首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to determine the effect of carbohydrate (CHO; sucrose) ingestion and environmental heat on the development of fatigue and the distribution of power output during a 16.1-km cycling time trial. Ten male cyclists (Vo(2max) = 61.7 +/- 5.0 ml.kg(-1).min(-1), mean +/- SD) performed four 90-min constant-pace cycling trials at 80% of second ventilatory threshold (220 +/- 12 W). Trials were conducted in temperate (18.1 +/- 0.4 degrees C) or hot (32.2 +/- 0.7 degrees C) conditions during which subjects ingested either CHO (0.96 g.kg(-1).h(-1)) or placebo (PLA) gels. All trials were followed by a 16.1-km time trial. Before and immediately after exercise, percent muscle activation was determined using superimposed electrical stimulation. Power output, integrated electromyography (iEMG) of vastus lateralis, rectal temperature, and skin temperature were recorded throughout the trial. Percent muscle activation significantly declined during the CHO and PLA trials in hot (6.0 and 6.9%, respectively) but not temperate conditions (1.9 and 2.2%, respectively). The decline in power output during the first 6 km was significantly greater during exercise in the heat. iEMG correlated significantly with power output during the CHO trials in hot and temperate conditions (r = 0.93 and 0.73; P < 0.05) but not during either PLA trial. In conclusion, cyclists tended to self-select an aggressive pacing strategy (initial high intensity) in the heat.  相似文献   

2.
Five days of a high-fat diet while training, followed by 1 day of carbohydrate (CHO) restoration, increases rates of whole body fat oxidation and decreases CHO oxidation during aerobic cycling. The mechanisms responsible for these shifts in fuel oxidation are unknown but involve up- and downregulation of key regulatory enzymes in the pathways of skeletal muscle fat and CHO metabolism, respectively. This study measured muscle PDH and HSL activities before and after 20 min of cycling at 70% VO2peak and 1 min of sprinting at 150% peak power output (PPO). Estimations of muscle glycogenolysis were made during the initial minute of exercise at 70% VO2peak and during the 1-min sprint. Seven male cyclists undertook this exercise protocol on two occasions. For 5 days, subjects consumed in random order either a high-CHO (HCHO) diet (10.3 g x kg(-1) x day(-1) CHO, or approximately 70% of total energy intake) or an isoenergetic high-fat (FAT-adapt) diet (4.6 g x kg(-1) x day(-1) FAT, or 67% of total energy) while undertaking supervised aerobic endurance training. On day 6 for both treatments, subjects ingested an HCHO diet and rested before their experimental trials on day 7. This CHO restoration resulted in similar resting glycogen contents (FAT-adapt 873 +/- 121 vs. HCHO 868 +/- 120 micromol glucosyl units/g dry wt). However, the respiratory exchange ratio was lower during cycling at 70% VO2peak in the FAT-adapt trial, which resulted in an approximately 45% increase and an approximately 30% decrease in fat and CHO oxidation, respectively. PDH activity was lower at rest and throughout exercise at 70% VO2peak (1.69 +/- 0.25 vs. 2.39 +/- 0.19 mmol x kg wet wt(-1) x min(-1)) and the 1-min sprint in the FAT-adapt vs. the HCHO trial. Estimates of glycogenolysis during the 1st min of exercise at 70% VO2peak and the 1-min sprint were also lower after FAT-adapt (9.1 +/- 1.1 vs. 13.4 +/- 2.1 and 37.3 +/- 5.1 vs. 50.5 +/- 2.7 glucosyl units x kg dry wt(-1) x min(-1)). HSL activity was approximately 20% higher (P = 0.12) during exercise at 70% VO2peak after FAT-adapt. Results indicate that previously reported decreases in whole body CHO oxidation and increases in fat oxidation after the FAT-adapt protocol are a function of metabolic changes within skeletal muscle. The metabolic signals responsible for the shift in muscle substrate use during cycling at 70% VO2peak remain unclear, but lower accumulation of free ADP and AMP after the FAT-adapt trial may be responsible for the decreased glycogenolysis and PDH activation during sprinting.  相似文献   

