首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
RNA伪结预测是RNA研究的一个难点问题。文中提出一种基于堆积协变信息与最小自由能的RNA伪结预测方法。该方法使用已知结构的RNA比对序列(ClustalW比对和结构比对)测试此方法, 侧重考虑相邻碱基对之间相互作用形成的堆积协变信息, 并结合最小自由能方法对碱基配对综合评分, 通过逐步迭代求得含伪结的RNA二级结构。结果表明, 此方法能正确预测伪结, 其平均敏感性和特异性优于参考算法, 并且结构比对的预测性能比ClustalW比对的预测性能更加稳定。文中同时讨论了不同协变信息权重因子对预测性能的影响, 发现权重因子比值在l1: l2=5:1时, 预测性能达到最优。  相似文献   

2.
RNA伪结预测是RNA研究的一个难点问题。文中提出一种基于堆积协变信息与最小自由能的RNA伪结预测方法。该方法使用已知结构的RNA比对序列(ClustalW比对和结构比对)测试此方法, 侧重考虑相邻碱基对之间相互作用形成的堆积协变信息, 并结合最小自由能方法对碱基配对综合评分, 通过逐步迭代求得含伪结的RNA二级结构。结果表明, 此方法能正确预测伪结, 其平均敏感性和特异性优于参考算法, 并且结构比对的预测性能比ClustalW比对的预测性能更加稳定。文中同时讨论了不同协变信息权重因子对预测性能的影响, 发现权重因子比值在l1: l2=5:1时, 预测性能达到最优。  相似文献   

3.
RNA二级结构的最小自由能算法   总被引:1,自引:0,他引:1  
RNA(即tRNA,rRNA,mRNA和SnRNA)有两大主要功能:一是某些病毒的遗传物质;二是参与蛋白质的合成,这些与细胞分化、代谢、记忆的储存等有重要关系,这些功能与RNA二级结构的稳定性。自由能密切相关.常用的计算自由能的方法有热力学微扰法及热力学微积分法等.本文以寻找最小自由能二级结构为目的,给出了RNA二级结构的最小自由能算法,该算法的时间复杂性不超过O(n^4)。  相似文献   

4.
RNA二级结构预测系统构建   总被引:9,自引:0,他引:9       下载免费PDF全文
运用下列RNA二级结构预测算法:碱基最大配对方法、Zuker极小化自由能方法、螺旋区最优堆积、螺旋区随机堆积和所有可能组合方法与基于一级螺旋区的RNA二级结构绘图技术, 构建了RNA二级结构预测系统Rnafold. 另外, 通过随机选取20个tRNA序列, 从自由能和三叶草结构两个方面比较了前4种二级结构预测算法, 并运用t检验方法分析了自由能的统计学差别. 从三叶草结构来看, 以随机堆积方法最好, 其次是螺旋区最优堆积方法和Zuker算法, 以碱基最大配对方法最差. 最后, 分析了两种极小化自由能方法之间的差别.  相似文献   

5.
近10多年来的研究逐步揭示了RNA的各种生物学功能。RNA不仅是信息从DNA传递到蛋白质的中间体,还直接参与基因沉默、表观遗传学修饰等生物学过程。单链的RNA在体内通过碱基配对折叠成一定的二级结构。介绍了现在预测RNA二级结构的主要算法及其应用,其中包括基于热力学、同源比对和统计学习的各种算法,以及如何引入实验数据辅助预测。二级结构预测算法被广泛用于寻找RNA功能单元和预测新非编码RNA等各种问题。如何利用高通量实验数据帮助结构预测,探索长非编码RNA功能,研究RNA与蛋白质相互作用,是RNA二级结构预测算法和应用的一些前沿方向。  相似文献   

6.
基于螺旋区随机堆积的RNA二级结构预测   总被引:10,自引:0,他引:10       下载免费PDF全文
提出了基于螺旋区随机堆积的RNA二级结构预测算法,包括三个步骤:1.根据螺旋区定义,找出所有可能螺旋区;2进行螺旋区随机堆积,形成一定数目的RNA二级结构;3.统计处理,推测RNA可能折叠方式。最后以酵母Phe-tRNA为例来说明方法的可行性。  相似文献   

7.
随着21世纪分子生物学研究的蓬勃发展,RNA二级结构预测成为其中一项重要内容。由于RNA二级结构预测的准确性最为关键,因此寻找高精度且易操作的二级结构预测工具显得非常重要。本文选取三种简单且易操作的二级结构预测软件,先基于PDB数据库收录的318个RNA发夹序列进行二级结构预测,进而通过比较预测结果与实验测定结果进行软件预测性能评估。比较结果显示,RNAstructure为三个软件中性能最优的RNA二级结构预测软件。  相似文献   

