首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Global temperature increases and precipitation changes are both expected to alter ecosystem carbon (C) cycling. We tested responses of ecosystem C cycling to simulated climate change using field manipulations of temperature and precipitation across a range of grass-dominated ecosystems along an elevation gradient in northern Arizona. In 2002, we transplanted intact plant?Csoil mesocosms to simulate warming and used passive interceptors and collectors to manipulate precipitation. We measured daytime ecosystem respiration (ER) and net ecosystem C exchange throughout the growing season in 2008 and 2009. Warming generally stimulated ER and photosynthesis, but had variable effects on daytime net C exchange. Increased precipitation stimulated ecosystem C cycling only in the driest ecosystem at the lowest elevation, whereas decreased precipitation showed no effects on ecosystem C cycling across all ecosystems. No significant interaction between temperature and precipitation treatments was observed. Structural equation modeling revealed that in the wetter-than-average year of 2008, changes in ecosystem C cycling were more strongly affected by warming-induced reduction in soil moisture than by altered precipitation. In contrast, during the drier year of 2009, warming induced increase in soil temperature rather than changes in soil moisture determined ecosystem C cycling. Our findings suggest that warming exerted the strongest influence on ecosystem C cycling in both years, by modulating soil moisture in the wet year and soil temperature in the dry year.  相似文献   

2.
Climate change feedbacks to microbial decomposition in boreal soils   总被引:1,自引:0,他引:1  
Boreal ecosystems store 10–20 % of global soil carbon and may warm by 4–7 °C over the next century. Higher temperatures could increase the activity of boreal decomposers and indirectly affect decomposition through other ecosystem feedbacks. For example, permafrost melting will likely alleviate constraints on microbial decomposition and lead to greater soil CO2 emissions. However, wet boreal ecosystems underlain by permafrost are often CH4 sources, and permafrost thaw could ultimately result in drier soils that consume CH4, thereby offsetting some of the greenhouse warming potential of soil CO2 emissions. Climate change is also likely to increase winter precipitation and snow depth in boreal regions, which may stimulate decomposition by moderating soil temperatures under the snowpack. As temperatures and evapotranspiration increase in the boreal zone, fires may become more frequent, leading to additional permafrost loss from burned ecosystems. Although post-fire decomposition could also increase due to higher soil temperatures, reductions in microbial biomass and activity may attenuate this response. Other feedbacks such as soil drying, increased nutrient mineralization, and plant species shifts are either weak or uncertain. We conclude that strong positive feedbacks to decomposition will likely depend on permafrost thaw, and that climate feedbacks will probably be weak or negative in boreal ecosystems without permafrost. However, warming manipulations should be conducted in a broader range of boreal systems to validate these predictions.  相似文献   

3.
Releases of the greenhouse gases carbon dioxide (CO2) and methane (CH4) from thawing permafrost are expected to be among the largest feedbacks to climate from arctic ecosystems. However, the current net carbon (C) balance of terrestrial arctic ecosystems is unknown. Recent studies suggest that these ecosystems are sources, sinks, or approximately in balance at present. This uncertainty arises because there are few long-term continuous measurements of arctic tundra CO2 fluxes over the full annual cycle. Here, we describe a pattern of CO2 loss based on the longest continuous record of direct measurements of CO2 fluxes in the Alaskan Arctic, from two representative tundra ecosystems, wet sedge and heath tundra. We also report on a shorter time series of continuous measurements from a third ecosystem, tussock tundra. The amount of CO2 loss from both heath and wet sedge ecosystems was related to the timing of freeze-up of the soil active layer in the fall. Wet sedge tundra lost the most CO2 during the anomalously warm autumn periods of September–December 2013–2015, with CH4 emissions contributing little to the overall C budget. Losses of C translated to approximately 4.1 and 1.4% of the total soil C stocks in active layer of the wet sedge and heath tundra, respectively, from 2008 to 2015. Increases in air temperature and soil temperatures at all depths may trigger a new trajectory of CO2 release, which will be a significant feedback to further warming if it is representative of larger areas of the Arctic.  相似文献   