3.
We evaluated the effect of carbohydrate (CHO) loading on cycling performance that was designed to be similar to the demands of competitive road racing. Seven well-trained cyclists performed two 100-km time trials (TTs) on separate occasions, 3 days after either a CHO-loading (9 g CHO. kg body mass(-1). day(-1)) or placebo-controlled moderate-CHO diet (6 g CHO. kg body mass(-1). day(-1)). A CHO breakfast (2 g CHO/kg body mass) was consumed 2 h before each TT, and a CHO drink (1 g CHO. kg(.)body mass(-1). h(-1)) was consumed during the TTs to optimize CHO availability. The 100-km TT was interspersed with four 4-km and five 1-km sprints. CHO loading significantly increased muscle glycogen concentrations (572 +/- 107 vs. 485 +/- 128 mmol/kg dry wt for CHO loading and placebo, respectively; P < 0.05). Total muscle glycogen utilization did not differ between trials, nor did time to complete the TTs (147.5 +/- 10.0 and 149.1 +/- 11.0 min; P = 0.4) or the mean power output during the TTs (259 +/- 40 and 253 +/- 40 W, P = 0.4). This placebo-controlled study shows that CHO loading did not improve performance of a 100-km cycling TT during which CHO was consumed. By preventing any fall in blood glucose concentration, CHO ingestion during exercise may offset any detrimental effects on performance of lower preexercise muscle and liver glycogen concentrations. Alternatively, part of the reported benefit of CHO loading on subsequent athletic performance could have resulted from a placebo effect.  相似文献   

4.
We determined the effect of fat adaptation on metabolism and performance during 5 h of cycling in seven competitive athletes who consumed a standard carbohydrate (CHO) diet for 1 day and then either a high-CHO diet (11 g. kg(-1)x day(-1) CHO, 1 g x kg(-1) x day(-1) fat; HCHO) or an isoenergetic high-fat diet (2.6 g x kg(-1) x day(-1) CHO, 4.6 g x kg(-1) x day(-1) fat; fat-adapt) for 6 days. On day 8, subjects consumed a high-CHO diet and rested. On day 9, subjects consumed a preexercise meal and then cycled for 4 h at 65% peak O(2) uptake, followed by a 1-h time trial (TT). Compared with baseline, 6 days of fat-adapt reduced respiratory exchange ratio (RER) with cycling at 65% peak O(2) uptake [0.78 +/- 0.01 (SE) vs. 0.85 +/- 0.02; P < 0.05]. However, RER was restored by 1 day of high-CHO diet, preexercise meal, and CHO ingestion (0.88 +/- 0.01; P < 0.05). RER was higher after HCHO than fat-adapt (0.85 +/- 0.01, 0.89 +/- 0.01, and 0.93 +/- 0.01 for days 2, 8, and 9, respectively; P < 0.05). Fat oxidation during the 4-h ride was greater (171 +/- 32 vs. 119 +/- 38 g; P < 0.05) and CHO oxidation lower (597 +/- 41 vs. 719 +/- 46 g; P < 0.05) after fat-adapt. Power output was 11% higher during the TT after fat-adapt than after HCHO (312 +/- 15 vs. 279 +/- 20 W; P = 0.11). In conclusion, compared with a high-CHO diet, fat oxidation during exercise increased after fat-adapt and remained elevated above baseline even after 1 day of a high-CHO diet and increased CHO availability. However, this study failed to detect a significant benefit of fat adaptation to performance of a 1-h TT undertaken after 4 h of cycling.  相似文献   

5.
For 5 days, eight well-trained cyclists consumed a random order of a high-carbohydrate (CHO) diet (9.6 g. kg(-1). day(-1) CHO, 0.7 g. kg(-1). day(-1) fat; HCHO) or an isoenergetic high-fat diet (2.4 g. kg(-1). day(-1) CHO, 4 g. kg(-1). day(-1) fat; Fat-adapt) while undertaking supervised training. On day 6, subjects ingested high CHO and rested before performance testing on day 7 [2 h cycling at 70% maximal O(2) consumption (SS) + 7 kJ/kg time trial (TT)]. With Fat-adapt, 5 days of high-fat diet reduced respiratory exchange ratio (RER) during cycling at 70% maximal O(2) consumption; this was partially restored by 1 day of high CHO [0.90 +/- 0.01 vs. 0.82 +/- 0.01 (P < 0.05) vs. 0.87 +/- 0.01 (P < 0.05), for day 1, day 6, and day 7, respectively]. Corresponding RER values on HCHO trial were [0. 91 +/- 0.01 vs. 0.88 +/- 0.01 (P < 0.05) vs. 0.93 +/- 0.01 (P < 0.05)]. During SS, estimated fat oxidation increased [94 +/- 6 vs. 61 +/- 5 g (P < 0.05)], whereas CHO oxidation decreased [271 +/- 16 vs. 342 +/- 14 g (P < 0.05)] for Fat-adapt compared with HCHO. Tracer-derived estimates of plasma glucose uptake revealed no differences between treatments, suggesting muscle glycogen sparing accounted for reduced CHO oxidation. Direct assessment of muscle glycogen utilization showed a similar order of sparing (260 +/- 26 vs. 360 +/- 43 mmol/kg dry wt; P = 0.06). TT performance was 30.73 +/- 1.12 vs. 34.17 +/- 2.48 min for Fat-adapt and HCHO (P = 0.21). These data show significant metabolic adaptations with a brief period of high-fat intake, which persist even after restoration of CHO availability. However, there was no evidence of a clear benefit of fat adaptation to cycling performance.  相似文献   

