首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Serratia sp. ATCC 39006 ( Serratia 39006) is a Gram-negative bacterium which produces the secondary metabolite antibiotics, prodigiosin and 1-carbapen-2-em-3-carboxylic acid and secretes plant cell wall degrading enzymes. In this study we have identified mutations in the genes, pigX , rap and rsmA , which caused increased production of a previously unidentified surfactant and flagella-dependent swarming phenotype in Serratia 39006. Analysis of both the biosynthesis and regulation of surfactant production and swarming, revealed FlhC, quorum sensing, a GGDEF/EAL domain protein (PigX), a GacAS two-component system, an Rsm system and Rap as key regulators. In addition, surfactant biosynthesis required a protein similar to RhlA, involved in rhamnolipid synthesis in Pseudomonas aeruginosa . Homologues of RhlA have not previously been identified in members of the Enterobacteriaceae . Furthermore, we provide evidence that the surfactant may be responsible for dispersal of the antimicrobial pigment, prodigiosin. This study demonstrates the complex regulatory inputs into the coordinated multicellular swarming phenotype in Serratia .  相似文献   

7.
8.
The enteric bacterium Serratia marcescens is an opportunistic human pathogen. The strain ATCC39006 makes the red pigment, prodigiosin (Pig), and the β-lactam antibiotic carbapenem (Car). Mutants were isolated that were concomitantly defective for Pig and Car production. These mutants were found to have a mutation in the rap gene (regulation of antibiotic and pigment). Sequence analysis of the rap gene revealed a predicted protein product showing strong homology to SlyA, originally thought to be a haemolytic virulence determinant in Salmonella typhimurium. Homologues of rap were detected in several bacterial genera, including Salmonella, Yersinia, Enterobacter , and species of the plant pathogen, Erwinia. The Erwinia horEr (homologue of rap ) and the Yersinia horYe genes were also found to be very similar to rap and slyA. Marker exchange mutagenesis of horEr revealed that it encoded a regulatory protein controlling the production of antibiotic and exoenzyme virulence determinants in the phytopathogen, Erwinia carotovora subspecies carotovora. We have shown that these new homologues of SlyA form a highly conserved subgroup of a growing superfamily of bacterial regulatory proteins controlling diverse physiological processes in human, animal and plant pathogens.  相似文献   

9.
10.
11.

Background  

Secondary metabolism in Serratia sp. ATCC 39006 (Serratia 39006) is controlled via a complex network of regulators, including a LuxIR-type (SmaIR) quorum sensing (QS) system. Here we investigate the molecular mechanism by which phosphate limitation controls biosynthesis of two antibiotic secondary metabolites, prodigiosin and carbapenem, in Serratia 39006.  相似文献   

12.
13.
14.
15.
16.
The biosynthetic pathway of the red-pigmented antibiotic, prodigiosin, produced by Serratia sp. is known to involve separate pathways for the production of the monopyrrole, 2-methyl-3-n-amyl-pyrrole (MAP) and the bipyrrole, 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC) which are then coupled in the final condensation step. We have previously reported the cloning, sequencing and heterologous expression of the pig cluster responsible for prodigiosin biosynthesis in two Serratia sp. In this article we report the creation of in-frame deletions or insertions in every biosynthetic gene in the cluster from Serratia sp. ATCC 39006. The biosynthetic intermediates accumulating in each mutant have been analysed by LC-MS, cross-feeding and genetic complementation studies. Based on these results we assign specific roles in the biosynthesis of MBC to the following Pig proteins: PigI, PigG, PigA, PigJ, PigH, PigM, PigF and PigN. We report a novel pathway for the biosynthesis of MAP, involving PigD, PigE and PigB. We also report a new chemical synthesis of MAP and one of its precursors, 3-acetyloctanal. Finally, we identify the condensing enzyme as PigC. We reassess the existing literature and discuss the significance of the results for the biosynthesis of undecylprodigiosin by the Red cluster in Streptomyces coelicolor A3(2).  相似文献   

17.
18.
19.
I. A. Khmel 《Microbiology》2006,75(4):390-397
Quorum sensing (QS) is a specific type of regulation of gene expression in bacteria; it is dependent on the population density. QS systems include two obligate components: a low-molecular-weight regulator (autoinducer), readily diffusible through the cytoplasmic membrane, and a regulatory receptor protein, which interacts with the regulator. As the bacterial population reaches a critical level of density, autoinducers accumulate to a necessary threshold value and abrupt activation (induction) of certain genes and operons occurs. By means of low-molecular-weight regulators, bacteria accomplish communication between cells belonging to the same or different species, genera, and even families. QS systems have been shown to play a key role in the regulation of various metabolic processes in bacteria and to function as global regulators of the expression of bacterial genes. Data are presented on different types of QS systems present in bacteria of various taxonomic groups, on the species specificity of these systems, and on communication of bacteria by means of QS systems. The possibility is considered of using QS regulation systems as targets while combating bacterial infections; other applied aspects of QS investigation are discussed.  相似文献   

20.
Khmel' IA 《Mikrobiologiia》2006,75(4):457-464
Quorum sensing (QS) is a specific type of regulation of gene expression in bacteria; it is dependent on the population density. QS systems include two obligate components: a low-molecular-weight regulator (autoinducer), readily diffusible through the cytoplasmic membrane, and a regulatory receptor protein, which interacts with the regulator. As the bacterial population reaches a critical level of density, autoinducers accumulate to a necessary threshold value and abrupt activation (induction) of certain genes and operons occurs. By means of low-molecular-weight regulators, bacteria accomplish communication between cells belonging to the same or different species, genera, and even families. QS systems have been shown to play a key role in the regulation of various metabolic processes in bacteria and to function as global regulators of the expression of bacterial genes. Data are presented on different types of QS systems present in bacteria of various taxonomic groups, on the species specificity of these systems, and on communication of bacteria by means of QS systems. The possibility is considered of using QS regulation systems as targets while combating bacterial infections; other applied aspects of QS investigation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号