4.
We combined Eddy‐covariance measurements with a linear perturbation analysis to isolate the relative contribution of physical and biological drivers on evapotranspiration (ET) in three ecosystems representing two end‐members and an intermediate stage of a successional gradient in the southeastern US (SE). The study ecosystems, an abandoned agricultural field [old field (OF)], an early successional planted pine forest (PP), and a late‐successional hardwood forest (HW), exhibited differential sensitivity to the wide range of climatic and hydrologic conditions encountered over the 4‐year measurement period, which included mild and severe droughts and an ice storm. ET and modeled transpiration differed by as much as 190 and 270 mm yr?1, respectively, between years for a given ecosystem. Soil water supply, rather than atmospheric demand, was the principal external driver of interannual ET differences. ET at OF was sensitive to climatic variability, and results showed that decreased leaf area index (L) under mild and severe drought conditions reduced growing season (GS) ET (ETGS) by ca. 80 mm compared with a year with normal precipitation. Under wet conditions, higher intrinsic stomatal conductance (gs) increased ETGS by 50 mm. ET at PP was generally larger than the other ecosystems and was highly sensitive to climate; a 50 mm decrease in ETGS due to the loss of L from an ice storm equaled the increase in ET from high precipitation during a wet year. In contrast, ET at HW was relatively insensitive to climatic variability. Results suggest that recent management trends toward increasing the land‐cover area of PP‐type ecosystems in the SE may increase the sensitivity of ET to climatic variability.  相似文献   

5.
森林土壤甲烷吸收的主控因子及其对增氮的响应研究进展   总被引:3,自引:0,他引:3  
森林土壤甲烷(CH4)吸收在生态系统碳、氮循环和碳平衡研究中具有重要作用。论述了森林土壤CH4的产生和消耗过程及其主控因子,有效氮不同的森林土壤CH4吸收对氮素输入的响应差异及其驱动机制,并且明确了现有研究的不足和未来研究的重点。研究表明:大气氮沉降输入倾向于抑制富氮森林土壤的CH4吸收,而对贫氮森林土壤CH4吸收具有显著的促进作用,其内在的氮素调控机制至今尚不明确。主要的原因是过去通过高剂量施氮试验所得出的理论难以准确地解释低水平氮沉降情景下森林土壤CH4吸收过程,有关森林土壤CH4吸收对大气氮沉降响应的微生物学机理也缺乏系统性研究。未来研究的重点是探讨森林土壤CH4物理扩散和净吸收过程对施氮类型、剂量的短期与长期响应,量化深层土壤CH4累积和消耗对表层土壤CH4吸收的贡献,揭示森林土壤CH4吸收对增氮响应的物理学与生物化学机制。另外,研究森林土壤甲烷氧化菌群落活性、结构对施氮类型和剂量的响应,阐明土壤CH4吸收与甲烷氧化菌群落组成的内在联系,有助于深入揭示森林土壤CH4吸收对增氮响应的微生物学机制。  相似文献   

6.
刘彦春  尚晴  王磊  田野  琚煜熙  甘家兵 《生态学报》2016,36(24):8054-8061
作为大气与陆地生态系统之间的第二大碳通量,土壤呼吸是评价陆地生态系统碳循环及碳汇能力的不确定性来源之一。降雨格局改变及其导致的土壤水分变化是调节土壤呼吸的重要驱动。气候过渡带的水热状况受全球降雨格局改变的影响更为明显,揭示该区域森林土壤呼吸对降雨改变的响应规律有助于改善碳循环模型的预测精度。然而,气候过渡区的土壤碳排放过程如何响应降雨格局改变尚不清楚。通过在亚热带-暖温带的过渡区(宝天曼)开展降雨改变实验,以阐明锐齿栎林土壤呼吸及其温度敏感性对降雨增加(50%)和减少(50%)的响应规律。结果表明,降雨增加显著提高土壤湿度(+8.92%)而不影响土壤温度。与对照相比,降雨增加导致土壤呼吸显著提高80.5%,其土壤呼吸的温度敏感性(4.07)显著高于对照样地(2.66)。增雨处理下的土壤呼吸与土壤湿度呈负相关。降雨减少则显著降低土壤湿度(-10.25%),并对土壤呼吸有促进趋势,然而,对土壤呼吸的温度敏感性(2.64)无显著影响。减雨处理下的土壤呼吸强度与土壤湿度呈正相关。这意味着在我国亚热带—暖温带过渡区,降雨增加或减少均对土壤呼吸有不同程度的刺激作用,进而很可能减弱该区域森林生态系统土壤的固碳潜力。  相似文献   