6.
The present study investigated potential sex-related differences in the metabolic response to carbohydrate (CHO) ingestion during exercise. Moderately endurance-trained men and women (n = 8 for each sex) performed 2 h of cycling at approximately 67% Vo(2 max) with water (WAT) or CHO ingestion (1.5 g of glucose/min). Substrate oxidation and kinetics were quantified during exercise using indirect calorimetry and stable isotope techniques ([(13)C]glucose ingestion, [6,6-(2)H(2)]glucose, and [(2)H(5)]glycerol infusion). In both sexes, CHO ingestion significantly increased the rates of appearance (R(a)) and disappearance (R(d)) of glucose during exercise compared with WAT ingestion [males: WAT, approximately 28-29 micromol x kg lean body mass (LBM)(-1) x min(-1); CHO, approximately 53 micromol x kg LBM(-1) x min(-1); females: WAT, approximately 28-29 micromol x kg LBM(-1) x min(-1); CHO, approximately 61 micromol x kg LBM(-1) x min(-1); main effect of trial, P < 0.05]. The contribution of plasma glucose oxidation to the energy yield was significantly increased with CHO ingestion in both sexes (from approximately 10% to approximately 20% of energy expenditure; main effect of trial, P < 0.05). Liver-derived glucose oxidation was reduced, although the rate of muscle glycogen oxidation was unaffected with CHO ingestion (males: WAT, 108 +/- 12 micromol x kg LBM(-1) x min(-1); CHO, 108 +/- 11 micromol x kg LBM(-1) x min(-1); females: WAT, 89 +/- 10 micromol x kg LBM(-1) x min(-1); CHO, 93 +/- 11 micromol x kg LBM(-1) x min(-1)). CHO ingestion reduced fat oxidation and lipolytic rate (R(a) glycerol) to a similar extent in both sexes. Finally, ingested CHO was oxidized at similar rates in men and women during exercise (peak rates of 0.70 +/- 0.08 and 0.65 +/- 0.06 g/min, respectively). The present investigation suggests that the metabolic response to CHO ingestion during exercise is largely similar in men and women.  相似文献   

7.
Six endurance-trained men [peak oxygen uptake (V(O(2))) = 4.58 +/- 0.50 (SE) l/min] completed 60 min of exercise at a workload requiring 68 +/- 2% peak V(O(2)) in an environmental chamber maintained at 35 degrees C (<50% relative humidity) on two occasions, separated by at least 1 wk. Subjects ingested either a 6% glucose solution containing 1 microCi [3-(3)H]glucose/g glucose (CHO trial) or a sweet placebo (Con trial) during the trials. Rates of hepatic glucose production [HGP = glucose rate of appearance (R(a)) in Con trial] and glucose disappearance (R(d)), were measured using a primed, continuous infusion of [6,6-(2)H]glucose, corrected for gut-derived glucose (gut R(a)) in the CHO trial. No differences in heart rate, V(O(2)), respiratory exchange ratio, or rectal temperature were observed between trials. Plasma glucose concentrations were similar at rest but increased (P < 0.05) to a greater extent in the CHO trial compared with the Con trial. This was due to the absorption of ingested glucose in the CHO trial, because gut R(a) after 30 and 50 min (16 +/- 5 micromol. kg(-1). min(-1)) was higher (P < 0.05) compared with rest, whereas HGP during exercise was not different between trials. Glucose R(d) was higher (P < 0.05) in the CHO trial after 30 and 50 min (48.0 +/- 6.3 vs 34.6 +/- 3.8 micromol. kg(-1). min(-1), CHO vs. Con, respectively). These results indicate that ingestion of carbohydrate, at a rate of approximately 1.0 g/min, increases glucose R(d) but does not blunt the rise in HGP during exercise in the heat.  相似文献   

