days later than the wild‐type but with the same number of leaves. CYTc‐deficient plants accumulate starch and glucose during the day, and contain lower levels of active gibberellins (GA) and higher levels of DELLA proteins, involved in GA signaling. GA treatment abolishes the developmental delay and reduces glucose accumulation in CYTc‐deficient plants, which also show a lower raise in ATP levels in response to glucose. Treatment of wild‐type plants with inhibitors of mitochondrial energy production limits plant growth and increases the levels of DELLA proteins, thus mimicking the effects of CYTc deficiency. In addition, an increase in the amount of CYTc decreases DELLA protein levels and expedites growth, and this depends on active GA synthesis. We conclude that CYTc levels impinge on the activity of the GA pathway, most likely through changes in mitochondrial energy production. In this way, hormone‐dependent growth would be coupled to the activity of components of the mitochondrial respiratory chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号