7.
Climate models predict increased frequency and intensity of storm events, but it is unclear how extreme precipitation events influence the dynamics of soil fluxes for multiple greenhouse gases (GHGs). Intact soil mesocosms (0–10 cm depth) from a temperate forested watershed in the piedmont region of Maryland [two upland forest soils, and two hydric soils (i.e., wetland, creek bank)] were exposed to experimental water pulses with periods of drying, forcing soils towards extreme wet conditions under controlled temperature. Automated measurements (hourly resolution) of soil CO2, CH4, and N2O fluxes were coupled with porewater chemistry analyses (i.e., pH, Eh, Fe, S, NO3 ?), and polymerase chain reaction–denaturing gradient gel electrophoresis to characterize changes in microbial community structure. Automated measurements quantified unexpected increases in emissions up to 245% for CO2 (Wetland), >23,000% for CH4 (Creek), and >110,000% for N2O (Forest Soils) following pulse events. The Creek soil produced the highest soil CO2 emissions, the Wetland soil produced the highest CH4 emissions, and the Forest soils produced the highest N2O emissions during the experiment. Using carbon dioxide equivalencies of the three GHGs, we determined the Creek soil contributed the most to a 20-year global warming potential (GWP; 30.3%). Forest soils contributed the most to the 100-year GWP (up to 53.7%) as a result of large N2O emissions. These results provide insights on the influence of extreme wet conditions on porewater chemistry and factors controlling soil GHGs fluxes. Finally, this study addresses the need to test biogeochemical thresholds and responses of ecosystem functions to climate extremes.  相似文献   

8.
Aim To examine the global pattern of the net primary production (NPP)/gross primary production (GPP) ratio of the Earth's land area along geographical and climatic gradients. Location The global planetary ecosystem. Methods The 4‐year average annual NPP/GPP ratio of the Earth's land area was calculated using 2000–03 Moderate Resolution Imaging Spectroradiometer (MODIS) data. The global pattern of the NPP/GPP ratio was investigated by comparing it among each typical terrestrial ecosystem and plotting it along a geographical and climatic gradient, including latitude, altitude, temperature and precipitation. Results The global terrestrial ecosystem had an average NPP/GPP ratio value of 0.52 with minor variation from 2000 to 2003. However, the NPP/GPP ratio showed considerable spatial variation associated with ecosystem type, geographical location and climate. Densely vegetated ecosystems had a lower NPP/GPP ratio than sparsely vegetated ecosystems. Forest ecosystems had a lower NPP/GPP ratio than shrub and herbaceous ecosystems. Geographically, the NPP/GPP ratio increased with altitude. In the Southern Hemisphere, the NPP/GPP ratio decreased along latitude from 30° to 10° and it exhibited high fluctuation in the Northern Hemisphere. Climatically, the NPP/GPP ratio exhibited a decreasing trend along enhanced precipitation when it was less than 2300 mm year?1 and a static trend when the annual precipitation was over 2300 mm. The NPP/GPP ratio showed a decreasing trend along temperature when it was between –20 °C and 10 °C, and showed an increasing trend along rising temperature when it was between –10 °C and 20 °C. Within each ecosystem, the NPP/GPP ratio revealed a similar trend to the global trend along temperature and precipitation. Conclusions The NPP/GPP ratio exhibited a pattern depending on the main climatic characteristics such as temperature and precipitation and geographical factors such as latitude and altitude. The findings of this research challenge the widely held assumption that the NPP/GPP ratio is consistent regardless of ecosystem type.  相似文献   

