首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integrase is one of three enzymes expressed by HIV and represents a validated target for therapy. This study reports on the discovery of a new triketoacid-based chemotype that selectively inhibits the strand transfer reaction of HIV-integrase. SAR studies showed that the template binds to integrase in a manner similar to the diketoacid-based inhibitors. Moreover, comparison of the new chemotype to two different diketoacid templates led us to propose two aryl-binding domains in the inhibitor binding site. This information was used to design a new diketoacid template with improved activity against the enzyme.  相似文献   

2.
pH dependence of hydrogen exchange from backbone peptide amides in apamin   总被引:1,自引:0,他引:1  
C E Dempsey 《Biochemistry》1986,25(13):3904-3911
The kinetics of hydrogen exchange of the 11 most protected backbone amides of bee venom apamin have been measured between pH 1 and pH 8.5 by using time-resolved and saturation-transfer NMR spectroscopy. The five amides most protected from base-catalyzed exchange, those of residues 5 and 12-15, show highly correlated exchange behavior in the base-catalyzed regime. It is proposed that the intramolecular hydrogen bonds stabilizing these amides define a stable cooperative unit of secondary structure in apamin (a C-terminal helix and an N-terminal beta-turn). This conformational unit is further stabilized (by 5-6 kJ mol-1) on titration of the Glu-7 side-chain carboxyl group. The relative contributions of specific intramolecular interactions to this conformational stabilization are estimated. The pHminima in the pH-dependent single amide exchange curves are compared with values predicted by correcting for sequence-dependent contributions to amide exchange rates [Molday, R. S., Englander, S. W., & Kallen, R. G. (1972) Biochemistry 11, 150-158]. The lack of correlation suggests that the "open" conformers from which amide exchange occurs are nonrandom. This conclusion is dependent on the assumption that acid-catalyzed exchange occurs via N-protonation so that residual conformational effects on exchange rates in the open conformers will affect acid- and base-catalyzed rates in approximately equal and opposite ways. A strong correlation between the measured pHminima and the amide proton chemical shifts is observed, however, and this may be most easily accommodated if acid-catalyzed exchange occurs by the imidic acid mechanism (via amide O-protonation).  相似文献   

3.
The collagen triple helix is composed of three polypeptide strands, each with a sequence of repeating (Xaa-Yaa-Gly) triplets. In these triplets, Xaa and Yaa are often tertiary amides: L-proline (Pro) and 4(R)-hydroxy-L-proline (Hyp). To determine the contribution of tertiary amides to triple-helical stability, Pro and Hyp were replaced in synthetic collagen mimics with a non-natural acyclic tertiary amide: N-methyl-L-alanine (meAla). Replacing a Pro or Hyp residue with meAla decreases triple-helical stability. Ramachandran analysis indicates that meAla residues prefer to adopt straight phi and psi angles that are dissimilar from those of the Pro and Hyp residues in the collagen triple helix. Replacement with meAla decreases triple-helical stability more than does replacement with Ala. All of the peptide bonds in triple-helical collagen are in the trans conformation. Although an Ala residue greatly prefers the trans conformation, a meAla residue exists as a nearly equimolar mixture of trans and cis conformers. These findings indicate that the favorable contribution of Pro and Hyp to the conformational stability of collagen triple helices arises from factors other than their being tertiary amides.  相似文献   

4.
Results of a study of the interaction of alkali metal salts on model aliphatic amides are reported. Lithium salts appear to interact more strongly with amides than those of other alkali metals. Spectroscopic investigations suggest that Li+ ion binds to the amide group at the carbonyl oxygen, causing a change in the spectroscopic properties and the geometry of the amide. Such binding of ions to amide groups may be of importance when one studies the spectral and conformational changes of polypeptides and proteins in high salt media.  相似文献   