8.
The purpose of the present study was to investigate whether combined ingestion of two carbohydrates (CHO) that are absorbed by different intestinal transport mechanisms would lead to exogenous CHO oxidation rates of >1.0 g/min. Nine trained male cyclists (maximal O(2) consumption: 64 +/- 2 ml x kg body wt(-1) x min(-1)) performed four exercise trials, which were randomly assigned and separated by at least 1 wk. Each trial consisted of 150 min of cycling at 50% of maximal power output (60 +/- 1% maximal O(2) consumption), while subjects received a solution providing either 1.8 g/min of glucose (Glu), 1.2 g/min of glucose + 0.6 g/min of sucrose (Glu+Suc), 1.2 g/min of glucose + 0.6 g/min of maltose (Glu+Mal), or water. Peak exogenous CHO oxidation rates were significantly higher (P < 0.05) in the Glu+Suc trial (1.25 +/- 0.07 g/min) compared with the Glu and Glu+Mal trials (1.06 +/- 0.08 and 1.06 +/- 0.06 g/min, respectively). No difference was found in (peak) exogenous CHO oxidation rates between Glu and Glu+Mal. These results demonstrate that, when a mixture of glucose and sucrose is ingested at high rates (1.8 g/min) during cycling exercise, exogenous CHO oxidation rates reach peak values of approximately 1.25 g/min.  相似文献   

9.
Investigators have reported improved endurance performance and attenuated post-exercise muscle damage with carbohydrate-protein beverages (CHO+P) versus carbohydrate-only beverages (CHO). However, these benefits have been demonstrated only when CHO+P was administered in beverage-form, and exclusively in male subjects. Thus, the purposes of this study were to determine if an oral CHO+P gel improved endurance performance and post-exercise muscle damage compared to a CHO gel, and determine if responses were similar between genders. Thirteen cyclists (8 men, 5 women; VO(2)peak = 57.9 +/- 7.0 ml x kg(-1) x min(-1)) completed two timed cycle-trials to volitional exhaustion at 75% of VO(2)peak. At 15-minute intervals throughout these rides, subjects received CHO or CHO+P gels, which were matched for carbohydrate content (CHO = 0.15 g CHO x kg BW(-1); CHO+P = 0.15 g CHO + 0.038 g protein x kg BW(-1)). Trials were performed using a randomly counterbalanced, double-blind design. Subjects rode 13% longer (p < 0.05) when utilizing the CHO+P gel (116.6 +/- 28.5 minutes) versus the CHO gel (102.8 +/- 25.0 minutes). In addition, men (101.8 +/- 24.6; 114.8 +/- 26.2) and women (104.4 +/- 28.6; 119.6 +/- 34.9) responded similarly to the CHO and CHO+P trials, with no significant treatment-by-gender effect. Postexercise creatine kinease (CK) was not significantly different between treatments. However, CK increased significantly following exercise in the CHO trial (183 +/- 116; 267 +/- 214 U x L(-1)), but not the CHO+P trial (180 +/- 133; 222 +/- 141 U x L(-1)). Therefore, to prolong endurance performance and prevent increases in muscle damage, it is recommended that male and female cyclists consume CHO+P gels rather than CHO gels during and immediately following exercise.  相似文献   

10.
Eight endurance-trained men cycled to volitional exhaustion at 69 +/- 1% peak oxygen uptake on two occasions to examine the effect of carbohydrate supplementation during exercise on muscle energy metabolism. Subjects ingested an 8% carbohydrate solution (CHO trial) or a sweet placebo (Con trial) in a double-blind, randomized order, with vastus lateralis muscle biopsies (n = 7) obtained before and immediately after exercise. No differences in oxygen uptake, heart rate, or respiratory exchange ratio during exercise were observed between the trials. Exercise time to exhaustion was increased by approximately 30% when carbohydrate was ingested [199 +/- 21 vs. 152 +/- 9 (SE) min, P < 0.05]. Plasma glucose and insulin levels during exercise were higher and plasma free fatty acids lower in the CHO trial. No differences between trials were observed in the decreases in muscle glycogen and phosphocreatine or the increases in muscle lactate due to exercise. Muscle ATP levels were not altered by exercise in either trial. There was a small but significant increase in muscle inosine monophosphate levels at the point of exhaustion in both trials, and despite the subjects in CHO trial cycling 47 min longer, their muscle inosine monophosphate level was significantly lower than in the Con trial (CHO: 0.16 +/- 0.08, Con: 0.23 +/- 0.09 mmol/kg dry muscle). These data suggest that carbohydrate ingestion may increase endurance capacity, at least in part, by improving muscle energy balance.  相似文献   

