首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the concept that hydrophobic interactions cause a polypeptide chain to adopt a compact structure, a method is proposed to predict the structure of a protein. The procedure is carried out in four stages: (1) use of a virtual-bond united-residue approximation with the side chains represented by spheres to search conformational space extensively using specially designed interactions to lead to a collapsed structure, (2) conversion of the lowest-energy virtual-bond united-residue chain to one with a real polypeptide backbone, with optimization of the hydrogen-bond network among the backbone groups, (3) perturbation of the latter structure by the electrostatically driven Monte Carlo (EDMC) procedure, and (4) conversion of the spherical representation of the side chains to real groups and perturbation of the whole molecule by the EDMC procedure using the empirical conformational energy program for peptides (ECEPP/2) energy function plus hydration. Application of this procedure to the 36-residue avian pancreatic polypeptide led to a structure that resembled the one determined by X-ray crystallography; it had an alpha-helix starting at residue 13, with the N-terminal portion of the chain in an extended conformation packed against the alpha-helix. Similar structures with slightly higher energies, but looser packing, were also obtained.  相似文献   

2.
R B Russell  G J Barton 《Proteins》1992,14(2):309-323
An algorithm is presented for the accurate and rapid generation of multiple protein sequence alignments from tertiary structure comparisons. A preliminary multiple sequence alignment is performed using sequence information, which then determines an initial superposition of the structures. A structure comparison algorithm is applied to all pairs of proteins in the superimposed set and a similarity tree calculated. Multiple sequence alignments are then generated by following the tree from the branches to the root. At each branchpoint of the tree, a structure-based sequence alignment and coordinate transformations are output, with the multiple alignment of all structures output at the root. The algorithm encoded in STAMP (STructural Alignment of Multiple Proteins) is shown to give alignments in good agreement with published structural accounts within the dehydrogenase fold domains, globins, and serine proteinases. In order to reduce the need for visual verification, two similarity indices are introduced to determine the quality of each generated structural alignment. Sc quantifies the global structural similarity between pairs or groups of proteins, whereas Pij' provides a normalized measure of the confidence in the alignment of each residue. STAMP alignments have the quality of each alignment characterized by Sc and Pij' values and thus provide a reproducible resource for studies of residue conservation within structural motifs.  相似文献   

3.
Protein C alpha coordinates are used to accurately reconstruct complete protein backbones and side-chain directions. This work employs potentials of mean force to align semirigid peptide groups around the axes that connect successive C alpha atoms. The algorithm works well for all residue types and secondary structure classes and is stable for imprecise C alpha coordinates. Tests on known protein structures show that root mean square errors in predicted main-chain and C beta coordinates are usually less than 0.3 A. These results are significantly more accurate than can be obtained from competing approaches, such as modeling of backbone conformations from structurally homologous fragments.  相似文献   

4.
Recently we developed methods for the construction of knowledge-based mean fields from a data base of known protein structures. As shown previously, this approach can be used to calculate ensembles of probable conformations for short fragments of polypeptide chains. Here we develop procedures for the assembly of short fragments to complete three-dimensional models of polypeptide chains. The amino acid sequence of a given protein is decomposed into all possible overlapping fragments of a given length, and an ensemble of probable conformations is calculated for each fragment. The fragments are assembled to a complete model by choosing appropriate conformations from the individual ensembles and by averaging over equivalent angles. Finally a consistent model is obtained by rebuilding the conformation from the average angles. From the average angles the local variability of the structure can be calculated, which is a useful criterion for the reliability of the model. The procedure is applied to the calculation of the local backbone conformations of myoglobin and lysozyme whose structures have been solved by X-ray analysis and thymosin beta 4, a polypeptide of 43 amino acid residues whose structure was recently investigated by NMR spectroscopy. We demonstrate that substantial fractions of the calculated local backbone conformations are similar to the experimentally determined structures.  相似文献   