8.
RNA分子众多、结构复杂、功能重要,已经成为当前重要的研究热点之一。RNA的功能与结构密切相关,伴随RNA分子及功能的发现,建立了有关RNA二级结构的数据库,一方面有助于理解RNA功能的结构基础,一方面有助于开发各种有关RNA结构的预测模型。本文对近年常见的RNA二级结构数据库作一概述,希望有助于相关工作者更好地了解与应用相关数据。  相似文献   

9.
RNA的二级结构预测是生物信息学中一个已经有30多年历史的经典问题,基于最小自由能模型(MFE)的优化算法是使用最为广泛的方法.但RNA结构中假结的存在使MFE问题理论上成为一个NP-hard问题,即使采用动态规划等优化算法也会面临时间复杂度高的困难,同时研究还发现,由于受RNA折叠动力学机制以及环境因素的影响,真实的RNA二级结构往往并不处于自由能最小状态.根据RNA折叠的特点,提出了一种启发式搜索算法来预测带假结的RNA二级结构.该算法以RNA的茎为基本单元,采用启发式搜索策略在茎的组合空间中搜索自由能最小并且出现频率最高的RNA二级结构,该算法不仅能显著降低搜索RNA二级结构的时间复杂度,还有助于弥补单纯依赖能量预测RNA二级结构的不足.在多种类型的RNA标准数据集上进行了检验,结果表明,该算法在预测的精度上优于目前国际上几个著名的RNA二级结构预测算法并且具有较高的运行效率.  相似文献   

10.
RNA二级结构的预测算法研究已有近40年的发展历程,研究假结也将近30年的历史。在此期间,RNA二级结构的预测算法取得了很大进步,但假结预测的正确率依然偏低。其中启发式算法能较好地处理复杂假结,使其成为率先解决假结预测难题可能性最大的算法。迄今为止,未见系统地专门总结预测假结的各种启发式算法及其优点与缺点的报道。本文详细介绍了近年来国际上流行的贪婪算法、遗传算法、ILM算法、HotKnots算法以及FlexStem算法等五种算法,并总结分析了每种算法的优点与不足,最后提出在未来一段时期内,利用启发式算法提高假结预测准确度应从建立更完善的假结模型、加入更多影响因素、借鉴不同算法的优势等方面入手。为含假结RNA二级结构预测的研究提供参考。  相似文献   

11.
Accurate prediction of RNA pseudoknotted secondary structures from the base sequence is a challenging computational problem. Since prediction algorithms rely on thermodynamic energy models to identify low-energy structures, prediction accuracy relies in large part on the quality of free energy change parameters. In this work, we use our earlier constraint generation and Boltzmann likelihood parameter estimation methods to obtain new energy parameters for two energy models for secondary structures with pseudoknots, namely, the Dirks–Pierce (DP) and the Cao–Chen (CC) models. To train our parameters, and also to test their accuracy, we create a large data set of both pseudoknotted and pseudoknot-free secondary structures. In addition to structural data our training data set also includes thermodynamic data, for which experimentally determined free energy changes are available for sequences and their reference structures. When incorporated into the HotKnots prediction algorithm, our new parameters result in significantly improved secondary structure prediction on our test data set. Specifically, the prediction accuracy when using our new parameters improves from 68% to 79% for the DP model, and from 70% to 77% for the CC model.  相似文献   

12.
    
Accurate free energy estimation is essential for RNA structure prediction. The widely used Turner''s energy model works well for nested structures. For pseudoknotted RNAs, however, there is no effective rule for estimation of loop entropy and free energy. In this work we present a new free energy estimation method, termed the pseudoknot predictor in three-dimensional space (pk3D), which goes beyond Turner''s model. Our approach treats nested and pseudoknotted structures alike in one unifying physical framework, regardless of how complex the RNA structures are. We first test the ability of pk3D in selecting native structures from a large number of decoys for a set of 43 pseudoknotted RNA molecules, with lengths ranging from 23 to 113. We find that pk3D performs slightly better than the Dirks and Pierce extension of Turner''s rule. We then test pk3D for blind secondary structure prediction, and find that pk3D gives the best sensitivity and comparable positive predictive value (related to specificity) in predicting pseudoknotted RNA secondary structures, when compared with other methods. A unique strength of pk3D is that it also generates spatial arrangement of structural elements of the RNA molecule. Comparison of three-dimensional structures predicted by pk3D with the native structure measured by nuclear magnetic resonance or X-ray experiments shows that the predicted spatial arrangement of stems and loops is often similar to that found in the native structure. These close-to-native structures can be used as starting points for further refinement to derive accurate three-dimensional structures of RNA molecules, including those with pseudoknots.  相似文献   