5.
6.
J D O'Neil  B D Sykes 《Biochemistry》1989,28(2):699-707
Backbone amide hydrogen exchange measurements are an important source of information about the internal dynamics of proteins. Before such measurements can be interpreted unambiguously, contributions to hydrogen exchange rates from the chemical and physical environment of the amides must be taken into account. Membrane proteins are often solubilized in detergents, yet there have not been any systematic investigations of the possible effects detergents may have on the amide hydrogen exchange rates of proteins. To address this question, we have measured individual backbone and carboxyl-terminal amide exchange rates for the amphipathic tripeptide Leu-Val-Ile-amide dissolved in water and dodecyl sulfate micelles. 1H NMR spectroscopy was used to measure exchange using the direct exchange-out into D2O technique at 5 degrees C and using an indirect steady-state saturation-transfer technique at 25 degrees C. The broadening effect of micelle-incorporated spin-labeled fatty acid (12-doxylstearate) on the 1H NMR spectra of both the detergent and the peptide resonances was used to demonstrate that the tripeptide is intimately associated with the micelle. The resonance from formate ion, which is excluded from the micelle, was unperturbed by the spin label. The detergent did not retard the exchange rates of either the primary (terminal) or secondary (backbone) amides of the tripeptide. This suggests that the micelle/peptide interaction does not restrict access of charged catalysts and water to these amides and shows that the peptide amides are not hydrogen bonded. However, the pH for the exchange minima of these amides in detergent was increased between 1.2 and 1.7 units compared to exchange in water.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Solvation and desolvation dynamics around helices during the kinetic folding process of apomyoglobin (apoMb) were investigated by using time-resolved infrared (IR) spectroscopy based on continuous-flow rapid mixing devices and an IR microscope. The folding of apoMb can be described by the collapse and search mechanism, in which the initial collapse occurring within several hundreds of microseconds is followed by the search for the correct secondary and tertiary structures. The time-resolved IR measurements showed a significant increase in solvated helix possessing a component of amide I' at 1633 cm(-1) within 100 mus after initiating the folding by a pD jump from pD2.2 to 6.0. In contrast, there was a minor increase in buried helices having amide I' at 1652 cm(-1) in this time domain. The observations demonstrate that the initially collapsed conformation of apoMb possesses a large amount of solvated helices, and suggest that much water is retained inside the collapsed domain. The contents of solvated and buried helices decrease and increase, respectively, in the time domain after the collapse, showing that the stepwise desolvation around helices is associated with the conformational search process. Interestingly, the largest changes in solvated and buried helices were observed at the final rate-limiting step of the apoMb folding. The persistence of the solvated helix until the final stage of apoMb folding suggests that the dissociation of hydrogen bonds between water and main-chain amides contributes to the energy barrier in the rate-determining step of the folding.  相似文献   

8.
Here we present a new family of endogenous peptides identified in rat testis with structure of glutamyl-tripeptide amides which are also present in plasma. These peptides have different activities in the hypophyseal-gonadal axis. Evidences showing the endocrine activities of some of the peptides are presented. In this communication we demonstrate the presence of peptides with a common structure Glu-X-Pro amide, where X can be one of the following amino acids: glutamic acid, glutamine, aspartic acid, asparagine, phenylalanine or tyrosine. These peptides have been identified by a series of chromatographies and by mass spectrometry. Some of the peptides where tested for its biological activity observing that subcutaneous administration of the peptides Glu-Glu-Pro amide, Glu-Gln-Pro amide and Glu-Phe-Pro amide were able to reduce plasma levels of testosterone and luteinizing hormone (LH) without modification of the levels of follicle stimulating hormone (FSH). The peptide Glu-Asp-Pro amide, however, produced an increase in the levels of testosterone without modifying LH or FSH levels. It is proposed that the glutamyl-tripeptide amides that reduce the levels of testosterone and LH are released from the testis and act in the pituitary via circulation in an endocrine manner. The specific inhibition of LH release is similar to that produced by inhibin on FSH release. On the other hand the peptide that increases the levels of testosterone is produced in the testis and seems to act directly in the testis in a paracrine or autocrine manner. It is proposed here a new mechanism of regulation of hypophyseal-gonadal axis, a negative feedback exerted by the glutamyl-tripeptide amides in the pituitary. Also it is proposed the generic name of gonadins for the novel family of glutamyl-tripeptide amides. We suggest that gonadins could be used in the future as drugs for treatment of different endocrine disorders, hormone-dependent cancer and as contraceptives.  相似文献   