9.
Little is known about the impact of changing temperature regimes on composition and diversity of cryptogam communities in the Arctic and Subarctic, despite the well‐known importance of lichens and bryophytes to the functioning and climate feedbacks of northern ecosystems. We investigated changes in diversity and abundance of lichens and bryophytes within long‐term (9–16 years) warming experiments and along natural climatic gradients, ranging from Swedish subarctic birch forest and subarctic/subalpine tundra to Alaskan arctic tussock tundra. In both Sweden and Alaska, lichen diversity responded negatively to experimental warming (with the exception of a birch forest) and to higher temperatures along climatic gradients. Bryophytes were less sensitive to experimental warming than lichens, but depending on the length of the gradient, bryophyte diversity decreased both with increasing temperatures and at extremely low temperatures. Among bryophytes, Sphagnum mosses were particularly resistant to experimental warming in terms of both abundance and diversity. Temperature, on both continents, was the main driver of species composition within experiments and along gradients, with the exception of the Swedish subarctic birch forest where amount of litter constituted the best explanatory variable. In a warming experiment in moist acidic tussock tundra in Alaska, temperature together with soil ammonium availability were the most important factors influencing species composition. Overall, dwarf shrub abundance (deciduous and evergreen) was positively related to warming but so were the bryophytes Sphagnum girgensohnii, Hylocomium splendens and Pleurozium schreberi; the majority of other cryptogams showed a negative relationship to warming. This unique combination of intercontinental comparison, natural gradient studies and experimental studies shows that cryptogam diversity and abundance, especially within lichens, is likely to decrease under arctic climate warming. Given the many ecosystem processes affected by cryptogams in high latitudes (e.g. carbon sequestration, N2‐fixation, trophic interactions), these changes will have important feedback consequences for ecosystem functions and climate.  相似文献   

10.
Tropical soils account for 10%–20% of the 15–35 Tg of atmospheric methane (CH4) consumed annually by soils, although tropical deforestation could be changing the soil sink. The objectives of this study were (a) to quantify differences in soil CH4 fluxes among primary forest, secondary forest, active pasture, and degraded pasture in eastern Amazonia; and (b) to investigate controlling mechanisms of CH4 fluxes, including N availability, gas-phase transport, and soil respiration. At one ranch, Fazenda Vitória, annual uptake estimates (kg CH4ha−1 y−1) based on monthly measurements were: primary forest, 2.1; secondary forest, 1.0; active pasture, 1.3; degraded pasture, 3.1. The lower annual uptake in the active pasture compared with the primary forest was due to CH4 production during the wet season in the pasture soils, which is consistent with findings from other studies. In contrast, the degraded pasture was never a CH4 source. Expressing uptake as a negative flux and emission as a positive flux, CH4 fluxes were positively correlated with CO2 fluxes, indicating that root and microbial respiration in the productive pastures, and to a lesser extent in the primary forest, contributed to the formation of anaerobic microsites where CH4 was produced, whereas this productivity was absent in the degraded pasture. In all land uses, uptake rates of atmospheric CH4 were greater in the dry season than in the wet season, indicating the importance of soil water content and gas transport on CH4 fluxes. These clay soils had low annual uptake rates relative to reported rates on sandy soils, which also is consistent with gas transport within the soil being a limiting factor. Nitrogen availability indices did not correlate with CH4 fluxes, indicating that inhibition of CH4 oxidation was not an important mechanism explaining differences among land uses. At another ranch, Fazenda Agua Parada, no significant effect of pasture age was observed along a chronosequence of pasture ages. We conclude that land-use change can either increase or decrease the soil sink of CH4, depending on the duration of wet and dry seasons, the effects of seasonal precipitation on gas-phase transport, and the phenology and relative productivity of the vegetation in each land use.  相似文献   

11.
Question: Are trait differences between grasses along a gradient related to climatic variables and/or photosynthetic pathway? Location: Temperate grassland areas of South and North America. Methods: In a common garden experiment, we cultivated C3 and C4 grasses from grasslands under different climatic conditions, and we measured a set of 12 plant traits related to size and resource capture and utilization. We described (1) interspecific plant trait differences along a climatic gradient defined by the precipitation and temperature at the location where each species is dominant and (2) the association between those plant trait differences and the photosynthetic pathway of the species. Results: Trait differences between grasses were related to the precipitation at the area where each species is dominant, and to the photosynthetic pathway of the species. Leaf length, leaf width, plant height, leaf area per tiller, specific leaf area, leaf δ13C ratio, and nitrogen resorption efficiency increased while leaf dry matter content and nitrogen concentration in senesced leaves decreased as precipitation increased. A proportion of these changes along the gradient was related to the photosynthetic pathway because dominant grass species in cold areas with low precipitation are mainly C3 and those from warm and wet areas are C4. Conclusions: A previous worldwide analysis showed that traits of graminoid species measured in situ changed slightly along climatic gradients (< 10% variance explained). In contrast, under a common environment we observed that (1) grass traits changed strongly along a climatic gradient (30‐85% variance explained) and, (2) a proportion of those changes were related to the association between photosynthetic pathway of the species and precipitation.  相似文献   