5.
Here a differential geometry (DG) representation of protein backbone is explored on the analyses of protein conformational ensembles. The protein backbone is described by curvature, κ, and torsion, τ, values per residue and we propose 1) a new dissimilarity and protein flexibility measurement and 2) a local conformational clustering method. The methods were applied to Ubiquitin and c-Myb-KIX protein conformational ensembles and results show that κ\τ metric space allows to properly judge protein flexibility by avoiding the superposition problem. The dmax measurement presents equally good or superior results when compared to RMSF, especially for the intrinsically unstructured protein. The clustering method is unique as it relates protein global to local dynamics by providing a global clustering solutions per residue. The methods proposed can be especially useful to the analyses of highly flexible proteins. The software written for the analyses presented here is available at https://github.com/AMarinhoSN/FleXgeo for academic usage only.  相似文献   

6.
Fasciclin III is an integral membrane protein expressed on a subset of axons in the developing Drosophila nervous system. It consists of an intracellular domain, a transmembrane region, and an extracellular region composed of three domains, each predicted to form an immunoglobulin-like fold. The most N-terminal of these domains is expected to be important in mediating cell-cell recognition events during nervous system development. To learn more about the structure/function relationships in this cellular recognition molecule, a model structure of this domain was built. A sequence-to-structure alignment algorithm was used to align the protein sequence of the fasciclin III first domain to the immunoglobulin McPC603 structure. Based on this alignment, a model of the domain was built using standard homology modeling techniques. Side-chain conformations were automatically modeled using a rotamer search algorithm and the model was minimized to relax atomic overlaps. The resulting model is compact and has chemical characteristics consistent with related globular protein structures. This model is a de novo test of the sequence-to-structure alignment algorithm and is currently being used as the basis for mutagenesis experiments to discern the parts of the fasciclin III protein that are necessary for homophilic molecular recognition in the developing Drosophila nervous system.  相似文献   

7.
A 3-dimensional model of the human eye lens protein gamma S-crystallin has been constructed using comparative modeling approaches encoded in the program COMPOSER on the basis of the 3-dimensional structure of gamma-crystallin and beta-crystallin. The model is biased toward the monomeric gamma B-crystallin, which is more similar in sequence. Bovine gamma S-crystallin was shown to be monomeric by analytical ultracentrifugation without any tendency to form assemblies up to concentrations in the millimolar range. The connecting peptide between domains was therefore built assuming an intramolecular association as in the monomeric gamma-crystallins. Because the linker has 1 extra residue compared with gamma B and beta B2, the conformation of the connecting peptide was constructed by using a fragment from a protein database. gamma S-crystallin differs from gamma B-crystallin mainly in the interface region between domains. The charged residues are generally paired, although in a different way from both beta- and gamma-crystallins, and may contribute to the different roles of these proteins in the lens.  相似文献   

8.
In previous studies we have shown that seminal plasma (SP) proteins can prevent and repair cold-shock membrane damage to ram spermatozoa. Three proteins of approximately 14, 20 and 22 kDa, mainly responsible for this protective ability, were identified in ram SP. They are exclusively synthesized in the seminal vesicles and, consequently, named RSVP14, RSVP20 and RSVP22. The aim of this study is to characterize and express the RSVP14 gene to provide new insights into the mechanisms through which SP proteins are able to protect spermatozoa. Additionally, a first approach has been made to the recombinant protein production. The cDNA sequence obtained encodes a 129 amino acid chain and presents a 25-amino acid signal peptide, one potential O-linked glycosylation site and seven phosphorylation sites on tyrosine, serine and threonine residues. The sequence contains two FN-2 domains, the signature characteristic of the bovine seminal plasma (BSP) protein family and related proteins of different species. More interestingly, it was shown that RSVP14 contains four disulphide bonds and a cholesterol recognition/interaction amino acid consensus (CRAC) domain, also found in BSP and similar proteins. Analysis of the relationships between RSVP14 and other mammalian SP proteins revealed a 76–85% identity, particularly with the BSP protein family. The recombinant protein was obtained in insect cell extracts and in Escherichia coli in which RSVP14 was detected in both the pellet and the supernatant. The results obtained corroborate the role of RSVP14 in capacitation and might explain its protective effect against cold-shock injury to the membranes of ram spermatozoa. Furthermore, the biochemical and functional similarities between RSVP14 and BSP proteins suggest that it might play a similar role in sperm functionality.  相似文献   