9.
The spatial organization of actinoporin RTX-SII from the sea anemone Radianthus macrodactylus on the level of tertiary and secondary structures was studied by UV and CD spectroscopy and intrinsic protein fluorescence. The specific and molar extinction coefficients of RTX-SII were determined. The percentages of canonical secondary structures of actinoporin were calculated. The tertiary structure of the polypeptide is well developed and its secondary structure is highly ordered and contains about 50% antiparallel folded beta-sheets. The irreversible thermal denaturation of RTX-SII was studied by CD spectroscopy; a conformational transition occurs at 53 degrees C. Above this temperature irreversible conformational changes are observed in the secondary and tertiary structures. This is accompanied by redistribution of the content of regular and distorted forms of beta-sheet and also by increase in the content of an unordered form. It is suggested that an intermediate is formed in the process of thermal denaturation. Acid-base titration of RTX-SII results in irreversible conformational changes at pH below 2.0 and above 12.0. As shown by intrinsic protein fluorescence, tyrosine residues of RTX-SII make a fundamental contribution to emission, and the total fluorescence depends more on temperature and ionic strength of the solution than tryptophan fluorescence. The data on conformational stability of actinoporin are correlated with data on its hemolytic activity. Activity of RTX-SII significantly decreases at increased temperature and slightly decreases at low pH. Hemolytic activity drastically increases at high pH. Increase in the actinoporin activity at pH above 10 seems to be caused by ionization of the molecule.  相似文献   

10.
N-hydroxy amides can be found in many naturally occurring and synthetic compounds and are known to act as both strong proton donors and chelators of metal cations. We have initiated studies of peptoids, or N-substituted glycines which contain N-hydroxy amide side chains to investigate the potential effects of these functional groups on peptoid backbone amide rotamer equilibria and local conformations. We reasoned that the propensity of these functional groups to participate in hydrogen bonding could be exploited to enforce intramolecular or intermolecular interactions that yield new peptoid structures. Here, we report the design, synthesis, and detailed conformational analysis of a series of model N-hydroxy peptoids. These peptoids were readily synthesized, and their structures were analyzed in solution by 1D and 2D NMR and in the solid-state by X-ray crystallography. The N-hydroxy amides were found to strongly favor trans conformations with respect to the peptoid backbone in chloroform. More notably, unique sheet-like structures held together via intermolecular hydrogen bonds were observed in the X-ray crystal structures of an N-hydroxy amide peptoid dimer, which to our knowledge represent the first structure of this type reported for peptoids. These results suggest that the N-hydroxy amide can be utilized to control both local backbone geometries and longer-range intermolecular interactions in peptoids, and represents a new functional group in the peptoid design toolbox.  相似文献   

11.
Amide exchange rates were measured for Pyrococcus furiosus (Pf) rubredoxin substituted with either Zn(II), Ga(III), or Ge(IV). Base-catalyzed exchange rate constants increase up to 3000-fold per unit charge for the highly protected amides surrounding the active site metal, yielding apparent residue-specific conformational energy decreases of more than 8 kcal/mol in a comparison of the Zn(II)- and Ge(IV)-substituted proteins. However, the exchange kinetics for many of the other amides of the protein are insensitive to these metal substitutions. These differential rates are inversely correlated with the distance between the amide nitrogen and the metal in the X-ray structure, out to a distance of at least 12 A, consistent with an electrostatic potential-dependent shifting of the amide nitrogen pK. This strongly correlated distance dependence is consistent with a nativelike structure for the exchange-competent conformations. The electric field potential within the interior of the rubredoxin structure gives rise to a change of as much as a million-fold in the rate for the exchange-competent state of the individual amide hydrogens. Nevertheless, the strength of these electrostatic interactions in Pf rubredoxin appears to be comparable to those previously reported within other proteins. As a result, contrary to the conventional analysis of hydrogen exchange data, for exchange processes that occur via nonglobal transitions, the residual conformational structure will often modulate the observed rates. Although this necessarily complicates the estimation of the conformational equilibria of these exchange-competent states, this dependence on residual structure can provide insight into the conformation of these transient states.  相似文献   

12.
Quinoline amide, azaindole amide and pyridine amides were synthesized and tested for in vitro antifungal activity against fungi. These synthesized amides have potent antifungal activity against Candida albicans and Aspergillus fumigatus. Our results suggest that hetero ring amides may be potent antifungal agents that operate by inhibiting the function of Gwt1 protein in the GPI biosynthetic pathway.  相似文献   

