首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Seven strains of nonproteolytic Clostridium botulinum (types B, E, and F) were each inoculated into a range of anaerobic cooked puréed vegetables. After incubation at 10 degrees C for 15 to 60 days, all seven strains formed toxin in mushrooms, five did so in broccoli, four did so in cauliflower, three did so in asparagus, and one did so in kale. Growth kinetics of nonproteolytic C. botulinum type B in cooked mushrooms, cauliflower, and potatoes were determined at 16, 10, 8, and 5 degrees C. Growth and toxin production occurred in cooked cauliflower and mushrooms at all temperatures and in potatoes at 16 and 8 degrees C. The C. botulinum neurotoxin was detected within 3 to 5 days at 16 degrees C, 11 to 13 days at 10 degrees C, 10 to 34 days at 8 degrees C, and 17 to 20 days at 5 degrees C.  相似文献   

2.
Inoculated packs of cooked and raw ground beef were sterilized with gamma radiation from cobalt-60. With inocula of 5,000,000 Clostridium botulinum 213B spores per g of cooked ground beef, 3.8 megarad were required for sterilization; in raw ground beef, 3.72 megarad sterilized the meat when inocula of 1,700,000 C. botulinum 213B spores were used per g. Using C. botulinum 62A spores, cooked ground beef inoculated with 5,200,000 spores per g was sterilized with 3.85 megarad; raw ground beef, inoculated with 2,670,000 spores per g, was sterilized with 3.6 megarad. Cans of meat that were considered sterile by lack of culture growth after incubation for at least 6 months and, in some instances, as long as 5 years, were tested for the presence of botulinus toxin. No toxin was found in any meat taken from inoculated packs prepared from C. botulinum 213B spores; however, all cans of meat that had been inoculated with more than 2,670,000 C. botulinum 62A spores per g of meat, contained type A toxin. It was shown that these latter inocula of heat-shocked spores, by themselves, contained sufficient toxin to kill mice. However, more toxin appeared to be present than could be ascribed to the unirradiated spores alone. This finding is discussed.  相似文献   

3.
A cocktail of washed spores from six psychrotrophic Clostridium strains isolated from blown vacuum-packed meats was inoculated onto lamb chumps. A second washed spore cocktail of four toxigenic reference Cl. botulinum strains, types A, B (two strains) and E, and a Cl. butyricum type E strain, was similarly inoculated onto lamb chumps. All inoculated lamb chumps were individually vacuum-packed and placed into storage at various temperatures typical of good to grossly abusive chilled storage (-1 degree C to 15 degrees C). All packs were observed for gas production (pack-'blowing') over a 12 week storage period. On gas production, or after 12 weeks of storage, packs were examined by mouse bioassay for botulinum toxin production. The packs inoculated with the meat isolate cocktail showed evidence of gas production earlier than packs inoculated with reference strains. No botulinum toxin was recovered from the meat isolate inoculated packs, while botulinal toxin was detected in reference strain inoculated packs down to a nominal storage temperature of 2 degrees C.  相似文献   

4.
The effects of water activity (aw, 0.955 to 0.970), pH (4.75 to 5.75), and storage time (up to 60 days) on toxin production by Clostridium botulinum in cooked, vacuum-packed potatoes were studied by using factorial design experiments and most-probable-number methodology. Samples were inoculated with 10(3), 10(4), or 10(5) spores of a mixture of five type A and five proteolytic type B strains, incubated at 25 degrees C, and analyzed for toxin production. Toxin was produced at pH levels of greater than or equal to 4.75 when the aw was greater than or equal to 0.970, pH greater than 5.25 when the aw was 0.965, and pH greater than or equal to 5.75 at an aw of 0.960. No toxin was detected when the aw was 0.955. The probability of toxigenesis was significantly affected (P less than 0.0001) by storage time, aw, pH, and the interactions aw.pH and aw.storage time. The response to a decrease in pH was linear, while the response to a decrease in aw was curvilinear. Using multiple linear regression, equations were derived which could predict the length of time until toxin production and the probability of toxigenesis by a single spore under defined conditions.  相似文献   

5.
The effects of water activity (aw, 0.955 to 0.970), pH (4.75 to 5.75), and storage time (up to 60 days) on toxin production by Clostridium botulinum in cooked, vacuum-packed potatoes were studied by using factorial design experiments and most-probable-number methodology. Samples were inoculated with 10(3), 10(4), or 10(5) spores of a mixture of five type A and five proteolytic type B strains, incubated at 25 degrees C, and analyzed for toxin production. Toxin was produced at pH levels of greater than or equal to 4.75 when the aw was greater than or equal to 0.970, pH greater than 5.25 when the aw was 0.965, and pH greater than or equal to 5.75 at an aw of 0.960. No toxin was detected when the aw was 0.955. The probability of toxigenesis was significantly affected (P less than 0.0001) by storage time, aw, pH, and the interactions aw.pH and aw.storage time. The response to a decrease in pH was linear, while the response to a decrease in aw was curvilinear. Using multiple linear regression, equations were derived which could predict the length of time until toxin production and the probability of toxigenesis by a single spore under defined conditions.  相似文献   