9.
Pressure-induced unfolding of 23-kDa protein from spinach photosystem II has been systematically investigated at various experimental conditions. Thermodynamic equilibrium studies indicate that the protein is very sensitive to pressure. At 20 degrees C and pH 5.5, 23-kDa protein shows a reversible two-state unfolding transition under pressure with a midpoint near 160 MPa, which is much lower than most natural proteins studied to date. The free energy (DeltaG(u)) and volume change (DeltaV(u)) for the unfolding are 5.9 kcal/mol and -160 ml/mol, respectively. It was found that NaCl and sucrose significantly stabilize the protein from unfolding and the stabilization is associated not only with an increase in DeltaG(u) but also with a decrease in DeltaV(u). The pressure-jump studies of 23-kDa protein reveal a negative activation volume for unfolding (-66.2 ml/mol) and a positive activation volume for refolding (84.1 ml/mol), indicating that, in terms of system volume, the protein transition state lies between the folded and unfolded states. Examination of the temperature effect on the unfolding kinetics indicates that the thermal expansibility of the transition state and the unfolded state of 23-kDa protein are closer to each other and they are larger than that of the native state. The diverse pressure-refolding pathways of 23-kDa protein in some conditions were revealed in pressure-jump kinetics.  相似文献   

10.
Given their high alanine and glycine levels, plaque formation, α-helix to β-sheet interconversion and fusogenicity, FP (i.e., the N-terminal fusion peptide of HIV-1 gp41; 23 residues) and amyloids were proposed as belonging to the same protein superfamily. Here, we further test whether FP may exhibit ‘amyloid-like’ characteristics, by contrasting its structural and functional properties with those of Aβ(26-42), a 17-residue peptide from the C-terminus of the amyloid-beta protein responsible for Alzheimer's. FTIR spectroscopy, electron microscopy, light scattering and predicted amyloid structure aggregation (PASTA) indicated that aqueous FP and Aβ(26-42) formed similar networked β-sheet fibrils, although the FP fibril interactions were weaker. FP and Aβ(26-42) both lysed and aggregated human erythrocytes, with the hemolysis-onsets correlated with the conversion of α-helix to β-sheet for each peptide in liposomes. Congo red (CR), a marker of amyloid plaques in situ, similarly inhibited either FP- or Aβ(26-42)-induced hemolysis, and surface plasmon resonance indicated that this may be due to direct CR-peptide binding. These findings suggest that membrane-bound β-sheets of FP may contribute to the cytopathicity of HIV in vivo through an amyloid-type mechanism, and support the classification of HIV-1 FP as an ‘amyloid homolog’ (or ‘amylog’).  相似文献   

11.
Daping Yang  Chen Min 《BBA》2010,1797(2):204-211
The gene encoding a chlorophyll d-binding light-harvesting protein, pcbA from Acaryochloris marina (now called as accessory Chlorophyll Binding Protein CBPII) marked with a His-tag was transformed into the genome of Synechocystis PCC6803. Protein gel electrophoresis and western blotting confirmed that this foreign chlorophyll d-binding protein CBPII was expressed and integrated into the thylakoid membrane and bound with chlorophyll a, the only type of chlorophyll present in Synechocystis PCC 6803. Native electrophoresis suggested that CBPII interacts with photosystem II of Synechocystis PCC 6803. Surprisingly, spectral analyses showed that the phycobiliproteins were suppressed in the transformed Synechocystis pcbA+, with a lower ratio of phycobilins to chlorophyll a. These results suggest that there are competitive interactions between the external antenna system of phycobiliproteins and the integral antenna system of chlorophyll-bound protein complexes.  相似文献   