11.
Maintaining hyperinsulinemia (approximately 150 mU/l) during steady-state hypercarnitinemia (approximately 550 micromol/l) increases skeletal muscle total carnitine (TC) content by approximately 15% within 5 h. The present study aimed to investigate whether an increase in whole body carnitine retention can be achieved through L-carnitine feeding in conjunction with a dietary-induced elevation in circulating insulin. On two randomized visits (study A), eight men ingested 3 g/day L-carnitine followed by 4 x 500-ml solutions, each containing flavored water (Con) or 94 g simple sugars (glucose syrup; CHO). In addition, 14 men ingested 3 g/day L-carnitine followed by 2 x 500 ml of either Con or CHO for 2 wk (study B). Carbohydrate ingestion in study A resulted in a fourfold greater serum insulin area under the curve when compared with Con (P < 0.001) and in a lower plasma TC concentration throughout the CHO visit (P < 0.05). Twenty-four-hour urinary TC excretion in the CHO visit was lower than in the Con visit in study A (155.0 +/- 10.7 vs. 212.1 +/- 17.2 mg; P < 0.05). In study B, daily urinary TC excretion increased after 3 days (65.9 +/- 18.0 to 281.0 +/- 35.0 mg; P < 0.001) and remained elevated throughout the Con trial. During the CHO trial, daily urinary TC excretion increased from a similar basal value of 53.8 +/- 9.2 to 166.8 +/- 17.3 mg after 3 days (P < 0.01), which was less than during the Con trial (P < 0.01), and it remained lower over the course of the study (P < 0.001). The difference in plasma TC concentration in study A and 24-h urinary TC excretion in both studies suggests that insulin augmented the retention of carnitine in the CHO trials.  相似文献   

12.
Ingestion of a protein-amino acid mixture (Pro; wheat protein hydrolysate, leucine, and phenylalanine) in combination with carbohydrate (CHO; 0.8 g x kg(-1) x h(-1)) has been shown to increase muscle glycogen synthesis after exercise compared with the same amount of CHO without Pro. The aim of this study was to investigate whether coingestion of Pro also increases muscle glycogen synthesis when 1.2 g CHO. kg(-1). h(-1) is ingested. Eight male cyclists performed two experimental trials separated by 1 wk. After glycogen-depleting exercise, subjects received either CHO (1.2 g x kg(-1) x h(-1)) or CHO+Pro (1.2 g CHO x kg(-1) x h(-1) + 0.4 g Pro x kg(-1) x h(-1)) during a 3-h recovery period. Muscle biopsies were obtained immediately, 1 h, and 3 h after exercise. Blood samples were collected immediately after the exercise bout and every 30 min thereafter. Plasma insulin was significantly higher in the CHO+Pro trial compared with the CHO trial (P < 0.05). No difference was found in plasma glucose or in rate of muscle glycogen synthesis between the CHO and the CHO+Pro trials. Although coingestion of a protein amino acid mixture in combination with a large CHO intake (1.2 g x kg(-1) x h(-1)) increases insulin levels, this does not result in increased muscle glycogen synthesis.  相似文献   

13.
To determine whether the relative utilization of exogenous carbohydrate (CHO(exo)) differs between children and adults, substrate utilization during 60 min of cycling at 70% peak O(2) uptake was studied in 12 pre- and early pubertal boys (9.8 +/- 0.1 yr) and 10 men (22.1 +/- 0.5 yr) on two occasions. Subjects consumed either a placebo or a (13)C-enriched 6% CHO(exo) beverage (total volume per trial: 24 ml/kg). Substrate utilization was calculated for the final 30 min of exercise. During both trials, total fat oxidation was higher (5.4 +/- 0.5 vs. 3.0 +/- 0.4 mg x kg(-1) x min(-1), P < 0.001) and total CHO oxidation lower (27.4 +/- 1.5 vs. 34.8 +/- 1.2 mg x kg(-1) x min(-1), P < 0.001) in boys than in men, respectively. During the CHO(exo) trial, CHO(exo) oxidation was higher (P < 0.001) in boys (8.8 +/- 0.5 mg x kg(-1) x min(-1)) than in men (6.2 +/- 0.5 mg x kg(-1) x min(-1)) and provided a greater (P < 0.001) relative proportion of total energy in boys (21.8 +/- 1.4%) than in men (14.6 +/- 0.9%). These results suggest that, although endogenous CHO utilization during exercise is lower, the relative oxidation of ingested CHO is considerably higher in boys than in men. The greater reliance on CHO(exo) in boys may be important in preserving endogenous fuels and may be related to pubertal status.  相似文献   