12.
Warming can accelerate the decomposition of soil organic matter and stimulate the release of soil greenhouse gases (GHGs), but to what extent soil release of methane (CH4) and nitrous oxide (N2O) may contribute to soil C loss for driving climate change under warming remains unresolved. By synthesizing 1,845 measurements from 164 peer‐reviewed publications, we show that around 1.5°C (1.16–2.01°C) of experimental warming significantly stimulates soil respiration by 12.9%, N2O emissions by 35.2%, CH4 emissions by 23.4% from rice paddies, and by 37.5% from natural wetlands. Rising temperature increases CH4 uptake of upland soils by 13.8%. Warming‐enhanced emission of soil CH4 and N2O corresponds to an overall source strength of 1.19, 1.84, and 3.12 Pg CO2‐equivalent/year under 1°C, 1.5°C, and 2°C warming scenarios, respectively, interacting with soil C loss of 1.60 Pg CO2/year in terms of contribution to climate change. The warming‐induced rise in soil CH4 and N2O emissions (1.84 Pg CO2‐equivalent/year) could reduce mitigation potential of terrestrial net ecosystem production by 8.3% (NEP, 22.25 Pg CO2/year) under warming. Soil respiration and CH4 release are intensified following the mean warming threshold of 1.5°C scenario, as compared to soil CH4 uptake and N2O release with a reduced and less positive response, respectively. Soil C loss increases to a larger extent under soil warming than under canopy air warming. Warming‐raised emission of soil GHG increases with the intensity of temperature rise but decreases with the extension of experimental duration. This synthesis takes the lead to quantify the ecosystem C and N cycling in response to warming and advances our capacity to predict terrestrial feedback to climate change under projected warming scenarios.  相似文献   

13.
Most studies of greenhouse gas fluxes from forest soils in the coastal rainforest have considered carbon dioxide (CO2), whereas methane (CH4) has not received the same attention. Soil hydrology is a key driver of CH4 dynamics in ecosystems, but the impact on the function and distribution of the underlying microbial communities involved in CH4 cycling and the resultant net CH4 exchange is not well understood at this scale. We studied the growing season variations of in situ CH4 fluxes, microbial gene abundances of methanotrophs (CH4 oxidizers) and methanogens (CH4 producers), soil hydrology, and nutrient availability in three typical forest types across a soil moisture gradient. CH4 displayed a spatial variability changing from a net uptake in the upland soils (3.9–46 µmol CH4 m?2 h?1) to a net emission in the wetter soils (0–90 μmol CH4 m?2 h?1). Seasonal variations of CH4 fluxes were related to soil hydrology in both upland and wet soils. Thus, in the upland soils, uptake rates increased with the decreasing soil moisture, whereas CH4 emission was inversely related to the water table depth in the wet soils. Spatial variability of CH4 exchange was related to the abundance of genes involved in CH4 oxidation and production, but there was no indication of a temporal link between microbial groups and CH4 exchange. Our data show that the abundances of genes involved in CH4 oxidation and production are strongly influenced by soil moisture and each other and grouped by the upland–wetland classification but not forest type.  相似文献   

14.
Shifts in nitrogen (N) mineralization and nitrification rates due to global changes can influence nutrient availability, which can affect terrestrial productivity and climate change feedbacks. While many single‐factor studies have examined the effects of environmental changes on N mineralization and nitrification, few have examined these effects in a multifactor context or recorded how these effects vary seasonally. In an old‐field ecosystem in Massachusetts, USA, we investigated the combined effects of four levels of warming (up to 4 °C) and three levels of precipitation (drought, ambient, and wet) on net N mineralization, net nitrification, and potential nitrification. We also examined the treatment effects on the temperature sensitivity of net N mineralization and net nitrification and on the ratio of C mineralization to net N mineralization. During winter, freeze–thaw events, snow depth, and soil freezing depth explained little of the variation in net nitrification and N mineralization rates among treatments. During two years of treatments, warming and altered precipitation rarely influenced the rates of N cycling, and there was no evidence of a seasonal pattern in the responses. In contrast, warming and drought dramatically decreased the apparent Q10 of net N mineralization and net nitrification, and the warming‐induced decrease in apparent Q10 was more pronounced in ambient and wet treatments than the drought treatment. The ratio of C mineralization to net N mineralization varied over time and was sensitive to the interactive effects of warming and altered precipitation. Although many studies have found that warming tends to accelerate N cycling, our results suggest that warming can have little to no effect on N cycling in some ecosystems. Thus, ecosystem models that assume that warming will consistently increase N mineralization rates and inputs of plant‐available N may overestimate the increase in terrestrial productivity and the magnitude of an important negative feedback to climate change.  相似文献   