12.
13.
14.
In the bacterium Escherichia coli, the essential inner membrane protein (IMP) YidC assists in the biogenesis of IMPs and IMP complexes. Our current ideas about the function of YidC are based on targeted approaches using only a handful of model IMPs. Proteome-wide approaches are required to further our understanding of the significance of YidC and to find new YidC substrates. Here, using two-dimensional blue native/SDS-PAGE methodology that is suitable for comparative analysis, we have characterized the consequences of YidC depletion for the steady-state levels and oligomeric state of the constituents of the inner membrane proteome. Our analysis showed that (i) YidC depletion reduces the levels of a variety of complexes without changing their composition, (ii) the levels of IMPs containing only soluble domains smaller than 100 amino acids are likely to be reduced upon YidC depletion, whereas the levels of IMPs with at least one soluble domain larger than 100 amino acids do not, and (iii) the levels of a number of proteins with established or putative chaperone activity (HflC, HflK, PpiD, OppA, GroEL and DnaK) are strongly increased in the inner membrane fraction upon YidC depletion. In the absence of YidC, these proteins may assist the folding of sizeable soluble domains of IMPs, thereby supporting their folding and oligomeric assembly. In conclusion, our analysis identifies many new IMPs/IMP complexes that depend on YidC for their biogenesis, responses that accompany depletion of YidC and an IMP characteristic that is associated with YidC dependence.  相似文献   

15.
Hookworms are hematophagous nematodes capable of growth, development and subsistence in living host systems such as humans and other mammals. Approximately one billion, or one in six, people worldwide are infected by hookworms causing gastrointestinal blood loss and iron deficiency anemia. The hematophagous hookworm Ancylostoma caninum produces a family of small, disulfide-linked protein anticoagulants (75-84 amino acid residues). One of these nematode anticoagulant proteins, NAP5, inhibits the amidolytic activity of factor Xa (fXa) with K(i)=43 pM, and is the most potent natural fXa inhibitor identified thus far. The crystal structure of NAP5 bound at the active site of gamma-carboxyglutamic acid domainless factor Xa (des-fXa) has been determined at 3.1 A resolution, which indicates that Asp189 (fXa, S1 subsite) binds to Arg40 (NAP5, P1 site) in a mode similar to that of the BPTI/trypsin interaction. However, the hydroxyl group of Ser39 of NAP5 additionally forms a hydrogen bond (2.5 A) with His57 NE2 of the catalytic triad, replacing the hydrogen bond of Ser195 OG to the latter in the native structure, resulting in an interaction that has not been observed before. Furthermore, the C-terminal extension of NAP5 surprisingly interacts with the fXa exosite of a symmetry-equivalent molecule forming a short intermolecular beta-strand as observed in the structure of the NAPc2/fXa complex. This indicates that NAP5 can bind to fXa at the active site, or the exosite, and to fX at the exosite. However, unlike NAPc2, NAP5 does not inhibit fVIIa of the fVIIa/TF complex.  相似文献   

16.
SP-A, the major protein component of pulmonary surfactant, is absent in exogenous surfactants currently used in clinical practice. However, it is thought that therapeutic properties of natural surfactants improve after enrichment with SP-A. The objective of this study was to determine SP-A effects on physical properties and surface activity of a new synthetic lung surfactant based on a cationic and hydrophobic 21-residue peptide KLLLLKLLLLKLLLLKLLLLK, KL(4). We have analyzed the interaction of SP-A with liposomes consisting of DPPC/POPG/PA (28:9:5.6, w/w/w) with and without 0.57 mol % KL(4) peptide. We found that SP-A had a concentration-dependent effect on the surface activity of KL(4)-DPPC/POPG/PA membranes but not on that of an animal-derived LES. The surface activity of KL(4)-surfactant significantly improved after enrichment with 2.5-5 wt % SP-A. However, it worsened at SP-A concentrations > or =10 wt %. This was due to the fluidizing effect of supraphysiological SP-A concentrations on KL(4)-DPPC/POPG/PA membranes as determined by fluorescence anisotropy measurements, calorimetric studies, and confocal fluorescence microscopy of GUVs. High SP-A concentrations caused disappearance of the solid/fluid phase coexistence of KL(4)-surfactant, suggesting that phase coexistence might be important for the surface adsorption process.  相似文献   