14.
There has been recent interest in the potential performance and metabolic effects of carbohydrate ingestion during exercise lasting approximately 1 h. In this study, 13 well-trained men ingested in randomized order either a 6% glucose solution (CHO trial) or a placebo (Con trial) during exercise to exhaustion at 83+/-1% peak oxygen uptake. In six subjects, vastus lateralis muscle was sampled at rest, at 32 min, and at exhaustion, and in six subjects, glucose kinetics was determined by infusion of [6,6-(2)H]glucose in both trials and ingestion of [6-(3)H]glucose in the CHO trial. Of the 84 g of glucose ingested during exercise in the CHO trial, only 22 g appeared in the peripheral circulation. This resulted in a small (12 g) but significant (P<0.05) increase in glucose uptake without influencing carbohydrate oxidation, muscle glycogen use, or time to exhaustion (CHO: 68.1+/-4.1 min; Con: 69.6+/-5.5 min). Decreases in muscle phosphocreatine content and increases in muscle inosine monophosphate and lactate content during exercise were similar in the two trials. Although endogenous glucose production during exercise was partially suppressed in the CHO trial, it remained significantly above preexercise levels throughout exercise. In conclusion, only 26% of the ingested glucose appeared in the peripheral circulation. Glucose ingestion increased glucose uptake and partially reduced endogenous glucose production but had no effect on carbohydrate oxidation, muscle metabolism, or time to exhaustion during exercise at 83% peak oxygen uptake.  相似文献   

15.
This study was undertaken to examine the effects of ingestion of carbohydrate (CHO) solutions of 0 (WP), 6 (CHO-6), 12 (CHO-12), and 18 g CHO/100 ml (CHO-18) on performance and muscle glycogen use. Ten trained cyclists performed five 120-min cycling trials. The first 105 min of each trial was at 70% of maximal O2 consumption (VO2max), and the final 15 min was an all-out performance ride on an isokinetic cycle ergometer equipped to measure total work output. In one of the trials (CHO-12I) the submaximal portion of the ride consisted of seven 15-min rides at 70% of VO2max with a 3-min rest between each ride. Every 15 min the men consumed 8.5 ml.kg-1.h-1 (approximately 150 ml) of one of the four test solutions. Venous blood samples were obtained every 15 min for glucose and insulin. Muscle biopsies were obtained from the vastus lateralis at 0 and 105 min in the WP and the CHO-12 continuous and intermittent trials. Biopsy samples were assayed for glycogen and sectioned and stained for myosin adenosinetriphosphatase and glycogen for single fiber depletion measurements. There were no differences in glycogen use (86.7 +/- 6.0, 75.5 +/- 7.9, and 83.5 +/- 5.5 mmol/kg for the WP, CHO-12C, and CHO-12I, respectively) or depletion patterns between the WP and the two CHO-12 trials. Blood glucose was significantly elevated in both the CHO-12 trials and in the CHO-18 trial compared with the WP trial.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Both carbohydrate (CHO) and caffeine have been used as ergogenic aids during exercise. It has been suggested that caffeine increases intestinal glucose absorption, but there are also suggestions that it may decrease muscle glucose uptake. The purpose of the study was to investigate the effect of caffeine on exogenous CHO oxidation. In a randomized crossover design, eight male cyclists (age 27 +/- 2 yr, body mass 71.2 +/- 2.3 kg, maximal oxygen uptake 65.7 +/- 2.2 ml x kg(-1) x min(-1)) exercised at 64 +/- 3% of maximal oxygen uptake for 120 min on three occasions. During exercise subjects ingested either a 5.8% glucose solution (Glu; 48 g/h), glucose with caffeine (Glu+Caf, 48 g/h + 5 mg x kg(-1) x h(-1)), or plain water (Wat). The glucose solution contained trace amounts of [U-13C]glucose so that exogenous CHO oxidation could be calculated. CHO and fat oxidation were measured by indirect calorimetry, and 13C appearance in the expired gases was measured by continuous-flow IRMS. Average exogenous CHO oxidation over the 90- to 120-min period was 26% higher (P < 0.05) in Glu+Caf (0.72 +/- 0.04 g/min) compared with Glu (0.57 +/- 0.04 g/min). Total CHO oxidation rates were higher (P < 0.05) in the CHO ingestion trials compared with Wat, but they were highest when Glu+Caf was ingested (1.21 +/- 0.37, 1.84 +/- 0.14, and 2.47 +/- 0.23 g/min for Wat, Glu, and Glu+Caf, respectively; P < 0.05). There was also a trend (P = 0.082) toward an increased endogenous CHO oxidation with Glu+Caf (1.81 +/- 0.22 g/min vs. 1.27 +/- 0.13 g/min for Glu and 1.12 +/- 0.37 g/min for Wat). In conclusion, compared with glucose alone, 5 mg x kg(-1) x h(-1) of caffeine coingested with glucose increases exogenous CHO oxidation, possibly as a result of an enhanced intestinal absorption.  相似文献   