6.
AIMS: Limited information is available on the germination triggers for spores of non-proteolytic Clostridium botulinum. An automated system was used to study the effect of a large number of potential germinants, of temperature and pH, and aerobic and anaerobic conditions, on germination of spores of non-proteolytic Cl. botulinum types B, E and F. METHODS AND RESULTS: A Bioscreen analyser was used to measure germination by decrease in optical density. Results were confirmed by phase-contrast light microscopy. Spores of strains producing type B, E and F toxin gave similar results. Optimum germination occurred in L-alanine/L-lactate, L-cysteine/L-lactate and L-serine/L-lactate (50 mmol l(-1) of each). A further 12 combinations of factors induced germination. Sodium bicarbonate, sodium thioglycollate and heat shock each enhanced germination, but were not essential. Germination was similar in aerobic and anaerobic conditions. The optimum pH range was 5.5-8.0, germination occurred at 1-40 degrees C, but not at 50 degrees C, and was optimal at 20-25 degrees C. CONCLUSIONS: The automated system enabled a systematic study of germination requirements, and provided an insight into germination in spores of non-proteolytic Cl. botulinum. SIGNIFICANCE AND IMPACT OF THE STUDY: The results extend understanding of germination of non-proteolytic Cl. botulinum spores, and provide a basis for improving detection of viable spores.  相似文献   

7.
The effect of combinations of temperature (2°, 3°, 4°, 5°, 8° and 10°C), pH (5·0–7·2) and NaCl (0·1–5·0% w/w) on growth from spores of non-proteolytic Clostridium botulinum types B, E and F was determined using a strictly anaerobic medium. Inoculated media were observed weekly for turbidity, and tests were made for the presence of toxin in conditions that approached the limits of growth. Growth and toxin production were detected at 3°C in 5 weeks, at 4°C in 3/4 weeks and at 5°C in 2/3 weeks. The resulting data define growth/no growth boundaries with respect to low temperature, pH, NaCl and incubation time. This is important in assessment of the risk of growth and toxin production by non-proteolytic Cl. botulinum in minimally processed chilled foods.  相似文献   

8.
Summary The behaviour of spores of Clostridium botulinum type A and proteolytic C. botulinum type B has been studied in cooked meat medium at 10°C, 12°C, 15°C, and 20°C, using mixed cultures (9 groups of in total 41 strains) and pure cultures (41 strains).At 10°C a decrease of 1–1.5 log cycles for type B and of 2–4 log cycles for type A Clostridia was observed. Neither growth nor toxin formation could be demonstrated.At 12°C spores of some strains developed and formed toxin with 3–4 weeks, whereas other strains did not develop within 7 weeks.At 15°C growth and toxin formation could be observed within 1 week, whereas at 20°C toxin was formed mostly within 2 or 3 days. Incubation at 10°C prior to incubation at 20°C seemed to have some effect on the lag time.  相似文献   

9.
Reports that Clostridium botulinum toxin can sometimes be detected in the absence of indicators of overt spoilage led to a systematic study of this phenomenon in a model system. Media with various combinations of pH (5.0 to 7.0) and glucose (0.0 to 1.0%) were inoculated with vegetative cells of C. botulinum 62A and incubated anaerobically at 35 degrees C. Although growth and toxin production occurred at all pH and glucose combinations, accumulation of gas was delayed or absent in media with low pH, low glucose levels, or both. Other proteolytic C. botulinum strains gave similar results. Trypsin activation was required to detect toxin in some low pH cultures. The trypsinization requirement correlated with low proteolytic activity in the cultures. Proteolytic activity of the strains examined was 5- to 500-fold lower in botulinal assay medium than in cooked meat medium. The results indicate that the absence of gas accumulation does not preclude the presence of botulinal toxin and that proteolytic cultures grown under adverse conditions may require trypsinization for the detection of toxin.  相似文献   