13.
14.
With the rapid increase in the size of the genome sequence database, computational analysis of RNA will become increasingly important in revealing structure-function relationships and potential drug targets. RNA secondary structure prediction for a single sequence is 73 % accurate on average for a large database of known secondary structures. This level of accuracy provides a good starting point for determining a secondary structure either by comparative sequence analysis or by the interpretation of experimental studies. Dynalign is a new computer algorithm that improves the accuracy of structure prediction by combining free energy minimization and comparative sequence analysis to find a low free energy structure common to two sequences without requiring any sequence identity. It uses a dynamic programming construct suggested by Sankoff. Dynalign, however, restricts the maximum distance, M, allowed between aligned nucleotides in the two sequences. This makes the calculation tractable because the complexity is simplified to O(M(3)N(3)), where N is the length of the shorter sequence.The accuracy of Dynalign was tested with sets of 13 tRNAs, seven 5 S rRNAs, and two R2 3' UTR sequences. On average, Dynalign predicted 86.1 % of known base-pairs in the tRNAs, as compared to 59.7 % for free energy minimization alone. For the 5 S rRNAs, the average accuracy improves from 47.8 % to 86.4 %. The secondary structure of the R2 3' UTR from Drosophila takahashii is poorly predicted by standard free energy minimization. With Dynalign, however, the structure predicted in tandem with the sequence from Drosophila melanogaster nearly matches the structure determined by comparative sequence analysis.  相似文献   

15.
    
Free energy minimization has been the most popular method for RNA secondary structure prediction for decades. It is based on a set of empirical free energy change parameters derived from experiments using a nearest-neighbor model. In this study, a program, MaxExpect, that predicts RNA secondary structure by maximizing the expected base-pair accuracy, is reported. This approach was first pioneered in the program CONTRAfold, using pair probabilities predicted with a statistical learning method. Here, a partition function calculation that utilizes the free energy change nearest-neighbor parameters is used to predict base-pair probabilities as well as probabilities of nucleotides being single-stranded. MaxExpect predicts both the optimal structure (having highest expected pair accuracy) and suboptimal structures to serve as alternative hypotheses for the structure. Tested on a large database of different types of RNA, the maximum expected accuracy structures are, on average, of higher accuracy than minimum free energy structures. Accuracy is measured by sensitivity, the percentage of known base pairs correctly predicted, and positive predictive value (PPV), the percentage of predicted pairs that are in the known structure. By favoring double-strandedness or single-strandedness, a higher sensitivity or PPV of prediction can be favored, respectively. Using MaxExpect, the average PPV of optimal structure is improved from 66% to 68% at the same sensitivity level (73%) compared with free energy minimization.  相似文献   

16.
    
Algorithms predicting RNA secondary structures based on different folding criteria – minimum free energies (mfe), kinetic folding (kin), maximum matching (mm) – and different parameter sets are studied systematically. Two base pairing alphabets were used: the binary GC and the natural four-letter AUGC alphabet. Computed structures and free energies depend strongly on both the algorithm and the parameter set. Statistical properties, such as mean number of base pairs, mean numbers of stacks, mean loop sizes, etc., are much less sensitive to the choice of parameter set and even of algorithm. Some features of RNA secondary structures, such as structure correlation functions, shape space covering and neutral networks, seem to depend only on the base pairing logic (GC or AUGC alphabet). Received: 16 May 1996 / Accepted: 10 July 1996  相似文献   

17.
?1 programmed ribosomal frameshifting (PRF) in viruses is often stimulated by a pseudoknot downstream from the slippery sequence. At the PRF junction of HIV-1, transmissible gastroenteritis virus (TGEV), Barmah Forest virus (BFV), Fort Morgan virus (FMV), and Equine arteritis virus (EAV), we identified potential double pseudoknots in either a tandem mode or embedded mode. In viruses with tandem pseudoknots (5′PK & 3′PK), the slippery sequence is encompassed in the 5′PK. The ribosome needs to unwind the 5′PK to get to the slippery sequence. In HIV-1, the 3′PK and several alternative structures are mutually exclusive. Disruption of the tandem pseudoknots may enable one of the alternative structures to form as the effective frameshift stimulator. In TGEV/BFV/FMV, the 3′PK is a conventional frameshift stimulator. In all cases, the tandem pseudoknots may slow down the ribosome before it reaches the conventional PRF signals. In EAV, a compact pseudoknot is embedded within loop2 of the otherwise conventional frameshift-stimulating pseudoknot. All double pseudoknots have the potential to stack their stems coaxially. We built structural models of the HIV-1 and EAV double pseudoknots to show that both the tandem and embedded modes are feasible and reasonable. We hypothesize that the fundamental reason for the viruses to utilize coaxially stacked double pseudoknots is to increase the overall stability of the frameshift regulating structure, and avoid an ultra-stable single pseudoknot which may become a ribosomal roadblock. Our results significantly expand the repertoire of RNA structures and dynamics that may potentially involve in ?1 PRF regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号