13.
Mazon H  Marcillat O  Forest E  Smith DL  Vial C 《Biochemistry》2004,43(17):5045-5054
Our understanding of the mechanism of protein folding can be improved by the characterization of folding intermediate states. Intrinsic tryptophan fluorescence measurements of equilibrium GdmHCl-induced unfolding of MM-CK allow for the construction of a "phase diagram", which shows the presence of five different conformational states, including three partially folded intermediates. However, only three states are detected by using pulsed-labeled H-D exchange analyzed by electrospray ionization mass spectrometry. One of them is the native state, and the two other species are present in proportions strongly dependent on the GdmHCl concentration and denaturation time. The low-mass peak is due to a largely exchange-incompetent state, which has gained only approximately 10 deuteriums more than the native protein. This population of MM-CK molecules has undergone a small conformational change induced by low GdmHCl concentrations. However, this limited change is in itself not sufficient to inactivate the enzyme or is easily reversible. The high-mass peak corresponds to a population of MM-CK that is fully deuterated. The comparison of fluorescence, activity, and H-D exchange measurements shows that the maximally populated intermediate at 0.8 M GdmHCl has the characteristics of a molten globule. It has no activity; it has 55% of its native alpha-helices and a maximum fluorescence emission wavelength of approximately 341 nm, and it binds ANS strongly. However, no protection against exchange is detected under the conditions used in this work. This paradox, the presence of significant residual secondary and tertiary structures detected by optical probes and the total deuteration of its amide protons detected by H-D exchange and mass spectrometry, could be explained by a highly dynamic MM-CK molten globule.  相似文献   

14.
Summary Temperature coefficients are widely used as an indication of solvent accessibility to amide protons. Low temperature coefficients are related to low accessibility and are often interpreted as evidence for intramolecular hydrogen bonding. Conformational shifts, i.e. the difference between chemical shifts of a particular residue in a structured and in a random-coil conformation, provide information on secondary structure. In particular, negative CHα conformational shifts are often used to delineate the extent of helical stretches. NH conformational shifts show large oscillations within a helix that have been interpreted as the result of helix distortions affecting hydrogen bond lengths. In the ocurse of the study of differnet peptides that adopt a helical structure in the presence of the structure-inducing solvent hexafluoroisopropanol (HFIP), we have found a strong correlation between temperature coefficients and amide conformational shifts. However, contrary to the initial expectations, lower temperature coefficients were associated to amide protons involved in longer, and presumably weaker, hydrogen bonds. The correlation can be explained, however, assuming that, in helical peptides dissolved in HFIP, temperature affects the chemical shift of amide protons mainly by changing the average length of intramolecular hydrogen bonds and changes in solvent accessibility play only a secondary role under these experimental conditions. The pattern of temperature coefficients in helical peptides can therefore be used to identify short or long hydragen bonds causing bending of the helix axis.  相似文献   

15.
During the last few years, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) has become one of the most powerful methods to determine the structure of biological materials and in particular of components of biological membranes, like proteins that cannot be studied by x-ray crystallography and NMR. ATR-FTIR requires a little amount of material (1-100 microg) and spectra are recorded in a matter of minutes. The environment of the molecules can be modulated so that their conformation can be studied as a function of temperature, pressure, pH, as well as in the presence of specific ligands. For instance, replacement of amide hydrogen by deuterium is extremely sensitive to environmental changes and the kinetics of exchange can be used to detect tertiary conformational changes in the protein structure. Moreover, in addition to the conformational parameters that can be deduced from the shape of the infrared spectra, the orientation of various parts of the molecule can be estimated with polarized IR. This allows more precise analysis of the general architecture of the membrane molecules within the biological membranes. The present review focuses on ATR-IR as an experimental approach of special interest for the study of the structure, orientation, and tertiary structure changes in peptides and membrane proteins.  相似文献   

16.
A series of heterocyclic pyrimidinedione-based HIV-1 integrase inhibitors was prepared and screened for activity against purified integrase enzyme and/or viruses modified with the following mutations within integrase: Q148R, Q148H/G140S and N155H. These are mutations that result in resistance to the first generation integrase inhibitors raltegravir and elvitegravir. Based on consideration of drug-target interactions, an approach was undertaken to replace the amide moiety of the first generation pyrimidinedione inhibitor with azole heterocycles that could retain potency against these key resistance mutations. An imidazole moiety was found to be the optimal amide substitute and the observed activity was rationalized with the use of calculated properties and modeling. Rat pharmacokinetic (PK) studies of the lead imidazole compounds demonstrated moderate clearance and moderate exposure.  相似文献   