17.
The aim of this study was to investigate the effect of a high-fat diet (HFD) followed by 1 day of carbohydrate (CHO) loading on substrate utilization, heart rate variability (HRV), effort perception [rating or perceived exertion (RPE)], muscle recruitment [electromyograph (EMG)], and performance during a 100-km cycling time trial. In this randomized single-blind crossover study, eight well-trained cyclists completed two trials, ingesting either a high-CHO diet (HCD) (68% CHO energy) or an isoenergetic HFD (68% fat energy) for 6 days, followed by 1 day of CHO loading (8-10 g CHO/kg). Subjects completed a 100-km time trial on day 1 and a 1-h cycle at 70% of peak oxygen consumption on days 3, 5, and 7, during which resting HRV and resting and exercising respiratory exchange ratio (RER) were measured. On day 8, subjects completed a 100-km performance time trial, during which blood samples were drawn and EMG was recorded. Ingestion of the HFD reduced RER at rest (P < 0.005) and during exercise (P < 0.01) and increased plasma free fatty acid levels (P < 0.01), indicating increased fat utilization. There was a tendency for the low-frequency power component of HRV to be greater for HFD-CHO (P = 0.056), suggestive of increased sympathetic activation. Overall 100-km time-trial performance was not different between diets; however, 1-km sprint power output after HFD-CHO was lower (P < 0.05) compared with HCD-CHO. Despite a reduced power output with HFD-CHO, RPE, heart rate, and EMG were not different between trials. In conclusion, the HFD-CHO dietary strategy increased fat oxidation, but compromised high intensity sprint performance, possibly by increased sympathetic activation or altered contractile function.  相似文献   

18.
In the present study, we tested the hypothesis that a carbohydrate-protein (CHO-Pro) supplement would be more effective in the replenishment of muscle glycogen after exercise compared with a carbohydrate supplement of equal carbohydrate content (LCHO) or caloric equivalency (HCHO). After 2.5 +/- 0.1 h of intense cycling to deplete the muscle glycogen stores, subjects (n = 7) received, using a rank-ordered design, a CHO-Pro (80 g CHO, 28 g Pro, 6 g fat), LCHO (80 g CHO, 6 g fat), or HCHO (108 g CHO, 6 g fat) supplement immediately after exercise (10 min) and 2 h postexercise. Before exercise and during 4 h of recovery, muscle glycogen of the vastus lateralis was determined periodically by nuclear magnetic resonance spectroscopy. Exercise significantly reduced the muscle glycogen stores (final concentrations: 40.9 +/- 5.9 mmol/l CHO-Pro, 41.9 +/- 5.7 mmol/l HCHO, 40.7 +/- 5.0 mmol/l LCHO). After 240 min of recovery, muscle glycogen was significantly greater for the CHO-Pro treatment (88.8 +/- 4.4 mmol/l) when compared with the LCHO (70.0 +/- 4.0 mmol/l; P = 0.004) and HCHO (75.5 +/- 2.8 mmol/l; P = 0.013) treatments. Glycogen storage did not differ significantly between the LCHO and HCHO treatments. There were no significant differences in the plasma insulin responses among treatments, although plasma glucose was significantly lower during the CHO-Pro treatment. These results suggest that a CHO-Pro supplement is more effective for the rapid replenishment of muscle glycogen after exercise than a CHO supplement of equal CHO or caloric content.  相似文献   