15.
Hydrology drives the carbon balance of wetlands by controlling the uptake and release of CO2 and CH4. Longer dry periods in between heavier precipitation events predicted for the Everglades region, may alter the stability of large carbon pools in this wetland's ecosystems. To determine the effects of drought on CO2 fluxes and CH4 emissions, we simulated changes in hydroperiod with three scenarios that differed in the onset rate of drought (gradual, intermediate, and rapid transition into drought) on 18 freshwater wetland monoliths collected from an Everglades short‐hydroperiod marsh. Simulated drought, regardless of the onset rate, resulted in higher net CO2 losses net ecosystem exchange (NEE) over the 22‐week manipulation. Drought caused extensive vegetation dieback, increased ecosystem respiration (Reco), and reduced carbon uptake gross ecosystem exchange (GEE). Photosynthetic potential measured by reflective indices (photochemical reflectance index, water index, normalized phaeophytinization index, and the normalized difference vegetation index) indicated that water stress limited GEE and inhibited Reco. As a result of drought‐induced dieback, NEE did not offset methane production during periods of inundation. The average ratio of net CH4 to NEE over the study period was 0.06, surpassing the 100‐year greenhouse warming compensation point for CH4 (0.04). Drought‐induced diebacks of sawgrass (C3) led to the establishment of the invasive species torpedograss (C4) when water was resupplied. These changes in the structure and function indicate that freshwater marsh ecosystems can become a net source of CO2 and CH4 to the atmosphere, even following an extended drought. Future changes in precipitation patterns and drought occurrence/duration can change the carbon storage capacity of freshwater marshes from sinks to sources of carbon to the atmosphere. Therefore, climate change will impact the carbon storage capacity of freshwater marshes by influencing water availability and the potential for positive feedbacks on radiative forcing.  相似文献   

16.
Vegetation phenology, the study of the timing and length of the terrestrial growing season and its connection to climate, is increasingly important in integrated Earth system science. Phenological variability is an excellent barometer of short‐ and long‐term climatic variability, strongly influences surface meteorology, and may influence the carbon cycle. Here, using the 1895–1993 Vegetation/Ecosystem Modelling and Analysis dataset and the Biome‐BGC terrestrial ecosystem model, we investigated the relationship between phenological metrics and annual net ecosystem exchange (NEE) of carbon. For the 1167 deciduous broad leaf forest pixels, we found that NEE was extremely weakly related to canopy duration (days from leaf appearance to complete leaf fall). Longer canopy duration, did, however, sequester more carbon if warm season precipitation was above average. Carbon uptake period (number of days with net CO2 uptake from the atmosphere), which integrates the influence of all ecosystem states and processes, was strongly related to NEE. Results from the Harvard Forest eddy‐covariance site supported our findings. Such dramatically different results from two definitions of ‘growing season length’ highlight the potential for confusion among the many disciplines engaged in phenological research.  相似文献   

17.
Soil redox plays a key role in regulating biogeochemical transformations in terrestrial ecosystems, but the temporal and spatial patterns in redox and associated controls within and across ecosystems are poorly understood. Upland humid tropical forest soils may be particularly prone to fluctuating redox as abundant rainfall limits oxygen (O2) diffusion through finely textured soils and high biological activity enhances O2 consumption. We used soil equilibration chambers equipped with automated sensors to determine the temporal variability in soil oxygen concentrations in two humid tropical forests with different climate regimes. We also measured soil trace gases (CO2, N2O, and CH4) as indices of redox-sensitive biogeochemistry. On average, the upper elevation cloud forest had significantly lower O2 concentrations (3.0 ± 0.8%) compared to the lower elevation wet tropical forest (7.9 ± 1.1%). Soil O2 was dynamic, especially in the wet tropical forest, where concentrations changed as much as 10% in a single day. The periodicity in the O2 time series at this site was strongest at 16 day intervals and was associated with the hourly precipitation. Greenhouse gas concentrations differed significantly between sites, but the relationships with soil O2 were consistent: O2 was negatively related to both CO2 and CH4 and positively related to N2O. These results are among the first to quantify the temporal and spatial scale of variability in soil redox in humid tropical forests, and show that the timing of precipitation plays a strong role in biogeochemical cycling on the scale of hours to weeks.  相似文献   