17.
Munton RP  Vizi S  Mansuy IM 《FEBS letters》2004,567(1):121-128
Synaptic plasticity is a phenomenon contributing to changes in the efficacy of neuronal transmission. These changes are widely believed to be a major cellular basis for learning and memory. Protein phosphorylation is a key biochemical process involved in synaptic plasticity that operates through a tight balance between the action of protein kinases and protein phosphatases (PPs). Although the majority of research in this field has concentrated primarily on protein kinases, the significant role of PPs is becoming increasingly apparent. This review examines one such phosphatase, PP1, and highlights recent advances in the understanding of its intervention in synaptic and structural plasticity and the mechanisms of learning and memory.  相似文献   

18.
19.
For a tree seedling to successfully establish in dense shrubbery, it must maintain function under heterogeneous resource availability. We evaluated leaf-level acclimation in photosynthetic capacity, seedling-level transpiration, and seedling morphology and growth to gain an understanding of the effects of above- and below-ground competition on Quercus robur seedlings. Experimental seedlings were established in a typical southern Swedish shrub community where they received 1 of 4 competition levels (above-ground, below-ground, above- and below-ground, or no competition), and leaf-level responses were examined between two growth flushes. Two years after establishment, first-flush leaves from seedlings receiving above-ground competition showed a maximum rate of photosynthesis (Amax) 40% lower than those of control seedlings. With the development of a second flush above the shrub canopy, Amax of these seedlings increased to levels equivalent to those of seedlings free of light competition. Shrubby competition reduced oak seedling transpiration such that seedlings exposed to above- and below-ground competition showed rates 43% lower than seedlings that were not exposed to competition. The impaired physiological function of oak seedlings growing amid competition ultimately led to a 60-74% reduction in leaf area, 29-36% reduction in basal diameter, and a 38-78% reduction in total biomass accumulation, but root to shoot ratio was not affected. Our findings also indicate that above-ground competition reduced Amax, transpiration and biomass accumulation more so than below-ground competition. Nevertheless, oak seedlings exhibited the ability to develop subsequent growth flushes with leaves that had an Amax acclimated to utilize increased light availability. Our findings highlight the importance of flush-level acclimation under conditions of heterogeneous resource availability, and the capacity of oak seedlings to initiate a positive response to moderate competition in a shrub community.  相似文献   

20.
Non-specific lipid transfer proteins belonging to LTP1 family represent the most important allergens for non pollen-related allergies to Rosaceae fruits in the Mediterranean area. Peach LTP1 (Pru p 3) is a major allergen and is considered the prototypic allergenic LTP. On the contrary, pear allergy without pollinosis seems to be under-reported when compared to other Rosaceae fruits suggesting that the as-yet-uncharacterized pear LTP1 (Pyr c 3) has in vivo a low allergenicity. We report here on the identification of four cDNAs encoding for LTP1 in pear fruits. The two isoforms exhibiting amino acid sequences most similar to those of peach and apple homologues were obtained as recombinant proteins. Such isoforms exhibited CD spectra and lipid binding ability typical of LTP1 family. Moreover, pear LTP1 mRNA was mainly found in the peel, as previously shown for other Rosaceae fruits. By means of IgE ELISA assays a considerable immunoreactivity of these proteins to LTP-sensitive patient sera was detected, even though allergic reactions after ingestion of pear were not reported in the clinical history of the patients. Finally, the abundance of LTP1 in protein extracts from pear peel, in which LTP1 from Rosaceae fruits is mainly confined, was estimated to be much lower as compared to peach peel. Our data suggest that the two isoforms of pear LTP1 characterized in this study possess biochemical features and IgE-binding ability similar to allergenic LTPs. Their low concentrations in pear might be the cause of the low frequency of LTP-mediated pear allergy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号