19.
To study the effects of carbohydrate (CHO) supplementation on performance changes and symptoms of overreaching, six male endurance cyclists completed 1 wk of normal (N), 8 days of intensified (ITP), and 2 wk of recovery training (R) on two occasions in a randomized crossover design. Subjects completed one trial with a 6% CHO solution provided before and during training and a 20% solution in the 1 h postexercise (H-CHO trial). On the other occasion, subjects consumed a 2% CHO solution at the same time points (L-CHO). A significant decline in time to fatigue at approximately 63% maximal power output (H-CHO: 17 +/- 3%; L-CHO: 26 +/- 7%) and a significant increase in mood disturbance occurred in both trials after ITP. The decline in performance was significantly greater in the L-CHO trial. After ITP, a significant decrease in estimated muscle glycogen oxidation (H-CHO: N 49.3 +/- 2.9 kcal/30 min, ITP 32.6 +/- 3.4 kcal/30 min; L-CHO: N 49.1 +/- 30 kcal/30 min, ITP 39.0 +/- 5.6 kcal/30 min) and increase in fat oxidation (H-CHO: N 16.3 +/- 2.4 kcal/30 min, ITP 27.8 +/- 2.3 kcal/30 min; L-CHO: N 16.9 +/- 2.6 kcal/30 min, ITP: 25.4 +/- 3.5 kcal/30 min) occurred alongside significant increases in glycerol and free fatty acids and decreases in free triglycerides in both trials. An interaction effect was observed for submaximal plasma concentrations of cortisol and epinephrine, with significantly greater reductions in these stress hormones in L-CHO compared with H-CHO after ITP. These findings suggest that CHO supplementation can reduce the symptoms of overreaching but cannot prevent its development. Decreased endocrine responsiveness to exercise may be implicated in the decreased performance and increased mood disturbance characteristic of overreaching.  相似文献   

20.
To test the effects of tyrosine ingestion with or without carbohydrate supplementation on endurance performance, nine competitive cyclists cycled at 70% peak oxygen uptake for 90 min under four different feeding conditions followed immediately by a time trial. At 30-min intervals, beginning 60 min before exercise, each subject consumed either 5 ml/kg body wt of water sweetened with aspartame [placebo (Pla)], polydextrose (70 g/l) (CHO), L-tyrosine (25 mg/kg body wt) (Tyr), or polydextrose (70 g/l) and L-tyrosine (25 mg/kg body wt) (CHO+Tyr). The experimental trials were given in random order and were carried out by using a counterbalanced double-blind design. No differences were found between treatments for oxygen uptake, heart rate, or rating of perceived exertion at any time during the 90-min ride. Plasma tyrosine rose significantly from 60 min before exercise to test termination (TT) in Tyr (means +/- SE) (480 +/- 26 micromol) and CHO+Tyr (463 +/- 34 micromol) and was significantly higher in these groups from 30 min before exercise to TT vs. CHO (90 +/- 3 micromol) and Pla (111 +/- 7 micromol) (P < 0.05). Plasma free tryptophan was higher after 90 min of exercise, 15 min into the endurance time trial, and at TT in Tyr (10.1 +/- 0.9, 10.4 +/- 0.8, and 12.0 +/- 0.9 micromol, respectively) and Pla (9.7 +/- 0.5, 10.0 +/- 0.3, and 11.7 +/- 0.5 micromol, respectively) vs. CHO (7.8 +/- 0.5, 8.6 +/- 0.5, and 9.3 +/- 0.6 micromol, respectively) and CHO+Tyr (7.8 +/- 0.5, 8.5 +/- 0.5, 9.4 +/- 0.5 micromol, respectively) (P < 0.05). The plasma tyrosine-to-free tryptophan ratio was significantly higher in Tyr and CHO+Tyr vs. CHO and Pla from 30 min before exercise to TT (P < 0.05). CHO (27.1 +/- 0.9 min) and CHO+Tyr (26.1 +/- 1.1 min) treatments resulted in a reduced time to complete the endurance time trial compared with Pla (34.4 +/- 2.9 min) and Tyr (32.6 +/- 3.0 min) (P < 0.05). These findings demonstrate that tyrosine ingestion did not enhance performance during a cycling time trial after 90 min of steady-state exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号