10.
Reports that Clostridium botulinum toxin can sometimes be detected in the absence of indicators of overt spoilage led to a systematic study of this phenomenon in a model system. Media with various combinations of pH (5.0 to 7.0) and glucose (0.0 to 1.0%) were inoculated with vegetative cells of C. botulinum 62A and incubated anaerobically at 35 degrees C. Although growth and toxin production occurred at all pH and glucose combinations, accumulation of gas was delayed or absent in media with low pH, low glucose levels, or both. Other proteolytic C. botulinum strains gave similar results. Trypsin activation was required to detect toxin in some low pH cultures. The trypsinization requirement correlated with low proteolytic activity in the cultures. Proteolytic activity of the strains examined was 5- to 500-fold lower in botulinal assay medium than in cooked meat medium. The results indicate that the absence of gas accumulation does not preclude the presence of botulinal toxin and that proteolytic cultures grown under adverse conditions may require trypsinization for the detection of toxin.  相似文献   

11.
Radiation survival data of proteolytic (Walls 8G-F) and non-proteolytic (Eklund 83F) type F spores of Clostridium botulinum were compared with dose-response data of radiation-resistant type A (33A) and B (40B) spores. Strain Eklund 83F was as resistant as strain 33A, whereas strain Walls 8G-F was the most sensitive of the four strains tested. The methods suggested for computing both an initial shoulder and a D value for the dose-survival curves yielded results comparable to the graphic techniques used to obtain these two parameters.  相似文献   

12.
Radiation survival data of proteolytic (Walls 8G-F) and non-proteolytic (Eklund 83F) type F spores of Clostridium botulinum were compared with dose-response data of radiation-resistant type A (33A) and B (40B) spores. Strain Eklund 83F was as resistant as strain 33A, whereas strain Walls 8G-F was the most sensitive of the four strains tested. The methods suggested for computing both an initial shoulder and a D value for the dose-survival curves yielded results comparable to the graphic techniques used to obtain these two parameters.  相似文献   

13.
Strains of Clostridium botulinum type A, type E and both non-proteolytic and proteolytic types B and F were characterized by their electrophoretic protein patterns. As the protein pattern changes during sporulation, special attention was paid to the prevention of sporulation by selecting an appropriate medium (Strasdine's medium plus 1% w/v glucose) and a scheme of repeated subculturing. Ribosomal proteins, evolutionarily conservative and hence relatively similar in all types of bacteria, were removed to optimize the resolving power of the electrophoretic technique. Protein patterns were compared by computing correlation coefficients of normalized densitometric tracings. The method is highly reproducible and its resolving power is high: all protein patterns found were specific. The strains tested fall into two main groups: the proteolytic and the non-proteolytic cluster. Type A strains form a separate subgroup within the proteolytic cluster, the same applies to type E strains within the non-proteolytic group. Although time-consuming for spore-forming bacteria, this method is, to our knowledge, the only technique that recognizes individual strains of Cl. botulinum. For non-spore-forming micro-organisms the method is certainly much simpler and hence even more valuable.  相似文献   

14.
Strains of Clostridium botulinum type A, type E and both non-proteolytic and proteolytic types B and F were characterized by their electrophoretic protein patterns. As the protein pattern changes during sporulation, special attention was paid to the prevention of sporulation by selecting an appropriate medium (Strasdine's medium plus 1% w/v glucose) and a scheme of repeated subculturing. Ribosomal proteins, evolutionarily conservative and hence relatively similar in all types of bacteria, were removed to optimize the resolving power of the electrophoretic technique. Protein patterns were compared by computing correlation coefficients of normalized densitometric tracings. The method is highly reproducible and its resolving power is high: all protein patterns found were specific. The strains tested fall into two main groups: the proteolytic and the non-proteolytic cluster. Type A strains form a separate subgroup within the proteolytic cluster, the same applies to type E strains within the non-proteolytic group. Although time-consuming for spore-forming bacteria, this method is, to our knowledge, the only technique that recognizes individual strains of Cl. botulinum . For non-spore-forming micro-organisms the method is certainly much simpler and hence even more valuable.  相似文献   

15.
Investigations on farms where botulism has occurred in cows showed that proteolytic Clostridium botulinum type B was present in newly made grass silages. Experiments were undertaken to study growth and toxin production of C. botulinum in grass. Of the strains tested only proteolytic strains of C. botulinum types A and B were able to produce toxin with grass as a substrate. Proteolytic strains of type B produced both medium (12S) and large (16S) toxin forms. The minimal water activity (aw) for toxin production at pH 6.5 and 5.8 was 0.94. At pH 5.3, toxin was produced at an aw of 0.985. These results indicate that proteolytic strains of C. botulinum (if present) may multiply and produce toxin in wilted grass silages.  相似文献   