18.
湿地微生物介导的甲烷排放机制   总被引:2,自引:0,他引:2  
湿地生态系统是陆地上巨大的有机碳库,同时也是大气中甲烷(CH_4)的主要排放源。由于CH_4对全球的增温潜能是CO2的34倍,因此关于湿地CH_4排放在全球气候变化中有关碳汇、碳源的研究具有极其重要的意义。全球80%–90%的CH_4排放离不开微生物活动,湿地生态系统中产CH_4菌和CH_4氧化菌的种类组成、数量及功能与CH_4通量密切相关,但基于湿地生态系统中介导CH_4循环的功能微生物对甲烷排放通量的影响及作用机制研究相对比较分散。为更好地认识微生物介导的CH_4排放过程的微生物调控机制,本文综述了湿地生态系统中参与CH_4循环的功能微生物,对介导CH_4循环相关微生物活性的影响因子进行了回顾,重点总结了湿地生态系统微生物介导的CH_4排放机制,并对未来的相关研究方向进行了展望。由于湿地微生物介导的碳循环过程也可能决定了湿地生态系统对全球气候变暖的反馈,因此本文也能为全球气候变化研究提供微生物方面的参考。  相似文献   

19.
The net balance of greenhouse gas (GHG) exchanges between terrestrial ecosystems and the atmosphere under elevated atmospheric carbon dioxide (CO2) remains poorly understood. Here, we synthesise 1655 measurements from 169 published studies to assess GHGs budget of terrestrial ecosystems under elevated CO2. We show that elevated CO2 significantly stimulates plant C pool (NPP) by 20%, soil CO2 fluxes by 24%, and methane (CH4) fluxes by 34% from rice paddies and by 12% from natural wetlands, while it slightly decreases CH4 uptake of upland soils by 3.8%. Elevated CO2 causes insignificant increases in soil nitrous oxide (N2O) fluxes (4.6%), soil organic C (4.3%) and N (3.6%) pools. The elevated CO2‐induced increase in GHG emissions may decline with CO2 enrichment levels. An elevated CO2‐induced rise in soil CH4 and N2O emissions (2.76 Pg CO2‐equivalent year?1) could negate soil C enrichment (2.42 Pg CO2 year?1) or reduce mitigation potential of terrestrial net ecosystem production by as much as 69% (NEP, 3.99 Pg CO2 year?1) under elevated CO2. Our analysis highlights that the capacity of terrestrial ecosystems to act as a sink to slow climate warming under elevated CO2 might have been largely offset by its induced increases in soil GHGs source strength.  相似文献   

20.
Recent climate warming is usually hypothesized to cause tree growth decline in the semi-arid regions where forests are particularly vulnerable to warming induced increases of water deficit. But there is still a large knowledge gap of climate warming effects on tree growth of cold temperate forest in the sub-humid region. Here we assess how climate warming has affected tree growth in the Wolong National Natural Reserve, Southwestern China, where recent warming might not cause tree growth decline because of the cold-humid climatic conditions. Tree-ring data from four co-dominant coniferous species (Larix potaninii var. macrocarpa, Tsuga chinensis, Abies faxoniana and Juniperus saltuaria) along an elevation gradient (from 2700 m to 3700 m) all imprinted temperature signals, and were both positively and significantly correlated with instrumental record of temperature data during the analyzed period of 1954–2010. Furthermore, the rising temperature since 1980 induced pervasive tree growth increases and stronger temperature signals for the coniferous species along the elevation gradient. The tree-ring chronology recorded a strong coherence with instrumental temperature since 1980 and was successful to keep up with the pace of climate warming rate. If climate warming continues, further increases in forest growth could be expected, and the terrestrial carbon sink will be strengthened for the local forest ecosystem in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号