17.
This study presents results of field experiments conducted to identify factors determining kavalactone content and chemotype in Piper methysticum. The following factors have been studied: (1) the geographical direction of the roots on the plant, (2) the geographical location of the plant, (3) its age, and (4) its organ (roots, stumps, or basal stems). Overall, 185 samples were analysed by HPLC. It appears that the geographical direction of the roots (North, East, South, West) is not significant. Chemotype and kavalactone content variation among clones of a cultivar grown in a common garden is negligible. There is significant variation among different cultivars originating from the same island. The variation within island is comparable to the variation existing within the whole Vanuatu archipelago. For a given cultivar, chemotype is stable across locations. There are however, chemotype differences between organs. Kavalactone content is always higher in the roots than in the stumps and higher in the stumps than in the basal stems. Experimental data obtained from one cultivar indicate that at the juvenile stage (less than 18 months of growth), kavalactone content is still low but increasing progressively: from 3% of dry matter at 10 months to 8% at 17 months. After two years of vegetative growth, the chemotype appears stable and kavalactone content does not increase but rather fluctuates (±2%). Although seasonal factors might have an effect, it is not possible to observe a significant trend. It is confirmed that chemotype is genetically controlled. However, kavalactone content appears to be greatly determined by the growing conditions, either by the local environment or by the agricultural techniques used by the local farmers. Consequently, the selection of the cultivar, its organ and the geographical area of origin are factors contributing directly to quality control in Piper methysticum.  相似文献   

18.
The interaction between salts of Groups IA and IIA and model aliphatic amides has been studied. The interaction has been monitored by calorimetry and spectroscopy. Among the alkali cations, lithium ion interacts strongest, while in Group II calcium appears to interact somewhat stronger than magnesium. The metal cation binds to the amide oxygen atom and causes alteration in the amide group geometry. As a consequence, significant alterations are seen in the infrared, nuclear magnetic resonance, ultraviolet, and circular dichroism spectra of the ligand peptide. These findings are suggested to be of importance to the conformational studies of polypeptides and proteins.  相似文献   

19.
The infrared amide bands are sensitive to the conformation of the polypeptide backbone of proteins. Since the backbone of proteins folds in complex spatial arrangements, the amide bands of these proteins result from the superimposition of vibration modes corresponding to the different types of structural motifs (alpha helices, beta sheets, etc.). Initially, band deconvolution techniques were applied to determine the secondary structure of proteins, i.e., the abundance of each structural motif in the polypeptide chain was directly related to the area of the suitable deconvolved vibration modes under the amide I band (1700-1600 cm(-1)). Recently, several multivariate regression methods have been used to predict the secondary structure of proteins as an alternative to the previous methods. They are based on establishing a relationship between a matrix of infrared protein spectra and another that includes their secondary structure, expressed as the fractions of the different structural motifs, determined from X-ray analysis. In this study, we investigated the use of the local regression method interval partial least-squares (iPLS) to seek improvements to the full-spectrum PLS and other regression methods. The local character of iPLS avoids the use of spectral regions that can introduce noise or that can be irrelevant for prediction and focuses on finding specific spectral ranges related to each secondary structure motif in all the proteins. This study has been applied to a representative protein data set with infrared spectra covering a large wavenumber range, including amides I-III bands (1700-1200 cm(-1)). iPLS has revealed new structural mode assignments related to less explored amide bands and has offered a satisfactory predictive ability using a small amount of selected specific spectral information.  相似文献   

20.
The piperidyl and prolyl amides of Kemp's triacid (7 and 8, respectively) have been prepared and their rates of intramolecular acylolysis measured as a function of pD. The piperidyl derivative 7 reacts approximately four-times faster (e.g., t(1/2)=3 min at 20 degrees C and pD7.7) than the previously reported pyrrolidyl and methylphenethyl amide derivatives, while the prolyl derivative 8 reacts two-times more slowly (e.g., e.g., t(1/2)=30 min at 20 degrees C and pD7.8). Molecular-mechanics calculations indicate that the nonbonded interactions in the piperidyl derivative 7 are distinct from those in the prolyl, pyrrolidyl, and methylphenethyl amide derivatives, a result that supports the suggestion that ground-state pseudoallylic strain contributes to the enormous reactivity of Kemp's triacid tertiary amides. In sum, the results reported indicate that the Kemp's triacid scaffolding provides a general means of activating tertiary amide derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号