16.
Toxin production by Clostridium botulinum in grass.   总被引:2,自引:2,他引:0       下载免费PDF全文
Investigations on farms where botulism has occurred in cows showed that proteolytic Clostridium botulinum type B was present in newly made grass silages. Experiments were undertaken to study growth and toxin production of C. botulinum in grass. Of the strains tested only proteolytic strains of C. botulinum types A and B were able to produce toxin with grass as a substrate. Proteolytic strains of type B produced both medium (12S) and large (16S) toxin forms. The minimal water activity (aw) for toxin production at pH 6.5 and 5.8 was 0.94. At pH 5.3, toxin was produced at an aw of 0.985. These results indicate that proteolytic strains of C. botulinum (if present) may multiply and produce toxin in wilted grass silages.  相似文献   

17.
The heat treatment necessary to inactivate spores of non-proteolytic Clostridium botulinum in refrigerated, processed foods may be influenced by the occurrence of lysozyme in these foods. Spores of six strains of non-proteolytic Cl. botulinum were inoculated into tubes of an anaerobic meat medium, to give 106 spores per tube. Hen egg white lysozyme (0–50 μg ml-1) was added, and the tubes were given a heat treatment equivalent to 19·8 min at 90°C, cooled, and incubated at 8°, 12°, 16° and 25°C for up to 93 d. In the absence of added lysozyme, neither growth nor toxin formation were observed. A 6–D inactivation was therefore achieved. In tubes to which lysozyme (5–50 μg ml-1) had been added prior to heating, growth and toxin formation were observed. With lysozyme added at 50 μg ml-1, growth was first observed after 68 d at 8°C, 31 d at 12°C, 24 d at 16°C, and 9 d at 25°C. Thus, in these circumstances, a heat treatment equivalent to 19·8 min at 90°C was not sufficient, on its own, to give a 6–D inactivation. A combination of the heat treatment, maintenance at less than 12°C, and a shelf-life not more than 4 weeks reduced the risk of growth of non-proteolytic Cl. botulinum by a factor of 106.  相似文献   

18.
Heat treatment of spores of non-proteolytic Clostridium botulinum at 85°C for 120 min followed by enumeration of survivors on a medium containing lysozyme resulted in a 4.1 and 4.8 decimal reduction in numbers of spores of strains 17B (type B) and Beluga (type E), respectively. Only a small proportion of heated spores formed colonies on medium containing lysozyme; this proportion could be increased by treatments designed to increase the permeability of heated spores. The results indicate that the germination system in spores of non-proteolytic Cl. botulinum was destroyed by heating, that lysozyme could replace this germination system, and that treatments that increased the permeability of the spore coat could increase the proportion of heated spores that germinated on medium containing lysozyme. These results are important in relation to the assessment of heat-treatments required to reduce the risk of survival and growth of non-proteolytic Clostridium botulinum in processed (pasteurized) refrigerated foods for extended storage.  相似文献   

19.
Comminuted raw turkey, containing 1.4% sodium chloride, 0.3% sodium phosphate, and 0 (control), 2.0, 2.5, 3.0, or 3.5% sodium lactate, was inoculated with a 10-strain mixture of proteolytic type A and B Clostridium botulinum spores. The inoculated turkey was vacuum packaged and cooked by immersion in heated water to an internal temperature of 71.1 degrees C. Samples were incubated at 27 degrees C for up to 10 days. Five samples per treatment were examined for botulinal toxin at specific intervals. Sodium lactate exhibited an antibotulinal effect which was concentration dependent. Processed turkey containing 0, 2.0, 2.5, 3.0, or 3.5% sodium lactate was toxic after 3, 4 to 5, 4 to 6, 7 or 7 to 8 days, respectively. Subsequent studies with a broth medium revealed that lactate, not the sodium ion, was the principal factor in delaying botulinal-toxin formation.  相似文献   

20.
M R Maas  K A Glass    M P Doyle 《Applied microbiology》1989,55(9):2226-2229
Comminuted raw turkey, containing 1.4% sodium chloride, 0.3% sodium phosphate, and 0 (control), 2.0, 2.5, 3.0, or 3.5% sodium lactate, was inoculated with a 10-strain mixture of proteolytic type A and B Clostridium botulinum spores. The inoculated turkey was vacuum packaged and cooked by immersion in heated water to an internal temperature of 71.1 degrees C. Samples were incubated at 27 degrees C for up to 10 days. Five samples per treatment were examined for botulinal toxin at specific intervals. Sodium lactate exhibited an antibotulinal effect which was concentration dependent. Processed turkey containing 0, 2.0, 2.5, 3.0, or 3.5% sodium lactate was toxic after 3, 4 to 5, 4 to 6, 7 or 7 to 8 days, respectively. Subsequent studies with a broth medium revealed that lactate, not the sodium ion, was the principal factor in delaying botulinal-toxin formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号